CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / doc / ref / chap0.txt
Views: 418346
1
2
3
GAP - Reference Manual
4
5
6
Release 4.8.10, 15-Jan-2018
7
8
9
The GAP Group
10
11
12
13
The GAP Group
14
Email: mailto:[email protected]
15
Homepage: https://www.gap-system.org
16
17
-------------------------------------------------------
18
Copyright
19
Copyright © (1987-2018) for the core part of the GAP system by the GAP
20
Group.
21
22
Most parts of this distribution, including the core part of the GAP system
23
are distributed under the terms of the GNU General Public License, see
24
http://www.gnu.org/licenses/gpl.html or the file GPL in the etc directory of
25
the GAP installation.
26
27
More detailed information about copyright and licenses of parts of this
28
distribution can be found in Section 1.4 of this manual.
29
30
GAP is developed over a long time and has many authors and contributors.
31
More detailed information can be found in Section 1.2 of this manual.
32
33
34
-------------------------------------------------------
35
36
37
Contents (ref)
38
39
1 Preface
40
1.1 The GAP System
41
1.2 Authors and Maintainers
42
1.3 Acknowledgements
43
1.4 Copyright and License
44
1.5 Further Information about GAP
45
2 The Help System
46
2.1 Invoking the Help
47
2.2 Browsing through the Sections
48
2.3 Changing the Help Viewer
49
2.3-1 SetHelpViewer
50
2.4 The Pager Command
51
2.4-1 Pager
52
3 Running GAP
53
3.1 Command Line Options
54
3.2 The gap.ini and gaprc files
55
3.2-1 The gap.ini file
56
3.2-2 The gaprc file
57
3.2-3 Configuring User preferences
58
3.2-4 DeclareUserPreference
59
3.3 Saving and Loading a Workspace
60
3.3-1 SaveWorkspace
61
3.4 Testing for the System Architecture
62
3.4-1 ARCH_IS_UNIX
63
3.4-2 ARCH_IS_MAC_OS_X
64
3.4-3 ARCH_IS_WINDOWS
65
3.5 Global Values that Control the GAP Session
66
3.5-1 GAPInfo
67
3.6 Coloring the Prompt and Input
68
3.6-1 ColorPrompt
69
4 The Programming Language
70
4.1 Language Overview
71
4.2 Lexical Structure
72
4.3 Symbols
73
4.4 Whitespaces
74
4.5 Keywords
75
4.6 Identifiers
76
4.6-1 IsValidIdentifier
77
4.7 Expressions
78
4.8 Variables
79
4.8-1 IsBound
80
4.8-2 Unbind
81
4.9 More About Global Variables
82
4.9-1 IsReadOnlyGlobal
83
4.9-2 MakeReadOnlyGlobal
84
4.9-3 MakeReadWriteGlobal
85
4.9-4 ValueGlobal
86
4.9-5 IsBoundGlobal
87
4.9-6 UnbindGlobal
88
4.9-7 BindGlobal
89
4.9-8 NamesGVars
90
4.9-9 NamesSystemGVars
91
4.9-10 NamesUserGVars
92
4.9-11 TemporaryGlobalVarName
93
4.10 Namespaces for GAP packages
94
4.11 Function Calls
95
4.11-1 Function Call With Arguments
96
4.11-2 Function Call With Options
97
4.12 Comparisons
98
4.13 Arithmetic Operators
99
4.14 Statements
100
4.15 Assignments
101
4.16 Procedure Calls
102
4.17 If
103
4.18 While
104
4.19 Repeat
105
4.20 For
106
4.21 Break
107
4.22 Continue
108
4.23 Function
109
4.24 Return (With or without Value)
110
5 Functions
111
5.1 Information about a function
112
5.1-1 NameFunction
113
5.1-2 NumberArgumentsFunction
114
5.1-3 NamesLocalVariablesFunction
115
5.1-4 FilenameFunc
116
5.1-5 StartlineFunc
117
5.1-6 PageSource
118
5.2 Calling a function with a list argument that is interpreted as several
119
arguments
120
5.2-1 CallFuncList
121
5.3 Calling a function with a time limit
122
5.3-1 CallWithTimeout
123
5.3-2 GAPInfo.TimeoutsSupported
124
5.4 Functions that do nothing
125
5.4-1 ReturnTrue
126
5.4-2 ReturnFalse
127
5.4-3 ReturnFail
128
5.4-4 ReturnNothing
129
5.4-5 ReturnFirst
130
5.4-6 IdFunc
131
5.5 Function Types
132
5.5-1 IsFunction
133
5.5-2 IsOperation
134
5.5-3 FunctionsFamily
135
5.6 Naming Conventions
136
6 Main Loop and Break Loop
137
6.1 Main Loop
138
6.2 Special Rules for Input Lines
139
6.3 View and Print
140
6.3-1 Default delegations in the library
141
6.3-2 Recommendations for the implementation
142
6.3-3 View
143
6.3-4 Print
144
6.3-5 ViewObj
145
6.3-6 Display
146
6.3-7 SetNameObject
147
6.4 Break Loops
148
