Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

Slides for my University of Idaho Colloquium on 6 March 2023 about Entanglement and the 2022 Nobel Prize in physics.

Views: 8
License: MIT
Visibility: Unlisted (only visible to those who know the link)
Image: ubuntu2004

Is Quantum Physics Fundamentally Different than Classical Physics?

Tutorial on the 2022 Nobel Prize

Michael McNeil Forbes

Washington State University and the University of Washington

Experimental Validation

Closing loopholes in tests of Bell's Inequalities

2023 Nobel Prize

Abstract

The 2022 Nobel Prize in physics was awarded to Alain Aspect, John F. Clauser, and Anton Zeilinger

“for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science”.

The inequalities set forth by John Bell provide a formal proof supporting the view of Bohr and Schrödinger, that quantum mechanics is fundamentally incompatible with the local realist model of classical physics favored by Einstein, Podolsky, and Rosen (EPR). The 2022 Nobel Prize recognizes the experimental efforts made to test the violations of these inequalities, supporting the predictions of the quantum theory.

In this colloquium I will provide a pedagogical but rigorous explanation of a modern formulation of quantum theory, demonstrating a form of the Bell inequalities due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH), whose violation supports the reality of quantum entanglement – what Schrödinger called “the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought”.

I will discuss aspects of the experiments, what the results mean for our interpretation of reality, and try to shed some light on the question posed in my title.

This cell contains math definitions. \renewcommand{\d}{\mathrm{d}} \renewcommand{\abs}[1]{\lvert#1\rvert} \renewcommand{\I}{\mathrm{i}} \renewcommand{\op}[1]{\bm{\hat{#1}}} \renewcommand{\mat}[1]{\bm{#1}} \renewcommand{\smat}[1]{\left(\begin{smallmatrix}#1\end{smallmatrix}\right)} \renewcommand{\ua}{\uparrow} \renewcommand{\da}{\downarrow} \renewcommand{\la}{\leftarrow} \renewcommand{\ra}{\roghtarrow}

%%writefile my_code.py import numpy as np import matplotlib.pyplot as plt from qiskit.visualization import plot_bloch_vector def detector(n=np.inf, label=None): """Draw a detector at angle np.pi/n""" theta = np.pi/n c = "C0" if label is None: if np.isinf(n): c = "g" label = r"$\mathbf{\hat{A}}_1=\mathbf{\hat{R}}(0)=\mathbf{\hat{Z}}}$" elif n == 2: c = "g" label = r"$\mathbf{\hat{A}}_2=\mathbf{\hat{R}}(\pi/2)=\mathbf{\hat{X}}$" else: if n == 4: c = "b" pre = r"\mathbf{\hat{B}}_1=" elif n == -4: c = "b" pre = r"\mathbf{\hat{B}}_2=" else: pre = "" if n < 0: label = fr"${pre}\mathbf{{\hat{{R}}}}(-\pi/{-n})$" else: label = fr"${pre}\mathbf{{\hat{{R}}}}(\pi/{n})$" fig, ax = plt.subplots(figsize=(2,2)) z = np.linspace(-1, 1, 500) th = np.pi * z ph = np.exp(1j*(np.pi/2-theta)) ls = (z + 0.03j)*ph, (z - 0.03j)*ph ax.plot(np.cos(th), np.sin(th), 'k-') [ax.plot(_l.real, _l.imag, c+'-') for _l in ls] ax.text(0.7,0.8, label) ax.axis('off') def get_vec(psi): """Return the Bloch vector from psi.""" gamma = np.angle(psi[0]) psi = np.exp(-1j*gamma) * np.asarray(psi) phi = np.angle(psi[1]) - np.angle(psi[0]) theta = 2*np.arctan2(psi[0].real, (np.exp(-1j*phi)*psi[1]).real) x = np.sin(theta)*np.cos(phi) y = np.sin(theta)*np.sin(phi) z = np.cos(theta) return (x, y, z)
Overwriting my_code.py

Outline

  • What is Quantum Mechanics?

