Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
108 views

Sucesiones y series

Podemos pedirle al computador que calcule rápidamente varios términos de una secuencia.
# Al calcular, sage intenta hacer cálculos exactos (sin aproximar). Para evaluar numéricamente un valor se utiliza el método .n(), y opcionalmente se puede agregar un número para pedir más bits de precisión. # La función log() calcula el logaritmo en base e. print log(2) print log(2).n() print log(2).n(200)
log(2) 0.693147180559945 0.69314718055994530941723212145817656807550013436025525412068
for n in range(1,21): print log(n/(n+1)).n()
-0.693147180559945 -0.405465108108164 -0.287682072451781 -0.223143551314210 -0.182321556793955 -0.154150679827258 -0.133531392624523 -0.117783035656384 -0.105360515657826 -0.0953101798043249 -0.0870113769896298 -0.0800427076735364 -0.0741079721537218 -0.0689928714869514 -0.0645385211375712 -0.0606246218164349 -0.0571584138399486 -0.0540672212702758 -0.0512932943875506 -0.0487901641694321
range(1,21)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sum([(1/n^2).n(120) for n in srange(1, 100000)])
1.6449240667982262698057485033126921
(pi^2).n()/6
1.64493406684823
# Se pueden definir nuevas funciónes con def (esto es parte del lenguaje python). def f(x,n): return (x^n)/factorial(n)
for n in srange(5): print f(x,n)
1 x 1/2*x^2 1/6*x^3 1/24*x^4
sum([f(x,n) for n in srange(5)])
1/24*x^4 + 1/6*x^3 + 1/2*x^2 + x + 1
for n in srange(100): print n, sum([f(1,i).n(120) for i in srange(n)])
0 0 1 1.0000000000000000000000000000000000 2 2.0000000000000000000000000000000000 3 2.5000000000000000000000000000000000 4 2.6666666666666666666666666666666667 5 2.7083333333333333333333333333333333 6 2.7166666666666666666666666666666667 7 2.7180555555555555555555555555555556 8 2.7182539682539682539682539682539683 9 2.7182787698412698412698412698412698 10 2.7182815255731922398589065255731922 11 2.7182818011463844797178130511463845 12 2.7182818261984928651595318261984929 13 2.7182818282861685639463417241195019 14 2.7182818284467590023145578701134257 15 2.7182818284582297479122875948272774 16 2.7182818284589944642854695764748675 17 2.7182818284590422590587934503278419 18 2.7182818284590450705160477958486051 19 2.7182818284590452267081174817108697 20 2.7182818284590452349287527283351994 21 2.7182818284590452353397844906664159 22 2.7182818284590452353593574317298072 23 2.7182818284590452353602471108690522 24 2.7182818284590452353602857925707585 25 2.7182818284590452353602874043083296 26 2.7182818284590452353602874687778325 27 2.7182818284590452353602874712574287 28 2.7182818284590452353602874713492656 29 2.7182818284590452353602874713525455 30 2.7182818284590452353602874713526586 31 2.7182818284590452353602874713526624 32 2.7182818284590452353602874713526625 33 2.7182818284590452353602874713526625 34 2.7182818284590452353602874713526625 35 2.7182818284590452353602874713526625 36 2.7182818284590452353602874713526625 37 2.7182818284590452353602874713526625 38 2.7182818284590452353602874713526625 39 2.7182818284590452353602874713526625 40 2.7182818284590452353602874713526625 41 2.7182818284590452353602874713526625 42 2.7182818284590452353602874713526625 43 2.7182818284590452353602874713526625 44 2.7182818284590452353602874713526625 45 2.7182818284590452353602874713526625 46 2.7182818284590452353602874713526625 47 2.7182818284590452353602874713526625 48 2.7182818284590452353602874713526625 49 2.7182818284590452353602874713526625 50 2.7182818284590452353602874713526625 51 2.7182818284590452353602874713526625 52 2.7182818284590452353602874713526625 53 2.7182818284590452353602874713526625 54 2.7182818284590452353602874713526625 55 2.7182818284590452353602874713526625 56 2.7182818284590452353602874713526625 57 2.7182818284590452353602874713526625 58 2.7182818284590452353602874713526625 59 2.7182818284590452353602874713526625 60 2.7182818284590452353602874713526625 61 2.7182818284590452353602874713526625 62 2.7182818284590452353602874713526625 63 2.7182818284590452353602874713526625 64 2.7182818284590452353602874713526625 65 2.7182818284590452353602874713526625 66 2.7182818284590452353602874713526625 67 2.7182818284590452353602874713526625 68 2.7182818284590452353602874713526625 69 2.7182818284590452353602874713526625 70 2.7182818284590452353602874713526625 71 2.7182818284590452353602874713526625 72 2.7182818284590452353602874713526625 73 2.7182818284590452353602874713526625 74 2.7182818284590452353602874713526625 75 2.7182818284590452353602874713526625 76 2.7182818284590452353602874713526625 77 2.7182818284590452353602874713526625 78 2.7182818284590452353602874713526625 79 2.7182818284590452353602874713526625 80 2.7182818284590452353602874713526625 81 2.7182818284590452353602874713526625 82 2.7182818284590452353602874713526625 83 2.7182818284590452353602874713526625 84 2.7182818284590452353602874713526625 85 2.7182818284590452353602874713526625 86 2.7182818284590452353602874713526625 87 2.7182818284590452353602874713526625 88 2.7182818284590452353602874713526625 89 2.7182818284590452353602874713526625 90 2.7182818284590452353602874713526625 91 2.7182818284590452353602874713526625 92 2.7182818284590452353602874713526625 93 2.7182818284590452353602874713526625 94 2.7182818284590452353602874713526625 95 2.7182818284590452353602874713526625 96 2.7182818284590452353602874713526625 97 2.7182818284590452353602874713526625 98 2.7182818284590452353602874713526625 99 2.7182818284590452353602874713526625