6.4-1 quit from a break loop
149
6.4-2 return from a break loop
150
6.4-3 OnBreak
151
6.4-4 OnBreakMessage
152
6.4-5 Where
153
6.5 Variable Access in a Break Loop
154
6.5-1 DownEnv and UpEnv
155
6.6 Error and ErrorCount
156
6.6-1 Error
157
6.6-2 ErrorNoReturn
158
6.6-3 ErrorCount
159
6.7 Leaving GAP
160
6.7-1 QUIT
161
6.7-2 GAP_EXIT_CODE
162
6.7-3 QUIT_GAP
163
6.7-4 FORCE_QUIT_GAP
164
6.7-5 InstallAtExit
165
6.7-6 SaveOnExitFile
166
6.8 Line Editing
167
6.9 Editing using the readline library
168
6.9-1 Readline customization
169
6.9-2 The command line history
170
6.9-3 SaveCommandLineHistory
171
6.9-4 Writing your own command line editing functions
172
6.10 Editing Files
173
6.10-1 Edit
174
6.11 Editor Support
175
6.12 Changing the Screen Size
176
6.12-1 SizeScreen
177
6.13 Teaching Mode
178
6.13-1 TeachingMode
179
7 Debugging and Profiling Facilities
180
7.1 Recovery from NoMethodFound-Errors
181
7.1-1 ShowArguments
182
7.1-2 ShowArgument
183
7.1-3 ShowDetails
184
7.1-4 ShowMethods
185
7.1-5 ShowOtherMethods
186
7.2 Inspecting Applicable Methods
187
7.2-1 ApplicableMethod
188
7.3 Tracing Methods
189
7.3-1 TraceMethods
190
7.3-2 TraceAllMethods
191
7.3-3 UntraceMethods
192
7.3-4 UntraceAllMethods
193
7.3-5 TraceImmediateMethods
194
7.4 Info Functions
195
7.4-1 NewInfoClass
196
7.4-2 DeclareInfoClass
197
7.4-3 SetInfoLevel
198
7.4-4 InfoLevel
199
7.4-5 Info
200
7.4-6 Customizing Info (7.4-5) statements
201
7.4-7 InfoWarning
202
7.5 Assertions
203
7.5-1 SetAssertionLevel
204
7.5-2 AssertionLevel
205
7.5-3 Assert
206
7.6 Timing
207
7.6-1 Runtimes
208
7.6-2 Runtime
209
7.6-3 time
210
7.7 Profiling
211
7.7-1 Function Profiling
212
7.7-2 ProfileGlobalFunctions
213
7.7-3 ProfileOperations
214
7.7-4 ProfileOperationsAndMethods
215
7.7-5 ProfileFunctions
216
7.7-6 UnprofileFunctions
217
7.7-7 ProfileMethods
218
7.7-8 UnprofileMethods
219
7.7-9 DisplayProfile
220
7.7-10 ClearProfile
221
7.7-11 An Example of Function Profiling
222
7.7-12 Line By Line Profiling
223
7.7-13 Line by Line profiling example
224
7.7-14 ProfileLineByLine
225
7.7-15 CoverageLineByLine
226
7.7-16 UnprofileLineByLine
227
7.7-17 UncoverageLineByLine
228
7.7-18 ActivateProfileColour
229
7.7-19 IsLineByLineProfileActive
230
7.7-20 DisplayCacheStats
231
7.7-21 ClearCacheStats
232
7.8 Information about the version used
233
7.9 Test Files
234
7.9-1 Starting and stopping test
235
7.9-2 Test
236
7.9-3 TestDirectory
237
7.10 Debugging Recursion
238
7.10-1 SetRecursionTrapInterval
239
7.11 Global Memory Information
240
7.11-1 GasmanStatistics
241
7.11-2 GasmanMessageStatus
242
7.11-3 GasmanLimits
243
8 Options Stack
244
8.1 Functions Dealing with the Options Stack
245
8.1-1 PushOptions
246
8.1-2 PopOptions
247
8.1-3 ResetOptionsStack
248
8.1-4 OnQuit
249
8.1-5 ValueOption
250
8.1-6 DisplayOptionsStack
251
8.1-7 InfoOptions
252
8.2 Options Stack – an Example
253
9 Files and Filenames
254
9.1 Portability
255
9.1-1 LastSystemError
256
9.2 GAP Root Directories
257
9.3 Directories
258
9.3-1 IsDirectory
259
9.3-2 Directory
260
9.3-3 DirectoryTemporary
261
9.3-4 DirectoryCurrent
262
9.3-5 DirectoriesLibrary
263
9.3-6 DirectoriesSystemPrograms
264
9.3-7 DirectoryContents
265
9.3-8 DirectoryDesktop
266
9.3-9 DirectoryHome
267
9.4 File Names
268
9.4-1 Filename
269
9.5 Special Filenames
270
9.6 File Access
271
9.6-1 IsExistingFile
272
9.6-2 IsReadableFile
273
9.6-3 IsWritableFile
274
9.6-4 IsExecutableFile
275
9.6-5 IsDirectoryPath
276
9.7 File Operations
277
9.7-1 Read
278
9.7-2 ReadAsFunction
279
9.7-3 PrintTo and AppendTo
280
9.7-4 LogTo
281
9.7-5 InputLogTo
282
9.7-6 OutputLogTo
283
9.7-7 CrcFile
284
9.7-8 RemoveFile
285
9.7-9 Reread
286
10 Streams
287
10.1 Categories for Streams and the StreamsFamily
288
10.1-1 IsStream
289
10.1-2 IsClosedStream
290
10.1-3 IsInputStream
291
10.1-4 IsInputTextStream
292
10.1-5 IsInputTextNone
293
10.1-6 IsOutputStream
294
10.1-7 IsOutputTextStream
295
10.1-8 IsOutputTextNone