  • Qubits: Spin 1/2, ψ=a+b\ket{\psi} = a\ket{\uparrow} + b\ket{\downarrow}

  • Two particles: ψ=a+b+c+d\ket{\psi} = a\ket{\uparrow\uparrow} + b\ket{\uparrow\downarrow} + c\ket{\downarrow\uparrow} + d\ket{\downarrow\downarrow}

  • The Einstein-Podolski-Rosen (EPR) "paradox". Spooky action at a distance.

  • The Bell inequalities (CHSH formulation)

  • Experimental tests: the 2022 Nobel Prize

  • Discussion: Teleportation, Delayed-Choice Quantum Eraser (no retrocausality) Superdeterminism

  • Questions?

EPR

What is Classical Mechanics?

  1. Kinematics: How do we describe the behaviour of a particle?

    x(t):v(t)=x˙(t),a(t)=x¨(t).x(t): \qquad v(t)=\dot{x}(t), \qquad a(t) = \ddot{x}(t).
  2. Dynamics: How do we see if the behaviour is physical?

    F(x,v,t)=mx¨.(Newton’s Law)F(x, v, t) = m\ddot{x}. \tag{Newton's Law}

    Alternative formulations: Lagrangian and Hamiltonian. I.e. δS[x]δx=0,S[x]=dx  L(x,x˙,t)=dx  (mx˙22V(x,t)). \frac{\delta S[x]}{\delta x} = 0, \qquad S[x] = \int\d{x}\; L(x, \dot{x}, t) = \int\d{x}\; \Bigl(\frac{m\dot{x}^2}{2} - V(x, t)\Bigr).

What is Quantum Mechanics?

  1. Kinematics: How do we describe the behaviour of a particle?

    ψ(x,t):p(x,t)=ψ(x,t)2.(Wavefunction)\psi(x, t): \qquad p(x, t) = \abs{\psi(x, t)}^2. \tag{Wavefunction}
  2. Dynamics: How do we see if the behaviour is physical?

    iψ˙(x,t)=(222m+V(x,t))H^(Hamiltonian)ψ(x,t).(Schro¨dinger Eq.)\I\hbar \dot{\psi}(x, t) = \underbrace{\biggl(\frac{-\hbar^2\nabla^2}{2m} + V(x, t)\biggr)}_{\op{H} \quad \text{(Hamiltonian)}}\psi(x, t). \qquad \tag{Schrödinger Eq.}

What is Quantum Mechanics?

Linear Algebra (Heisenberg's Matrix Mechanics)

[unavailable png image]

ψ=(0.03300.24390.66290.66290.24390.0330)\ket{\psi} = \begin{pmatrix}0.0330\\ 0.2439\\ 0.6629\\ 0.6629\\ 0.2439\\ 0.0330\end{pmatrix}

x=(10622610)\mat{x} = \begin{pmatrix}-10&&&&&\\&-6&&&&\\&&-2&&&&\\&&&2&&\\&&&&6&\\&&&&&10\end{pmatrix}

p=i4(111111111111)\mat{p} = \frac{-\I\hbar}{4} \begin{pmatrix} -1&1&&&&\\ &-1&1&&&\\ &&-1&1&&\\ &&&-1&1&\\ &&&&-1&1\\ 1&&&&&-1 \end{pmatrix}

  • Wavefunction ψ(x)\psi(x) is a vector ψ\ket{\psi} (in Hilbert space).

  • "Observables" become operators: xx^=δ(xy)x,pp^=δ(xy)(ix).\begin{align*} x \rightarrow \op{x} &= \delta(x-y)x,\\ p \rightarrow \op{p} &= \delta(x-y)(-\I\hbar \partial_x). \end{align*}

What is Quantum Mechanics?

Eigenvectors and Eigenvalues

x=(10622610)\mat{x} = \begin{pmatrix}-10&&&&&\\&-6&&&&\\&&-2&&&&\\&&&2&&\\&&&&6&\\&&&&&10\end{pmatrix}

p=i4(111111111111)\mat{p} = \frac{-\I\hbar}{4} \begin{pmatrix} -1&1&&&&\\ &-1&1&&&\\ &&-1&1&&\\ &&&-1&1&\\ &&&&-1&1\\ 1&&&&&-1 \end{pmatrix}

10x=(100000),6x=(010000),x^xn=xnxxn,x^10x=1010x,\ket{-10}_x = \begin{pmatrix}1\\0\\0\\0\\0\\0\end{pmatrix}, \qquad \ket{-6}_x = \begin{pmatrix}0\\1\\0\\0\\0\\0\end{pmatrix}, \qquad\cdots\\ \op{x}\ket{x_n} = \ket{x_n}_x x_n, \qquad \op{x}\ket{-10} _x= -10\ket{-10}_x, \qquad \cdots
xknpeiknx,kn=2πn24n{3,2,1,0,1,2}\braket{x|k_n}_{p} \propto e^{\I k_n x}, \qquad k_n = \left.\frac{2\pi n}{24}\right|_{n \in \{-3, -2, -1, 0, 1, 2\}}

Measurement

aka "Nobody understands quantum mechanics"

ψ=(0.03300.24390.66290.66290.24390.0330)\ket{\psi} = \begin{pmatrix}0.0330\\ 0.2439\\ 0.6629\\ 0.6629\\ 0.2439\\ 0.0330\end{pmatrix}

x=(10622610)\mat{x} = \begin{pmatrix}-10&&&&&\\&-6&&&&\\&&-2&&&&\\&&&2&&\\&&&&6&\\&&&&&10\end{pmatrix}

[unavailable png image]
[unavailable png image]
[unavailable png image]
[unavailable png image]

Px=6=0.24392P_{x=-6}=0.2439^2

Px=2=0.66292P_{x=2}=0.6629^2

import numpy as np, matplotlib.pyplot as plt from IPython.display import Math N = 6 x = np.linspace(-10, 10, N) X = np.linspace(-10, 10, 200) sigma = 4 def psi(x, x_=0, sigma=sigma): return (np.exp(-(x-x_)**2/sigma**2/2) / np.sqrt(np.pi) * 2 * sigma) style_dict = {'text.usetex': True} style_dict = {} with plt.style.context(style_dict, after_reset=True): fig, ax = plt.subplots(figsize=(5,2)) plt.plot(X, psi(X), '-') plt.plot(x, psi(x), 'o') ax.set(xlabel='$x$', ylabel=r'$\psi(x)$'); ket_ = Math(r"$\ket{\psi} = \begin{pmatrix}" + r"\\ ".join( map("{:.4f}".format, psi(x) / np.linalg.norm(psi(x)))) + r"\end{pmatrix}$") #print(ket_.data) X_ = Math( r"$\mat{{X}} = \begin{{pmatrix}}{}\end{{pmatrix}}$".format( r"\\".join(["&" * i + f"{x[i]:g}" + "&"* (N-i-1) for i in range(N)]))) #print(X_.data) #print(np.diff(x).mean())

Px=2=0.66292P_{x=-2}=0.6629^2

Many Particles?

  • Classical: NN variables x1(t)x_1(t), x2(t)x_2(t), x3(t)x_3(t), ...

    • NN1NN_1 times as much information.

  • Quantum: Wavefunction of NN variables ψ(x1,x2,x3,)\psi(x_1, x_2, x_3, \cdots)

    • Tensor product.

    • Exponential amount of information: N1NN_1^N.

    • Hilbert space is big!

Note: 1 particle in 2D is mathematically equivalent to 2 particles in 1D.

Postulates of Quantum Mechanics

  1. The state ψ\ket{\psi} of an isolated systems is a complex unit vector ψψ=1\braket{\psi|\psi} = 1. (Hilbert space.) ψαψ\ket{\psi} \equiv \alpha \ket{\psi}. (phase equivalence)

  2. States evolve under unitary operations: ψUψ\ket{\psi} \rightarrow \mat{U}\ket{\psi} where UU=1\mat{U}^\dagger\mat{U} = \mat{1}.

  3. Measurements are a set of operators {M^m}\{\op{M}_{m}\} such that mM^mM^m=1^\sum_{m}\op{M}_m^\dagger\op{M}_m = \op{1}. A measurement made on the state ψ\ket{\psi} will produce outcome mm with probability pmp_m, transforming the state as follows:

    pm=ψM^mM^mψ,ψM^mψpm.p_m = \braket{\psi|\op{M}_m^\dagger\op{M}_m|\psi}, \qquad \ket{\psi} \rightarrow \frac{\op{M}_m\ket{\psi}}{\sqrt{p_m}}.
  4. Composite systems have states in the tensor product of the component Hilbert spaces.

    ψ=ijaijiAjBij.\ket{\psi} = \sum_{ij}a_{ij}\underbrace{\ket{i}_A\otimes\ket{j}_B}_{\ket{ij}}.

Nielson and Chuang

Qubits (Spin 1/2)

=0=(10),=1=(01)\renewcommand{\smat}[1]{\left(\begin{smallmatrix}#1\end{smallmatrix}\right)} \ket{\uparrow} = \ket{0} = \smat{1\\0}, \qquad \ket{\downarrow} = \ket{1} = (\begin{smallmatrix}0\\1\end{smallmatrix})Z^=(1001),Z^=,Z^=X^=(0110),X^12(11)=,X^12(11)=.\begin{align*} \op{Z} &= \begin{pmatrix} 1 & 0\\ 0 & -1\end{pmatrix}, & \op{Z}\ket{\uparrow} &= \ket{\uparrow}, & \op{Z}\ket{\downarrow} &= -\ket{\downarrow}\\ \op{X} &= \begin{pmatrix} 0 & 1\\ 1 & 0\end{pmatrix}, & \op{X}\underbrace{\ket{\rightarrow}}_{\tfrac{1}{\sqrt{2}}\smat{1\\1}} &= \ket{\rightarrow}, & \op{X}\underbrace{\ket{\leftarrow} }_{\tfrac{1}{\sqrt{2}}\smat{1\\-1}}&= -\ket{\leftarrow}. \end{align*}

[unavailable png image][unavailable png image][unavailable png image][unavailable png image]

Measuring Z^\op{Z}

  • =(10)\ket{↑} = \smat{1\\0}: (+1,100%)(+1, 100\%)

  • =(01)\ket{↓} = \smat{0\\1}: (1,100%)(-1, 100\%)

  • =12(11)+\ket{→} = \tfrac{1}{\sqrt{2}}\smat{1\\1} \equiv \ket{↑} + \ket{↓}: (+1,50%)(+1, 50\%), (1,50%)(-1, 50\%)

  • =12(11)\ket{←} = \tfrac{1}{\sqrt{2}}\smat{1\\-1} \equiv \ket{↑} - \ket{↓}: (+1,50%)(+1, 50\%), (1,50%)(-1, 50\%)

Intererence

Particle Intererence

Measure state where angle between detector and state is θ\theta:

P1=cos2θ2,P1=sin2θ2.P_1 = \cos^2\tfrac{\theta}{2},\qquad P_{-1} = \sin^2\tfrac{\theta}{2}.
θ=0=,θ=π/4=,θ=π/2=,θ=3π/4=,θ=π=,θ=3π/4=,θ=π/2=,θ=π/4=.\begin{align*} \ket{\theta=0} &= \ket{↑},\\ \ket{\theta=\pi/4} &= \ket{↗},\\ \ket{\theta=\pi/2} &= \ket{→},\\ \ket{\theta=3\pi/4} &=\ket{↘},\\ \ket{\theta=\pi} &= \ket{↓},\\ \ket{\theta=-3\pi/4} &=\ket{↙},\\ \ket{\theta=-\pi/2} &= \ket{←},\\ \ket{\theta=-\pi/4} &= \ket{↖}. \end{align*}
θ=(cos(θ/2)sin(θ/2))\ket{\theta} = \begin{pmatrix}\cos(\theta/2)\\ \sin(\theta/2)\end{pmatrix}
[unavailable png image]

Qubits (Bloch Sphere)

Expectation Value

θZ^θ=+1cos2θ21sin2θ2=cosθ=ab.\begin{align*} \braket{\theta|\op{Z}|\theta} &= +1\cos^2\tfrac{\theta}{2} -1\sin^2\tfrac{\theta}{2} \\ &= -\cos\theta =-\vec{a}\cdot\vec{b}. \end{align*}
θ=(cos(θ/2)sin(θ/2))\ket{\theta} = \begin{pmatrix}\cos(\theta/2)\\ \sin(\theta/2)\end{pmatrix}

Measuring Z^\op{Z}

  • \ket{↑}: (+1,100%)(+1, 100\%)

  • \ket{↓}: (1,100%)(-1, 100\%)

  • \ket{→}: (+1,50%)(+1, 50\%), (1,50%)(-1, 50\%)

  • \ket{←}: (+1,50%)(+1, 50\%), (1,50%)(-1, 50\%)

  • \ket{↗︎}: (+1,85%)(+1, 85\%), (1,15%)(-1, 15\%)

  • \ket{↙︎}: (+1,15%)(+1, 15\%), (1,85%)(-1, 85\%)

  • θ\ket{θ}: (+1,cos2θ2)(+1, \cos^2\tfrac{\theta}{2}), (1,sin2θ2)(-1, \sin^2\tfrac{\theta}{2})

Qubits (Spin 1/2)

θ=0==(10),(cos(π/8)sin(π/8))=θ=π/4=(0.90.4),(cos(π/4)sin(π/4))=θ=π/2=(0.70.7),(cos(3π/8)sin(3π/8))=θ=3π/4=(0.40.9),(cos(π/2)sin(π/2))=θ=π==(01),(cos(5π/8)sin(5π/8))=θ=5π/4=(0.40.9),(cos(3π/4)sin(3π/4))=θ=3π/2=(0.70.7),(cos(7π/8)sin(7π/8))=θ=7π/4=(0.90.4),(cos(π)sin(π))=θ=2π=(10).\begin{align*} \ket{\theta=0} &= \ket{↑} = \smat{1\\0},\\ \smat{\cos(\pi/8)\\\sin(\pi/8)} = \ket{\theta=\pi/4} &= \ket{↗} \approx \smat{0.9\\0.4},\\ \smat{\cos(\pi/4)\\ \sin(\pi/4)} = \ket{\theta=\pi/2} &= \ket{→} \approx \smat{0.7\\0.7},\\ \smat{\cos(3\pi/8)\\ \sin(3\pi/8)} = \ket{\theta=3\pi/4} &=\ket{↘} \approx \smat{0.4\\0.9},\\ \smat{\cos(\pi/2)\\ \sin(\pi/2)} = \ket{\theta=\pi} &= \ket{↓} = \smat{0\\1},\\ \smat{\cos(5\pi/8)\\ \sin(5\pi/8)} = \ket{\theta=5\pi/4} &=\ket{↙} \approx \smat{-0.4\\0.9},\\ \smat{\cos(3\pi/4)\\ \sin(3\pi/4)} = \ket{\theta=3\pi/2} &= \ket{←} \approx \smat{-0.7\\0.7},\\ \smat{\cos(7\pi/8)\\ \sin(7\pi/8)} = \ket{\theta=7\pi/4} &= \ket{↖} \approx \smat{-0.9\\0.4},\\ \smat{\cos(\pi)\\ \sin(\pi)} = \ket{\theta=2\pi} &= -\ket{↑} \approx \smat{-1\\0}. \end{align*}

θ=(cos(θ/2)sin(θ/2))\ket{\theta} = \begin{pmatrix}\cos(\theta/2)\\ \sin(\theta/2)\end{pmatrix}

Two Qubits (Tensor Product)

=(1000),=(0100),=(0010),=(0001).\ket{\uparrow\uparrow} = \smat{1\\0\\0\\0}, \qquad \ket{\uparrow\downarrow} = \smat{0\\1\\0\\0}, \qquad \ket{\downarrow\uparrow} = \smat{0\\0\\1\\0}, \qquad \ket{\downarrow\downarrow} = \smat{0\\0\\0\\1}.
Z^A=Z^1^=(11)=(1111),Z^B=1^Z^=(ZZ)=(1111),X^A=X^1^=(11)=(1111),X^B=1^X^=(XX)=(1111).\begin{align*} \op{Z}_A = \op{Z}\otimes\op{1} &= \begin{pmatrix} \mat{1}\\ & -\mat{1}\end{pmatrix} = \begin{pmatrix} 1 \\ & 1 \\ & & -1\\ & & & -1\end{pmatrix}, & \op{Z}_B = \op{1}\otimes\op{Z} &= \begin{pmatrix} \mat{Z}\\ & \mat{Z} \end{pmatrix} = \begin{pmatrix} 1 \\ & -1 \\ & & 1\\ & & & -1\end{pmatrix}, \\ \op{X}_A = \op{X}\otimes\op{1} &= \begin{pmatrix} & \mat{1}\\ \mat{1} \end{pmatrix} = \begin{pmatrix} & & 1 \\ & & & 1 \\ 1\\ & 1 \end{pmatrix},& \op{X}_B = \op{1}\otimes\op{X} &= \begin{pmatrix} \mat{X}\\ & \mat{X} \end{pmatrix} = \begin{pmatrix} & 1 \\ 1& \\ & & & 1\\ & &1 \end{pmatrix}. \end{align*}

Entanglement

Start with \ket{\uparrow\uparrow}. Alice does stuff U^A1^\op{U}_A\otimes \op{1} and Bob does stuff 1^U^B\op{1}\otimes\op{U}_B. They generate no entanglement: State remains a product:

ψ=(a+b)U^A(c+d)U^B\ket{\psi} = \overbrace{(a\ket{\ua} + b \ket{\da})}^{\op{U}_A\ket{\ua}} \otimes \overbrace{(c\ket{\ua} + d\ket{\da})}^{\op{U}_B\ket{\ua}}

Bell States cannot be written as products:

+2,2,+2,2.\frac{\ket{\ua\ua} + \ket{\da\da}}{\sqrt{2}}, \qquad \frac{\ket{\ua\ua} - \ket{\da\da}}{\sqrt{2}}, \qquad \frac{\ket{\ua\da} + \ket{\da\ua}}{\sqrt{2}}, \qquad \frac{\ket{\ua\da} - \ket{\da\ua}}{\sqrt{2}}.

Entanglement: Singlet

2222.\renewcommand{\singlet}[2]{\frac{\ket{#1#2}-\ket{#2#1}}{\sqrt{2}}} \singlet{↑}{↓} \equiv \singlet{→}{←} \equiv \singlet{↖︎}{↘︎}\equiv \singlet{↗︎}{↙︎}.
import numpy as np from numpy import kron def normalize(psi): return np.divide(psi, np.linalg.norm(psi)) A1 = [normalize([1, 0]), normalize([0, 1])] A2 = [normalize([1, 1]), normalize([1, -1])] th = np.pi/4; B1 = [normalize([np.cos(th), np.sin(th)]), normalize([np.sin(th), -np.cos(th)])] th = 3*np.pi/4; B2 = [normalize([np.cos(th), np.sin(th)]), normalize([np.sin(th), -np.cos(th)])] print("|↑↓⟩-|↓↑⟩ = {}".format(kron(A1[0], A1[1]) - kron(A1[1], A1[0]))) print("|→←⟩-|←→⟩ = {}".format(kron(A2[0], A2[1]) - kron(A2[1], A2[0]))) print("|↗︎↙︎⟩-|↙︎↗︎⟩ = {}".format(kron(B1[0], B1[1]) - kron(B1[1], B1[0]))) print("|↖︎↘︎⟩-|↘︎↖︎⟩ = {}".format(kron(B2[0], B2[1]) - kron(B2[1], B2[0])))
|↑↓⟩-|↓↑⟩ = [ 0. 1. -1. 0.] |→←⟩-|←→⟩ = [ 0. -1. 1. 0.] |↗︎↙︎⟩-|↙︎↗︎⟩ = [ 0. -1. 1. 0.] |↖︎↘︎⟩-|↘︎↖︎⟩ = [ 0. -1. 1. 0.]

