n environment to decompose the i-th Hochschild cohomology on some homogeneous varieties X=G/P by Hoschild-Kostant-Rosenberg.
Hochschild-Kostant-Rosenberg_decomposition / src / HochschildKostantRosenberg_decomposition / __pycache__ / base_space.cpython-311.pyc
383 viewsLicense: GPL3
ubuntu2204
�
�Cqf�W � � � d dl T ed� � Z ed� � Z ed� � Z ed� � Z ed� � Z ed� � Z ed � � Z ed� � Z d d l
mZ G d
� de� � Z
G d� d
e� � Z G d� de� � ZdS )� )�*� � � � � � � )�Iteratorc �^ � e Zd Zee
fee
fee
fee
feefe e feefd�Z
defd�Zde
dej j j ddfd�Zdefd�Zdee
ej j j f fd �Zde
fd
�Zdd�Zde
fd�Zddfd�Zdej j j fd�Zdej j j ddfd�Zdd�Zd d�ZdS )!�irreducible_Cartan_group)�A�B�C�D�E�F�G�returnc � � t |t � � s
J d� � �| � � � |� � � k S �z+Tests if ``self`` coincides with ``other``.z@The input for ``other`` needs to be an irreducible Cartan group.)�
isinstancer
�__repr__��self�others �p/home/user/Hochschild-Kostant-Rosenberg_decomposition/src/HochschildKostantRosenberg_decomposition/base_space.py�__eq__zirreducible_Cartan_group.__eq__ sR � ��5�#;�=�=� R� R� PR� R� R� R��}�}���%�.�.�"2�"2�2�2� �
Cartan_family�
Cartan_degreeNc �� � || j � � � v sAJ t dt | j � � � � � z dz � � � � �|| _ |t
v sJ t d� � � � �| j | \ }}||k r||k sPJ t dt |� � z dz t |� � z dz t |� � z dz � � � � �|| _ dS )�Initialise ``self``.zGThe input for ``Cartan_family`` needs to be a letter from the alphabet �.z7The input for ``Cartan_degree`` needs to be an integer.zIf the Cartan family is z8, then the input for ``Cartan_degree`` needs to between z and N)�ADMISSIBLE_CARTAN_FAMILIES�keys�
ValueError�str�_Cartan_family�ZZ�_Cartan_degree)r r r! �lower_bound�upper_bounds r �__init__z!irreducible_Cartan_group.__init__ s� � ��� ?� D� D� F� F�F�F�F�Xb� dm� nq� rv� rQ� rV� rV� rX� rX� nY� nY� dY� Z]� d]� Y^� Y^�F�F�F�+�����"�"�"�J�?x�4y�4y�"�"�"�$(�$C�M�$R�!��k��m�+�+�
��0L�0L�0L�^h� jD� EH� IV� EW� EW� jW� XR� jR� SV� Wb� Sc� Sc� jc� dk� jk� lo� p{� l|� l|� j|� }@� j@� _A� _A�0L�0L�0L�+����r c � � | |k S �z4Tests if ``self`` does NOT coincides with ``other``.� r s r �__neq__z irreducible_Cartan_group.__neq__* � � ��5�=� � r c � � | j | j fS �z*Returns a developers adjusted description.)r) r+ �r s r r z!irreducible_Cartan_group.__repr__/ s � ��"�T�%8�8�8r c �@ � | j dz t | j � � z S )�%Returns a human-readable description.�_�r) r( r+ r6 s r �__str__z irreducible_Cartan_group.__str__4 s � ��"�3�&�s�4�+>�'?�'?�?�?r r �maximal_parabolic_subgroup�'minimal_irreducible_homogeneous_varietyc � � t |t � � s
J d� � �| |j k s
J d� � �t |�� � S )z:Returns the minimal irreducible homogeneous variety X=G/P.zAThe input for ``other`` needs to be a minimal parabolic subgroup.z/The parent group of ``other`` needs to be self.)�parabolic_subgroup)r r<