296
10.1-9 StreamsFamily
297
10.2 Operations applicable to All Streams
298
10.2-1 CloseStream
299
10.2-2 FileDescriptorOfStream
300
10.2-3 UNIXSelect
301
10.3 Operations for Input Streams
302
10.3-1 Read
303
10.3-2 ReadAsFunction
304
10.3-3 ReadByte
305
10.3-4 ReadLine
306
10.3-5 ReadAll
307
10.3-6 IsEndOfStream
308
10.3-7 PositionStream
309
10.3-8 RewindStream
310
10.3-9 SeekPositionStream
311
10.4 Operations for Output Streams
312
10.4-1 WriteByte
313
10.4-2 WriteLine
314
10.4-3 WriteAll
315
10.4-4 PrintTo and AppendTo (for streams)
316
10.4-5 LogTo
317
10.4-6 InputLogTo
318
10.4-7 OutputLogTo
319
10.4-8 SetPrintFormattingStatus
320
10.5 File Streams
321
10.5-1 InputTextFile
322
10.5-2 OutputTextFile
323
10.6 User Streams
324
10.6-1 InputTextUser
325
10.6-2 OutputTextUser
326
10.6-3 InputFromUser
327
10.7 String Streams
328
10.7-1 InputTextString
329
10.7-2 OutputTextString
330
10.8 Input-Output Streams
331
10.8-1 IsInputOutputStream
332
10.8-2 InputOutputLocalProcess
333
10.8-3 ReadAllLine
334
10.9 Dummy Streams
335
10.9-1 InputTextNone
336
10.9-2 OutputTextNone
337
10.10 Handling of Streams in the Background
338
10.10-1 InstallCharReadHookFunc
339
10.10-2 UnInstallCharReadHookFunc
340
10.11 Comma separated files
341
10.11-1 ReadCSV
342
10.11-2 PrintCSV
343
11 Processes
344
11.1 Process and Exec
345
11.1-1 Process
346
11.1-2 Exec
347
12 Objects and Elements
348
12.1 Objects
349
12.1-1 IsObject
350
12.2 Elements as equivalence classes
351
12.3 Sets
352
12.4 Domains
353
12.5 Identical Objects
354
12.5-1 IsIdenticalObj
355
12.5-2 IsNotIdenticalObj
356
12.6 Mutability and Copyability
357
12.6-1 IsCopyable
358
12.6-2 IsMutable
359
12.6-3 Immutable
360
12.6-4 MakeImmutable
361
12.6-5 Mutability of Iterators
362
12.6-6 Mutability of Results of Arithmetic Operations
363
12.7 Duplication of Objects
364
12.7-1 ShallowCopy
365
12.7-2 StructuralCopy
366
12.8 Other Operations Applicable to any Object
367
12.8-1 SetName
368
12.8-2 Name
369
12.8-3 InfoText
370
12.8-4 IsInternallyConsistent
371
12.8-5 MemoryUsage
372
13 Types of Objects
373
13.1 Families
374
13.1-1 FamilyObj
375
13.2 Filters
376
13.2-1 RankFilter
377
13.2-2 NamesFilter
378
13.2-3 ShowImpliedFilters
379
13.3 Categories
380
13.3-1 CategoriesOfObject
381
13.4 Representation
382
13.4-1 RepresentationsOfObject
383
13.5 Attributes
384
13.5-1 KnownAttributesOfObject
385
13.6 Setter and Tester for Attributes
386
13.6-1 Tester
387
13.6-2 Setter
388
13.6-3 AttributeValueNotSet
389
13.6-4 InfoAttributes
390
13.6-5 DisableAttributeValueStoring
391
13.6-6 EnableAttributeValueStoring
392
13.7 Properties
393
13.7-1 KnownPropertiesOfObject
394
13.7-2 KnownTruePropertiesOfObject
395
13.8 Other Filters
396
13.9 Types
397
13.9-1 TypeObj
398
13.9-2 DataType
399
14 Integers
400
14.1 Integers: Global Variables
401
14.1-1 Integers
402
14.1-2 IsIntegers
403
14.2 Elementary Operations for Integers
404
14.2-1 IsInt
405
14.2-2 IsPosInt
406
14.2-3 Int
407
14.2-4 IsEvenInt
408
14.2-5 IsOddInt
409
14.2-6 AbsInt
410
14.2-7 SignInt
411
14.2-8 LogInt
412
14.2-9 RootInt
413
14.2-10 SmallestRootInt
414
14.2-11 ListOfDigits
415
14.2-12 Random
416
14.3 Quotients and Remainders
417
14.3-1 QuoInt
418
14.3-2 BestQuoInt
419
14.3-3 RemInt
420
14.3-4 GcdInt
421
14.3-5 Gcdex
422
14.3-6 LcmInt
423
14.3-7 CoefficientsQadic
424
14.3-8 CoefficientsMultiadic
425
14.3-9 ChineseRem
426
14.3-10 PowerModInt
427
14.4 Prime Integers and Factorization
428
14.4-1 Primes
429
14.4-2 IsPrimeInt
430
14.4-3 PrimalityProof
431
14.4-4 IsPrimePowerInt
432
14.4-5 NextPrimeInt
433
14.4-6 PrevPrimeInt
434
14.4-7 FactorsInt
435
14.4-8 PrimeDivisors
436
14.4-9 PartialFactorization
437
14.4-10 PrintFactorsInt
438
14.4-11 PrimePowersInt
439
14.4-12 DivisorsInt
440
14.5 Residue Class Rings
441
14.5-1 \mod
442
14.5-2 ZmodnZ
443
14.5-3 ZmodnZObj
444
14.5-4 IsZmodnZObj
445
14.6 Check Digits
446
14.6-1 CheckDigitISBN
447
14.6-2 CheckDigitTestFunction
448