Einstein-Podolsky-Rosen (EPR)

2\singlet{↑}{↓}

Hidden Variable λ

R^(a)\op{R}(\vec{a})
R^(b)\op{R}(\vec{b})
  • Local Realism: E(a,b)=R(a)R(b)=p(λ)A(a,λ)B(b,λ)E(\vec{a},\vec{b})=\braket{R(\vec{a})R(\vec{b})} = \int p(λ)A(\vec{a},λ)B(\vec{b},λ).

  • Quantum: E(a,b)=R(a)R(b)=ab\qquad E(\vec{a},\vec{b})=\braket{R(\vec{a})R(\vec{b})} = -\vec{a}\cdot\vec{b}

Bell Inequalities

E(a,b)=R(a)R(b)=p(λ)A(a,λ)B(b,λ),A(a,λ)=±1,B(b,λ)=±1.E(\vec{a}, \vec{b}) = \braket{R(\vec{a})R(\vec{b})} = \int p(λ)A(\vec{a},λ)B(\vec{b},λ), \qquad A(\vec{a},λ)=\pm1, \qquad B(\vec{b},λ)=\pm 1.

Bell proved:

E(a,b)E(a,c)1+E(b,c).\abs{E(\vec{a},\vec{b}) - E(\vec{a},\vec{c})} \leq 1 + E(\vec{b},\vec{c}).

Take a=\vec{a} = ↑, b=\vec{b}=→, and c=\vec{c}=↗︎:

E(,)0E(,)1/21+E(,)1/20.707121120.293\begin{align*} \abs{\overbrace{E(↑,→)}^{0} - \overbrace{E(↑,↗︎)}^{-1/\sqrt{2}}} &≰ 1 + \overbrace{E(→,↗︎)}^{-1/\sqrt{2}}\\ 0.707\approx \frac{1}{\sqrt{2}} &≰ 1-\frac{1}{\sqrt{2}}\approx 0.293 \end{align*}

Quantum: E(a)(b)=abE(\vec{a})(\vec{b}) = -\vec{a}\cdot\vec{b}

Quantum Calculation

WLoG: Alice measures Z^\op{Z}, Bob measures R^(θ)\op{R}(\theta).

P1=()(A)=0.5,ψB=,{P1(B)=sin2θ2,P1(B)=cos2θ2,P1=()(A)=0.5,ψB=,{P1(B)=cos2θ2,P1(B)=sin2θ2.P^{(A)}_{1=(↑)} = 0.5, \qquad \ket{\psi}_B = \ket{↓}, \qquad \begin{cases} P^{(B)}_{1} = \sin^2\frac{\theta}{2},\\ P^{(B)}_{-1} = \cos^2\frac{\theta}{2}, \end{cases}\\ P^{(A)}_{-1=(↓)} = 0.5, \qquad \ket{\psi}_B = \ket{↑}, \qquad \begin{cases} P^{(B)}_{1} = \cos^2\frac{\theta}{2},\\ P^{(B)}_{-1} = \sin^2\frac{\theta}{2}. \end{cases}

Thus

E(0,θ)=sin2θ2cos2θ2cos2θ2+sin2θ22=(cos2θ2sin2θ2)=cosθ=ab.E(0,θ) = \frac{\sin^2\frac{\theta}{2} - \cos^2\frac{\theta}{2} - \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}}{2} = - \Bigl(\cos^2\tfrac{\theta}{2} - \sin^2\tfrac{\theta}{2}\Bigr) = -\cos\theta = -\vec{a}\cdot\vec{b}.
2222.\renewcommand{\singlet}[2]{\frac{\ket{#1#2}-\ket{#2#1}}{\sqrt{2}}} \singlet{↑}{↓} \equiv \singlet{→}{←} \equiv \singlet{↖︎}{↘︎}\equiv \singlet{↗︎}{↙︎}.
E(a,b)=R(a)R(b)=p(λ)A(a,λ)B(b,λ),A(a,λ)=±1,B(b,λ)=±1.E(\vec{a}, \vec{b}) = \braket{R(\vec{a})R(\vec{b})} = \int p(λ)A(\vec{a},λ)B(\vec{b},λ), \qquad A(\vec{a},λ)=\pm1, \qquad B(\vec{b},λ)=\pm 1.

Bell proved:

E(a,b)E(a,c)1+E(b,c).\abs{E(\vec{a},\vec{b}) - E(\vec{a},\vec{c})} \leq 1 + E(\vec{b},\vec{c}).

Take a=\vec{a} = ↑, b=\vec{b}=→, and c=\vec{c}=↗︎, and use quantum E(a)(b)=ab=cosθE(\vec{a})(\vec{b}) = -\vec{a}\cdot\vec{b} = -\cos\theta:

E(,)=cos(90°)=0,E(,)=E(,)=cos(45°)=12.E(↑,→) = -\cos(90°) = 0, \qquad E(↑,↗︎) = E(→,↗︎) = -\cos(45°) = - \frac{1}{\sqrt{2}}.E(,)0E(,)1/21+E(,)1/20.707121120.293\begin{align*} \abs{\overbrace{E(↑,→)}^{0} - \overbrace{E(↑,↗︎)}^{-1/\sqrt{2}}} &≰ 1 + \overbrace{E(→,↗︎)}^{-1/\sqrt{2}}\\ 0.707\approx \frac{1}{\sqrt{2}} &≰ 1-\frac{1}{\sqrt{2}}\approx 0.293 \end{align*}

Bell Inequalities

Clauser-Horne-Shimony-Holt (CHSH)

Consider four measurements with values ±1\pm 1 – two for Alice A1A_1, A2A_2 and two for Bob B1B_1, B2B_2:

Ai,Bi=±1Q=A1(B1+B2)+A2(B1B2)=±2.A_i, B_i = \pm 1\\ Q = A_1(B_1+B_2) + A_2(B_1-B_2) = \pm 2.
[A1*(B1+B2) + A2*(B1-B2) for A1 in [-1, 1] for A2 in [-1, 1] for B1 in [-1, 1] for B2 in [-1, 1]]
[2, 2, -2, -2, 2, -2, 2, -2, -2, 2, -2, 2, -2, -2, 2, 2]
S=Q=A1B11/2+A1B21/2+A2B11/2A2B2+1/22\begin{align*} S = \abs{\braket{Q}} &= \abs{ \underbrace{\braket{\overset{↑}{A_1}\overset{↗︎}{B_1}}}_{-1/\sqrt{2}} + \underbrace{\braket{\overset{↑}{A_1}\overset{↖︎}{B_2}}}_{-1/\sqrt{2}} + \underbrace{\braket{\overset{→}{A_2}\overset{↗︎}{B_1}}}_{-1/\sqrt{2}} - \underbrace{\braket{\overset{→}{A_2}\overset{↖︎}{B_2}}}_{+1/\sqrt{2}}} \leq 2 \end{align*}

Quantum gives: 4/22.8224/\sqrt{2} \approx 2.82 ≰ 2

2023 Nobel Prize

Experimental Validation

Closing loopholes

Coincidence Detection

Discussion

  • Local Realism: E(a,b)=R(a)R(b)=p(λ)A(a,λ)B(b,λ) E(\vec{a},\vec{b})=\braket{R(\vec{a})R(\vec{b})} = \int p(λ)A(\vec{a},λ)B(\vec{b},λ)

  • Counterfactuals: S=Q=A1B11/2+A1B21/2+A2B11/2A2B2+1/22\begin{align*} S = \abs{\braket{Q}} &= \abs{ \underbrace{\braket{\overset{↑}{A_1}\overset{↗︎}{B_1}}}_{-1/\sqrt{2}} + \underbrace{\braket{\overset{↑}{A_1}\overset{↖︎}{B_2}}}_{-1/\sqrt{2}} + \underbrace{\braket{\overset{→}{A_2}\overset{↗︎}{B_1}}}_{-1/\sqrt{2}} - \underbrace{\braket{\overset{→}{A_2}\overset{↖︎}{B_2}}}_{+1/\sqrt{2}}} \leq 2 \end{align*}

  • Superdeterminism p(λ)p(λ,a,b)p(λ)→p(λ,\vec{a},\vec{b})

Teleportation

Quantum Eraser

No Retrocausality!

WSU: Physics 455/555

Quantum Technologies and Computing