Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

n environment to decompose the i-th Hochschild cohomology on some homogeneous varieties X=G/P by Hoschild-Kostant-Rosenberg.

383 views
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
%run '/home/user/Hochschild-Kostant-Rosenberg_decomposition/src/initialize.ipynb' from HochschildKostantRosenberg_decomposition.base_space import *
# Initialise base space. G = irreducible_Cartan_group( 'B' , 4 ) P = G.parabolic_subgroup(2) X = G/P dimX = X.dimension() r = (dimX-1)/2 print( 'Base space: '+str(X) ) print( 'We have dim X = '+str(dimX)+' = 2*r+1 where r='+bcolors.OKBLUE+str(r)+bcolors.ENDC+'.' ) print() # Input i = 3 print( 'Decompose HH^'+bcolors.OKBLUE+str(i)+bcolors.ENDC+'( X ) = H^0( X , wedge^'+str(i)+' T_X ) by Hochschild–Kostant–Rosenberg. ...' ) print() # Test if given base space is adjoint. assert X.is_adjoint() , \ 'The homogeneous variety X is not adjoint.' # Set up necessary data. fw = dict( X._parabolic_subgroup._parent_group.Cartan_type().root_system().weight_space().fundamental_weights() ) rho = sum(list(fw.values())) # sum of fundamental weights total_counter = 0 restiction = '' # Set up stock of indices. stock = [] if i <= r : stock = [ ( i-2*p , p ) for p in [ 0 .. floor(i/2) ] ] + \ [ ( i-2*p-1 , p+1 ) for p in [ 0 .. floor(i/2-1/2) ] ] else : stock = [ ( i+1+2*p , -p-1 ) for p in [ 0 .. floor(r-i/2) ] ] + \ [ ( i+2*p , -p-2 ) for p in [ 0 .. floor(r-i/2+1/2) ] ] # Compute Kostant space and present output. print( 'H^0( X , wedge^'+str(i)+' T_X ) consists of the following Kostant spaces:' ) for u , v in stock : print( bcolors.OKBLUE+'K( '+str(G)+' , '+str(P)+' , '+str(u)+' , '+str(v)+' )'+bcolors.ENDC+'' ) counter = 0 for counter , weight in enumerate( X.Kostant_space(u,v,restiction) , start=1 ) : total_counter += 1 if X.is_regular( weight+rho ) : regular = bcolors.OKGREEN+'regular'+bcolors.ENDC else : regular = bcolors.FAIL+'singular'+bcolors.ENDC string = 3*' '+str(total_counter)+')' print( string , 'V^{ lambda } with lambda = '+bcolors.OKBLUE+str(weight)+bcolors.ENDC ) print( len(string)*' ' , 'Note: lambda + rho = '+str( weight+rho )+' is '+regular+'.' ) if counter == 0 : print( 3*' ' , 'None.' ) print()
Base space: B_4/P_2 We have dim X = 11 = 2*r+1 where r=5. Decompose HH^3( X ) = H^0( X , wedge^3 T_X ) by Hochschild–Kostant–Rosenberg. ... H^0( X , wedge^3 T_X ) consists of the following Kostant spaces: K( B_4 , P_2 , 3 , 0 ) 1) V^{ lambda } with lambda = Lambda[1] - Lambda[2] + Lambda[3] + 2*Lambda[4] Note: lambda + rho = 2*Lambda[1] + 2*Lambda[3] + 3*Lambda[4] is singular. 2) V^{ lambda } with lambda = 3*Lambda[1] - Lambda[2] + 2*Lambda[4] Note: lambda + rho = 4*Lambda[1] + Lambda[3] + 3*Lambda[4] is singular. K( B_4 , P_2 , 1 , 1 ) 3) V^{ lambda } with lambda = Lambda[1] + Lambda[3] Note: lambda + rho = 2*Lambda[1] + Lambda[2] + 2*Lambda[3] + Lambda[4] is regular. K( B_4 , P_2 , 2 , 1 ) 4) V^{ lambda } with lambda = 2*Lambda[1] + 2*Lambda[4] Note: lambda + rho = 3*Lambda[1] + Lambda[2] + Lambda[3] + 3*Lambda[4] is regular. 5) V^{ lambda } with lambda = 2*Lambda[3] Note: lambda + rho = Lambda[1] + Lambda[2] + 3*Lambda[3] + Lambda[4] is regular. K( B_4 , P_2 , 0 , 2 ) 6) V^{ lambda } with lambda = 2*Lambda[2] Note: lambda + rho = Lambda[1] + 3*Lambda[2] + Lambda[3] + Lambda[4] is regular.