14.7 Random Sources
449
14.7-1 IsRandomSource
450
14.7-2 Random
451
14.7-3 State
452
14.7-4 IsMersenneTwister
453
14.7-5 RandomSource
454
15 Number Theory
455
15.1 InfoNumtheor (Info Class)
456
15.1-1 InfoNumtheor
457
15.2 Prime Residues
458
15.2-1 PrimeResidues
459
15.2-2 Phi
460
15.2-3 Lambda
461
15.2-4 GeneratorsPrimeResidues
462
15.3 Primitive Roots and Discrete Logarithms
463
15.3-1 OrderMod
464
15.3-2 LogMod
465
15.3-3 PrimitiveRootMod
466
15.3-4 IsPrimitiveRootMod
467
15.4 Roots Modulo Integers
468
15.4-1 Jacobi
469
15.4-2 Legendre
470
15.4-3 RootMod
471
15.4-4 RootsMod
472
15.4-5 RootsUnityMod
473
15.5 Multiplicative Arithmetic Functions
474
15.5-1 Sigma
475
15.5-2 Tau
476
15.5-3 MoebiusMu
477
15.6 Continued Fractions
478
15.6-1 ContinuedFractionExpansionOfRoot
479
15.6-2 ContinuedFractionApproximationOfRoot
480
15.7 Miscellaneous
481
15.7-1 TwoSquares
482
16 Combinatorics
483
16.1 Combinatorial Numbers
484
16.1-1 Factorial
485
16.1-2 Binomial
486
16.1-3 Bell
487
16.1-4 Bernoulli
488
16.1-5 Stirling1
489
16.1-6 Stirling2
490
16.2 Combinations, Arrangements and Tuples
491
16.2-1 Combinations
492
16.2-2 Iterator and enumerator of combinations
493
16.2-3 NrCombinations
494
16.2-4 Arrangements
495
16.2-5 NrArrangements
496
16.2-6 UnorderedTuples
497
16.2-7 NrUnorderedTuples
498
16.2-8 Tuples
499
16.2-9 EnumeratorOfTuples
500
16.2-10 IteratorOfTuples
501
16.2-11 NrTuples
502
16.2-12 PermutationsList
503
16.2-13 NrPermutationsList
504
16.2-14 Derangements
505
16.2-15 NrDerangements
506
16.2-16 PartitionsSet
507
16.2-17 NrPartitionsSet
508
16.2-18 Partitions
509
16.2-19 IteratorOfPartitions
510
16.2-20 NrPartitions
511
16.2-21 OrderedPartitions
512
16.2-22 NrOrderedPartitions
513
16.2-23 PartitionsGreatestLE
514
16.2-24 PartitionsGreatestEQ
515
16.2-25 RestrictedPartitions
516
16.2-26 NrRestrictedPartitions
517
16.2-27 SignPartition
518
16.2-28 AssociatedPartition
519
16.2-29 PowerPartition
520
16.2-30 PartitionTuples
521
16.2-31 NrPartitionTuples
522
16.3 Fibonacci and Lucas Sequences
523
16.3-1 Fibonacci
524
16.3-2 Lucas
525
16.4 Permanent of a Matrix
526
16.4-1 Permanent
527
17 Rational Numbers
528
17.1 Rationals: Global Variables
529
17.1-1 Rationals
530
17.2 Elementary Operations for Rationals
531
17.2-1 IsRat
532
17.2-2 IsPosRat
533
17.2-3 IsNegRat
534
17.2-4 NumeratorRat
535
17.2-5 DenominatorRat
536
17.2-6 Rat
537
17.2-7 Random
538
18 Cyclotomic Numbers
539
18.1 Operations for Cyclotomics
540
18.1-1 E
541
18.1-2 Cyclotomics
542
18.1-3 IsCyclotomic
543
18.1-4 IsIntegralCyclotomic
544
18.1-5 Int
545
18.1-6 String
546
18.1-7 Conductor
547
18.1-8 AbsoluteValue
548
18.1-9 RoundCyc
549
18.1-10 CoeffsCyc
550
18.1-11 DenominatorCyc
551
18.1-12 ExtRepOfObj
552
18.1-13 DescriptionOfRootOfUnity
553
18.1-14 IsGaussInt
554
18.1-15 IsGaussRat
555
18.1-16 DefaultField
556
18.2 Infinity and negative Infinity
557
18.2-1 IsInfinity
558
18.3 Comparisons of Cyclotomics
559
18.4 ATLAS Irrationalities
560
18.4-1 EB, EC, ..., EH
561
18.4-2 EI and ER
562
18.4-3 EY, EX, ..., ES
563
18.4-4 EM, EL, ..., EJ
564
18.4-5 NK
565
18.4-6 AtlasIrrationality
566
18.5 Galois Conjugacy of Cyclotomics
567
18.5-1 GaloisCyc
568
18.5-2 ComplexConjugate
569
18.5-3 StarCyc
570
18.5-4 Quadratic
571
18.5-5 GaloisMat
572
18.5-6 RationalizedMat
573
18.6 Internally Represented Cyclotomics
574
18.6-1 SetCyclotomicsLimit
575
19 Floats
576
19.1 A sample run
577
19.2 Methods
578
19.2-1 Mathematical operations
579
19.2-2 EqFloat
580
19.2-3 PrecisionFloat
581
19.2-4 Interval operations
582
19.2-5 IsPInfinity
583
19.2-6 FLOAT
584
19.2-7 Float
585
19.2-8 Rat
586
19.2-9 SetFloats
587
19.3 High-precision-specific methods
588
19.4 Complex arithmetic
589
19.5 Interval-specific methods
590
20 Booleans
591
20.1 IsBool (Filter)
592
20.1-1 IsBool
593
20.2 Fail (Variable)
594
20.2-1 fail
595
20.3 Comparisons of Booleans
596
20.3-1 Equality and inequality of Booleans
597
20.3-2 Ordering of Booleans
598
20.4 Operations for Booleans
599
20.4-1 Logical disjunction
600
20.4-2 Logical conjunction
601
20.4-3 Logical negation
602
21 Lists
603
21.1 List Categories
604
21.1-1 IsList
605
21.1-2 IsDenseList
606
21.1-3 IsHomogeneousList
607
21.1-4 IsTable
608
21.1-5 IsRectangularTable
609
21.1-6 IsConstantTimeAccessList
610
21.2 Basic Operations for Lists
611
21.2-1 \[\]
612
21.3 List Elements
613
21.3-1 \{\}
614
21.4 List Assignment
615
21.4-1 \{\}\:\=
616
21.4-2 Add
617
21.4-3 Remove
618
21.4-4 CopyListEntries
619
21.4-5 Append
620
21.5 IsBound and Unbind for Lists
621
21.5-1 IsBound
622
21.5-2 Unbind
623
21.6 Identical Lists
624
21.7 Duplication of Lists
625
21.8 Membership Test for Lists
626
21.8-1 \in
627
21.9 Enlarging Internally Represented Lists
628
21.9-1 EmptyPlist
629
21.10 Comparisons of Lists
630
21.11 Arithmetic for Lists
631
21.12 Filters Controlling the Arithmetic Behaviour of Lists
632
21.12-1 IsGeneralizedRowVector
633
21.12-2 IsMultiplicativeGeneralizedRowVector
634
21.12-3 IsListDefault
635
21.12-4 NestingDepthA
636
21.12-5 NestingDepthM
637
21.13 Additive Arithmetic for Lists
638
21.13-1 Zero for lists
639
21.13-2 AdditiveInverse for lists
640
21.13-3 Addition of lists
641
21.13-4 Subtraction of lists
642
21.14 Multiplicative Arithmetic for Lists
643
21.14-1 One for lists
644
21.14-2 Inverse for lists
645
21.14-3 Multiplication of lists
646
21.14-4 Division of lists
647
21.14-5 mod for lists
648
21.14-6 Left quotients of lists
649
21.15 Mutability Status and List Arithmetic
650
21.15-1 ListWithIdenticalEntries
651
21.16 Finding Positions in Lists
652
21.16-1 Position
653
21.16-2 Positions
654
21.16-3 PositionCanonical
655
21.16-4 PositionNthOccurrence
656
21.16-5 PositionSorted
657
21.16-6 PositionSet
658
21.16-7 PositionProperty
659
21.16-8 PositionsProperty
660
21.16-9 PositionBound
661
21.16-10 PositionNot
662
21.16-11 PositionNonZero
663
21.16-12 PositionSublist
664
21.17 Properties and Attributes for Lists
665
21.17-1 IsMatchingSublist
666
21.17-2 IsDuplicateFree
667
21.17-3 IsSortedList
668
21.17-4 IsSSortedList
669
21.17-5 Length
670
21.17-6 ConstantTimeAccessList
671
21.18 Sorting Lists
672
21.18-1 Sort
673
21.18-2 SortParallel
674
21.18-3 Sortex
675
21.18-4 SortingPerm
676
21.19 Sorted Lists and Sets
677
21.19-1 \in
678
21.19-2 IsEqualSet
679
21.19-3 IsSubsetSet
680
21.19-4 AddSet
681
21.19-5 RemoveSet
682
21.19-6 UniteSet
683
21.19-7 IntersectSet
684
21.19-8 SubtractSet
685
21.20 Operations for Lists
686
21.20-1 Concatenation
687
21.20-2 Compacted
688
21.20-3 Collected
689
21.20-4 DuplicateFreeList
690
21.20-5 AsDuplicateFreeList
691
21.20-6 Flat
692
21.20-7 Reversed
693
21.20-8 Shuffle
694
21.20-9 IsLexicographicallyLess
695
21.20-10 Apply
696
21.20-11 Perform
697
21.20-12 PermListList
698
21.20-13 Maximum
699
21.20-14 Minimum
700
21.20-15 MaximumList and MinimumList
701
21.20-16 Cartesian
702
21.20-17 IteratorOfCartesianProduct
703
21.20-18 Permuted
704
21.20-19 List
705
21.20-20 Filtered
706
21.20-21 Number
707
21.20-22 First
708
21.20-23 ForAll
709
21.20-24 ForAny
710
21.20-25 Product
711
21.20-26 Sum
712
21.20-27 Iterated
713
21.20-28 ListN
714
21.21 Advanced List Manipulations
715
21.21-1 ListX
716
21.21-2 SetX
717
21.21-3 SumX
718
21.21-4 ProductX
719
21.22 Ranges
720
21.22-1 IsRange
721
21.22-2 ConvertToRangeRep
722
21.23 Enumerators
723
21.23-1 IsQuickPositionList
724
22 Boolean Lists
725
22.1 IsBlist (Filter)
726
22.1-1 IsBlist
727
22.2 Boolean Lists Representing Subsets
728
22.2-1 BlistList
729
22.2-2 ListBlist
730
22.2-3 SizeBlist
731
22.2-4 IsSubsetBlist
732
22.3 Set Operations via Boolean Lists
733
22.3-1 UnionBlist
734
22.3-2 IntersectionBlist
735
22.3-3 DifferenceBlist
736
22.4 Function that Modify Boolean Lists
737
22.4-1 UniteBlist
738
22.4-2 UniteBlistList
739
22.4-3 IntersectBlist
740
22.4-4 SubtractBlist
741
22.5 More about Boolean Lists
742
22.5-1 IsBlistRep
743
23 Row Vectors
744
23.1 IsRowVector (Filter)
745
23.1-1 IsRowVector
746
23.2 Operators for Row Vectors
747
23.2-1 NormedRowVector
748
23.3 Row Vectors over Finite Fields
749
23.3-1 ConvertToVectorRep
750
23.3-2 NumberFFVector
751
23.4 Coefficient List Arithmetic
752
23.4-1 AddRowVector
753
23.4-2 AddCoeffs
754
23.4-3 MultRowVector
755
23.4-4 CoeffsMod
756
23.5 Shifting and Trimming Coefficient Lists
757
23.5-1 LeftShiftRowVector
758
23.5-2 RightShiftRowVector
759
23.5-3 ShrinkRowVector
760
23.5-4 RemoveOuterCoeffs
761
23.6 Functions for Coding Theory
762
23.6-1 WeightVecFFE
763
23.6-2 DistanceVecFFE
764
23.6-3 DistancesDistributionVecFFEsVecFFE
765
23.6-4 DistancesDistributionMatFFEVecFFE
766
23.6-5 AClosestVectorCombinationsMatFFEVecFFE
767
23.6-6 CosetLeadersMatFFE
768
23.7 Vectors as coefficients of polynomials
769
23.7-1 ValuePol
770
23.7-2 ProductCoeffs
771
23.7-3 ReduceCoeffs
772
23.7-4 ReduceCoeffsMod
773
23.7-5 PowerModCoeffs
774
23.7-6 ShiftedCoeffs
775
24 Matrices
776
24.1 InfoMatrix (Info Class)
777
24.1-1 InfoMatrix
778
24.2 Categories of Matrices
779
24.2-1 IsMatrix
780
24.2-2 IsOrdinaryMatrix
781
24.2-3 IsLieMatrix
782
24.3 Operators for Matrices
783
24.4 Properties and Attributes of Matrices
784
24.4-1 DimensionsMat
785
24.4-2 DefaultFieldOfMatrix
786
24.4-3 TraceMat
787
24.4-4 DeterminantMat
788
24.4-5 DeterminantMatDestructive
789
24.4-6 DeterminantMatDivFree
790
24.4-7 IsMonomialMatrix
791
24.4-8 IsDiagonalMat
792
24.4-9 IsUpperTriangularMat
793
24.4-10 IsLowerTriangularMat
794
24.5 Matrix Constructions
795
24.5-1 IdentityMat
796
24.5-2 NullMat
797
24.5-3 EmptyMatrix
798
24.5-4 DiagonalMat
799
24.5-5 PermutationMat
800
24.5-6 TransposedMatImmutable
801
24.5-7 TransposedMatDestructive
802
24.5-8 KroneckerProduct
803
24.5-9 ReflectionMat
804
24.5-10 PrintArray
805
24.6 Random Matrices
806
24.6-1 RandomMat
807
24.6-2 RandomInvertibleMat
808
24.6-3 RandomUnimodularMat
809
24.7 Matrices Representing Linear Equations and the Gaussian Algorithm
810
24.7-1 RankMat
811
24.7-2 TriangulizedMat
812
24.7-3 TriangulizeMat
813
24.7-4 NullspaceMat
814
24.7-5 NullspaceMatDestructive
815
24.7-6 SolutionMat
816
24.7-7 SolutionMatDestructive
817
24.7-8 BaseFixedSpace
818
24.8 Eigenvectors and eigenvalues
819
24.8-1 GeneralisedEigenvalues
820
24.8-2 GeneralisedEigenspaces
821
24.8-3 Eigenvalues
822
24.8-4 Eigenspaces
823
24.8-5 Eigenvectors
824
24.9 Elementary Divisors
825
24.9-1 ElementaryDivisorsMat
826
24.9-2 ElementaryDivisorsTransformationsMat
827
24.9-3 DiagonalizeMat
828
24.10 Echelonized Matrices
829
24.10-1 SemiEchelonMat
830
24.10-2 SemiEchelonMatDestructive
831
24.10-3 SemiEchelonMatTransformation
832
24.10-4 SemiEchelonMats
833
24.10-5 SemiEchelonMatsDestructive
834
24.11 Matrices as Basis of a Row Space
835
24.11-1 BaseMat
836
24.11-2 BaseMatDestructive
837
24.11-3 BaseOrthogonalSpaceMat
838
24.11-4 SumIntersectionMat
839
24.11-5 BaseSteinitzVectors
840
24.12 Triangular Matrices
841
24.12-1 DiagonalOfMat
842
24.12-2 UpperSubdiagonal
843
24.12-3 DepthOfUpperTriangularMatrix
844
24.13 Matrices as Linear Mappings
845
24.13-1 CharacteristicPolynomial
846
24.13-2 JordanDecomposition
847
24.13-3 BlownUpMat
848
24.13-4 BlownUpVector
849
24.13-5 CompanionMat
850
24.14 Matrices over Finite Fields
851
24.14-1 ImmutableMatrix
852
24.14-2 ConvertToMatrixRep
853
24.14-3 ProjectiveOrder
854
24.14-4 SimultaneousEigenvalues
855
24.15 Inverse and Nullspace of an Integer Matrix Modulo an Ideal
856
24.15-1 InverseMatMod
857
24.15-2 NullspaceModQ
858
24.16 Special Multiplication Algorithms for Matrices over GF(2)
859
24.16-1 PROD_GF2MAT_GF2MAT_SIMPLE
860
24.16-2 PROD_GF2MAT_GF2MAT_ADVANCED
861
24.17 Block Matrices
862
24.17-1 AsBlockMatrix
863
24.17-2 BlockMatrix
864
24.17-3 MatrixByBlockMatrix
865
25 Integral matrices and lattices
866
25.1 Linear equations over the integers and Integral Matrices
867
25.1-1 NullspaceIntMat
868
25.1-2 SolutionIntMat
869
25.1-3 SolutionNullspaceIntMat