e.n(120)
2.7182818284590452353602874713526625
def g(x,n): return ((-1)^n*x^(2*n+1))/factorial(2*n+1)
for n in srange(100): print n, sum([g(pi/4,i).n(120) for i in srange(n)])
0 0 1 0.78539816339744830961566084581987572 2 0.70465265120916752790869127533263250 3 0.70714304577936024806870707375420994 4 0.70710646957517807081792046856722593 5 0.70710678293686710863007256360798797 6 0.70710678117961943518667151846221648 7 0.70710678118656788846055814787112182 8 0.70710678118654747819716150643059301 9 0.70710678118654752448420779477742275 10 0.70710678118654752440072189642930602 11 0.70710678118654752440084451142778303 12 0.70710678118654752440084436195130963 13 0.70710678118654752440084436210498397 14 0.70710678118654752440084436210484894 15 0.70710678118654752440084436210484904 16 0.70710678118654752440084436210484904 17 0.70710678118654752440084436210484904 18 0.70710678118654752440084436210484904 19 0.70710678118654752440084436210484904 20 0.70710678118654752440084436210484904 21 0.70710678118654752440084436210484904 22 0.70710678118654752440084436210484904 23 0.70710678118654752440084436210484904 24 0.70710678118654752440084436210484904 25 0.70710678118654752440084436210484904 26 0.70710678118654752440084436210484904 27 0.70710678118654752440084436210484904 28 0.70710678118654752440084436210484904 29 0.70710678118654752440084436210484904 30 0.70710678118654752440084436210484904 31 0.70710678118654752440084436210484904 32 0.70710678118654752440084436210484904 33 0.70710678118654752440084436210484904 34 0.70710678118654752440084436210484904 35 0.70710678118654752440084436210484904 36 0.70710678118654752440084436210484904 37 0.70710678118654752440084436210484904 38 0.70710678118654752440084436210484904 39 0.70710678118654752440084436210484904 40 0.70710678118654752440084436210484904 41 0.70710678118654752440084436210484904 42 0.70710678118654752440084436210484904 43 0.70710678118654752440084436210484904 44 0.70710678118654752440084436210484904 45 0.70710678118654752440084436210484904 46 0.70710678118654752440084436210484904 47 0.70710678118654752440084436210484904 48 0.70710678118654752440084436210484904 49 0.70710678118654752440084436210484904 50 0.70710678118654752440084436210484904 51 0.70710678118654752440084436210484904 52 0.70710678118654752440084436210484904 53 0.70710678118654752440084436210484904 54 0.70710678118654752440084436210484904 55 0.70710678118654752440084436210484904 56 0.70710678118654752440084436210484904 57 0.70710678118654752440084436210484904 58 0.70710678118654752440084436210484904 59 0.70710678118654752440084436210484904 60 0.70710678118654752440084436210484904 61 0.70710678118654752440084436210484904 62 0.70710678118654752440084436210484904 63 0.70710678118654752440084436210484904 64 0.70710678118654752440084436210484904 65 0.70710678118654752440084436210484904 66 0.70710678118654752440084436210484904 67 0.70710678118654752440084436210484904 68 0.70710678118654752440084436210484904 69 0.70710678118654752440084436210484904 70 0.70710678118654752440084436210484904 71 0.70710678118654752440084436210484904 72 0.70710678118654752440084436210484904 73 0.70710678118654752440084436210484904 74 0.70710678118654752440084436210484904 75 0.70710678118654752440084436210484904 76 0.70710678118654752440084436210484904 77 0.70710678118654752440084436210484904 78 0.70710678118654752440084436210484904 79 0.70710678118654752440084436210484904 80 0.70710678118654752440084436210484904 81 0.70710678118654752440084436210484904 82 0.70710678118654752440084436210484904 83 0.70710678118654752440084436210484904 84 0.70710678118654752440084436210484904 85 0.70710678118654752440084436210484904 86 0.70710678118654752440084436210484904 87 0.70710678118654752440084436210484904 88 0.70710678118654752440084436210484904 89 0.70710678118654752440084436210484904 90 0.70710678118654752440084436210484904 91 0.70710678118654752440084436210484904 92 0.70710678118654752440084436210484904 93 0.70710678118654752440084436210484904 94 0.70710678118654752440084436210484904 95 0.70710678118654752440084436210484904 96 0.70710678118654752440084436210484904 97 0.70710678118654752440084436210484904 98 0.70710678118654752440084436210484904 99 0.70710678118654752440084436210484904
sqrt(2).n(120)/2
0.70710678118654752440084436210484904
# Es posible incluso calcular los polinomios de Taylor de una función dada automáticamente. taylor(sin(x),x,0,10)
1/362880*x^9 - 1/5040*x^7 + 1/120*x^5 - 1/6*x^3 + x
taylor(x/(1-x-x^2),x,0,10)
55*x^10 + 34*x^9 + 21*x^8 + 13*x^7 + 8*x^6 + 5*x^5 + 3*x^4 + 2*x^3 + x^2 + x
3.28940727570578