n environment to decompose the i-th Hochschild cohomology on some homogeneous varieties X=G/P by Hoschild-Kostant-Rosenberg.
Hochschild-Kostant-Rosenberg_decomposition / tests / decomposition_for_adjoint_generalised_Grassmannians.ipynb
383 viewsLicense: GPL3
ubuntu2204
Kernel: SageMath 10.3
In [4]:
In [5]:
Out[5]:
Base space: B_4/P_2
We have dim X = 11 = 2*r+1 where r=5.
Decompose HH^3( X ) = H^0( X , wedge^3 T_X ) by Hochschild–Kostant–Rosenberg. ...
H^0( X , wedge^3 T_X ) consists of the following Kostant spaces:
K( B_4 , P_2 , 3 , 0 )
1) V^{ lambda } with lambda = Lambda[1] - Lambda[2] + Lambda[3] + 2*Lambda[4]
Note: lambda + rho = 2*Lambda[1] + 2*Lambda[3] + 3*Lambda[4] is singular.
2) V^{ lambda } with lambda = 3*Lambda[1] - Lambda[2] + 2*Lambda[4]
Note: lambda + rho = 4*Lambda[1] + Lambda[3] + 3*Lambda[4] is singular.
K( B_4 , P_2 , 1 , 1 )
3) V^{ lambda } with lambda = Lambda[1] + Lambda[3]
Note: lambda + rho = 2*Lambda[1] + Lambda[2] + 2*Lambda[3] + Lambda[4] is regular.
K( B_4 , P_2 , 2 , 1 )
4) V^{ lambda } with lambda = 2*Lambda[1] + 2*Lambda[4]
Note: lambda + rho = 3*Lambda[1] + Lambda[2] + Lambda[3] + 3*Lambda[4] is regular.
5) V^{ lambda } with lambda = 2*Lambda[3]
Note: lambda + rho = Lambda[1] + Lambda[2] + 3*Lambda[3] + Lambda[4] is regular.
K( B_4 , P_2 , 0 , 2 )
6) V^{ lambda } with lambda = 2*Lambda[2]
Note: lambda + rho = Lambda[1] + 3*Lambda[2] + Lambda[3] + Lambda[4] is regular.
In [0]: