import numpy as np1import matplotlib.pyplot as plt2from scipy.integrate import odeint3456def Atwood(y,t,M,m,g):78g=9.819M = int(input())10m = int(input())11#theta'(t)=omega(t)12#radius'(t)=Rho(t)1314#omega'(t)=(1/radius(t))(-g*sin(theta(t))-2(Rho(t)*omega(t))15#Rho'(t)=(1/(M+m))(m*radius(t)*(omega(t)^2)-M*g+m*g*cos(theta(t)))1617theta, omega, radius, Rho = y1819dydt = [omega, (1/radius)*(-g*(np.sin(theta))-2*(Rho*omega)), Rho, (1/(M+m))*(m*radius*(omega**2)-M*g+m*g*(np.cos(theta)))]2021return dydt2223#y0=[theta, change in theta, radius, change in radius]24y0 = [0 ,2 ,1 ,1]25#time points26t = np.linspace(0,10,101)27#Solving the ODE28sul = odeint(Atwood, y0, t, args=(M,m,g))293031