870
25.1-4 BaseIntMat
871
25.1-5 BaseIntersectionIntMats
872
25.1-6 ComplementIntMat
873
25.2 Normal Forms over the Integers
874
25.2-1 TriangulizedIntegerMat
875
25.2-2 TriangulizedIntegerMatTransform
876
25.2-3 TriangulizeIntegerMat
877
25.2-4 HermiteNormalFormIntegerMat
878
25.2-5 HermiteNormalFormIntegerMatTransform
879
25.2-6 SmithNormalFormIntegerMat
880
25.2-7 SmithNormalFormIntegerMatTransforms
881
25.2-8 DiagonalizeIntMat
882
25.2-9 NormalFormIntMat
883
25.2-10 AbelianInvariantsOfList
884
25.3 Determinant of an integer matrix
885
25.3-1 DeterminantIntMat
886
25.4 Decompositions
887
25.4-1 Decomposition
888
25.4-2 LinearIndependentColumns
889
25.4-3 PadicCoefficients
890
25.4-4 IntegralizedMat
891
25.4-5 DecompositionInt
892
25.5 Lattice Reduction
893
25.5-1 LLLReducedBasis
894
25.5-2 LLLReducedGramMat
895
25.6 Orthogonal Embeddings
896
25.6-1 OrthogonalEmbeddings
897
25.6-2 ShortestVectors
898
26 Vector and matrix objects
899
26.1 Fundamental ideas and rules
900
26.2 Categories of vectors and matrices
901
26.3 Constructing vector and matrix objects
902
26.4 Operations for row vector objects
903
26.5 Operations for row list matrix objects
904
26.6 Operations for flat matrix objects
905
27 Strings and Characters
906
27.1 IsChar and IsString
907
27.1-1 IsChar
908
27.1-2 IsString
909
27.1-3 Strings As Lists
910
27.1-4 Printing Strings
911
27.2 Special Characters
912
27.3 Triple Quoted Strings
913
27.4 Internally Represented Strings
914
27.4-1 IsStringRep
915
27.4-2 ConvertToStringRep
916
27.4-3 CopyToStringRep
917
27.4-4 IsEmptyString
918
27.4-5 EmptyString
919
27.4-6 CharsFamily
920
27.5 Recognizing Characters
921
27.5-1 IsDigitChar
922
27.5-2 IsLowerAlphaChar
923
27.5-3 IsUpperAlphaChar
924
27.5-4 IsAlphaChar
925
27.6 Comparisons of Strings
926
27.6-1 \=
927
27.6-2 \<
928
27.7 Operations to Produce or Manipulate Strings
929
27.7-1 DisplayString
930
27.7-2 DEFAULTDISPLAYSTRING
931
27.7-3 ViewString
932
27.7-4 DEFAULTVIEWSTRING
933
27.7-5 PrintString
934
27.7-6 String
935
27.7-7 StripLineBreakCharacters
936
27.7-8 HexStringInt
937
27.7-9 StringPP
938
27.7-10 WordAlp
939
27.7-11 LowercaseString
940
27.7-12 SplitString
941
27.7-13 ReplacedString
942
27.7-14 NormalizeWhitespace
943
27.7-15 NormalizedWhitespace
944
27.7-16 RemoveCharacters
945
27.7-17 JoinStringsWithSeparator
946
27.7-18 Chomp
947
27.7-19 StartsWith
948
27.7-20 NumbersString
949
27.7-21 StringNumbers
950
27.8 Character Conversion
951
27.8-1 IntChar
952
27.8-2 CharInt
953
27.8-3 SIntChar
954
27.8-4 CharSInt
955
27.9 Operations to Evaluate Strings
956
27.9-1 Int
957
27.9-2 Ordinal
958
27.9-3 EvalString
959
27.9-4 CrcString
960
27.10 Calendar Arithmetic
961
27.10-1 DaysInYear
962
27.10-2 DaysInMonth
963
27.10-3 DMYDay
964
27.10-4 DayDMY
965
27.10-5 WeekDay
966
27.10-6 StringDate
967
27.10-7 HMSMSec
968
27.10-8 SecHMSM
969
27.10-9 StringTime
970
27.10-10 SecondsDMYhms
971
27.10-11 DMYhmsSeconds
972
27.11 Obtaining LaTeX Representations of Objects
973
28 Dictionaries and General Hash Tables
974
28.1 Using Dictionaries
975
28.2 Dictionaries
976
28.2-1 NewDictionary
977
28.3 Dictionaries via Binary Lists
978
28.3-1 DictionaryByPosition
979
28.3-2 IsDictionary
980
28.3-3 IsLookupDictionary
981
28.3-4 AddDictionary
982
28.3-5 KnowsDictionary
983
28.3-6 LookupDictionary
984
28.4 General Hash Tables
985
28.5 Hash keys
986
28.5-1 DenseIntKey
987
28.5-2 SparseIntKey
988
28.6 Dense hash tables
989
28.6-1 DenseHashTable
990
28.7 Sparse hash tables
991
28.7-1 SparseHashTable
992
28.7-2 DoubleHashArraySize
993
29 Records
994
29.1 IsRecord and RecNames
995
29.1-1 IsRecord
996
29.1-2 RecNames
997
29.2 Accessing Record Elements
998
29.3 Record Assignment
999
29.4 Identical Records
1000
29.5 Comparisons of Records
1001
29.6 IsBound and Unbind for Records
1002
29.6-1 IsBound
1003
29.6-2 Unbind
1004
29.7 Record Access Operations
1005
29.7-1 NameRNam
1006
29.7-2 RNamObj
1007
29.7-3 \.
1008
30 Collections
1009
30.1 IsCollection (Filter)
1010
30.1-1 IsCollection
1011
30.2 Collection Families
1012
30.2-1 CollectionsFamily
1013
30.2-2 IsCollectionFamily
1014
30.2-3 ElementsFamily
1015
30.2-4 CategoryCollections
1016
30.3 Lists and Collections
1017
30.3-1 IsListOrCollection
1018
30.3-2 Enumerator
1019
30.3-3 EnumeratorSorted
1020
30.3-4 EnumeratorByFunctions
1021
30.3-5 List
1022
30.3-6 SortedList
1023
30.3-7 SSortedList
1024
30.3-8 AsList
1025
30.3-9 AsSortedList
1026
30.3-10 AsSSortedList
1027
30.3-11 Elements
1028
30.4 Attributes and Properties for Collections
1029
30.4-1 IsEmpty
1030
30.4-2 IsFinite
1031
30.4-3 IsTrivial
1032
30.4-4 IsNonTrivial
1033
30.4-5 IsWholeFamily
1034
30.4-6 Size
1035
30.4-7 Representative
1036
30.4-8 RepresentativeSmallest
1037
30.5 Operations for Collections
1038
30.5-1 IsSubset
1039
30.5-2 Intersection
1040
30.5-3 Union
1041
30.5-4 Difference
1042
30.6 Membership Test for Collections
1043
30.6-1 \in
1044
30.7 Random Elements
1045
30.7-1 Random
1046
30.7-2 PseudoRandom
1047
30.7-3 RandomList
1048
30.8 Iterators
1049
30.8-1 Iterator
1050
30.8-2 IteratorSorted
1051
30.8-3 IsIterator
1052
30.8-4 IsDoneIterator
1053
30.8-5 NextIterator
1054
30.8-6 IteratorList
1055
30.8-7 TrivialIterator
1056
30.8-8 IteratorByFunctions
1057
31 Domains and their Elements
1058
31.1 Operational Structure of Domains
1059
31.2 Equality and Comparison of Domains
1060
31.3 Constructing Domains
1061
31.4 Changing the Structure
1062
31.5 Changing the Representation
1063
31.6 Domain Categories
1064
31.7 Parents
1065
31.7-1 Parent
1066
31.8 Constructing Subdomains
1067
31.9 Operations for Domains
1068
31.9-1 IsGeneralizedDomain
1069
31.9-2 GeneratorsOfDomain
1070
31.9-3 Domain
1071
31.10 Attributes and Properties of Elements
1072
31.10-1 Characteristic
1073
31.10-2 OneImmutable
1074
31.10-3 ZeroImmutable
1075
31.10-4 MultiplicativeZeroOp
1076
31.10-5 IsOne
1077
31.10-6 IsZero
1078
31.10-7 IsIdempotent
1079
31.10-8 InverseImmutable
1080
31.10-9 AdditiveInverseImmutable
1081
31.10-10 Order
1082
31.11 Comparison Operations for Elements
1083
31.11-1 \= and \<
1084
31.11-2 CanEasilyCompareElements
1085
31.12 Arithmetic Operations for Elements
1086
31.12-1 \+, \*, \/, \^, \mod
1087
31.12-2 LeftQuotient
1088
31.12-3 Comm
1089
31.12-4 LieBracket
1090
31.12-5 Sqrt
1091
31.13 Relations Between Domains
1092
31.13-1 UseSubsetRelation
1093
31.13-2 UseFactorRelation
1094
31.13-3 UseIsomorphismRelation
1095
31.13-4 InstallSubsetMaintenance
1096
31.13-5 InstallFactorMaintenance
1097
31.13-6 InstallIsomorphismMaintenance
1098
31.14 Useful Categories of Elements
1099
31.14-1 IsExtAElement
1100
31.14-2 IsNearAdditiveElement
1101
31.14-3 IsAdditiveElement
1102
31.14-4 IsNearAdditiveElementWithZero
1103
31.14-5 IsAdditiveElementWithZero
1104
31.14-6 IsNearAdditiveElementWithInverse
1105
31.14-7 IsAdditiveElementWithInverse
1106
31.14-8 IsExtLElement
1107
31.14-9 IsExtRElement
1108
31.14-10 IsMultiplicativeElement
1109
31.14-11 IsMultiplicativeElementWithOne
1110
31.14-12 IsMultiplicativeElementWithZero
1111
31.14-13 IsMultiplicativeElementWithInverse
1112
31.14-14 IsVector
1113
31.14-15 IsNearRingElement
1114
31.14-16 IsRingElement
1115
31.14-17 IsNearRingElementWithOne
1116
31.14-18 IsRingElementWithOne
1117
31.14-19 IsNearRingElementWithInverse
1118
31.14-20 IsRingElementWithInverse
1119
31.15 Useful Categories for all Elements of a Family
1120
31.15-1 IsAssociativeElement
1121
31.15-2 IsAdditivelyCommutativeElement
1122
31.15-3 IsCommutativeElement
1123
31.15-4 IsFiniteOrderElement
1124
31.15-5 IsJacobianElement
1125
31.15-6 IsZeroSquaredElement
1126
32 Mappings
1127
32.1 IsDirectProductElement (Filter)
1128
32.1-1 IsDirectProductElement
1129
32.2 Creating Mappings
1130
32.2-1 GeneralMappingByElements
1131
32.2-2 MappingByFunction
1132
32.2-3 InverseGeneralMapping
1133
32.2-4 CompositionMapping
1134
32.2-5 CompositionMapping2
1135
32.2-6 IsCompositionMappingRep
1136
32.2-7 ConstituentsCompositionMapping
1137
32.2-8 ZeroMapping
1138
32.2-9 IdentityMapping
1139
32.2-10 Embedding
1140
32.2-11 Projection
1141
32.2-12 RestrictedMapping
1142
32.3 Properties and Attributes of (General) Mappings
1143
32.3-1 IsTotal
1144
32.3-2 IsSingleValued
1145
32.3-3 IsMapping
1146
32.3-4 IsInjective
1147
32.3-5 IsSurjective
1148
32.3-6 IsBijective
1149
32.3-7 Range
1150
32.3-8 Source
1151
32.3-9 UnderlyingRelation
1152
32.3-10 UnderlyingGeneralMapping
1153
32.4 Images under Mappings
1154
32.4-1 ImagesSource
1155
32.4-2 ImagesRepresentative
1156
32.4-3 ImagesElm
1157
32.4-4 ImagesSet
1158
32.4-5 ImageElm
1159
32.4-6 Image
1160
32.4-7 Images
1161
32.5 Preimages under Mappings
1162
32.5-1 PreImagesRange
1163
32.5-2 PreImagesElm
1164
32.5-3 PreImageElm
1165
32.5-4 PreImagesRepresentative
1166
32.5-5 PreImagesSet
1167
32.5-6 PreImage
1168
32.5-7 PreImages
1169
32.6 Arithmetic Operations for General Mappings
1170
32.7 Mappings which are Compatible with Algebraic Structures
1171
32.8 Magma Homomorphisms
1172
32.8-1 IsMagmaHomomorphism
1173
32.8-2 MagmaHomomorphismByFunctionNC
1174
32.8-3 NaturalHomomorphismByGenerators
1175
32.9 Mappings that Respect Multiplication
1176
32.9-1 RespectsMultiplication
1177
32.9-2 RespectsOne
1178
32.9-3 RespectsInverses
1179
32.9-4 IsGroupGeneralMapping
1180
32.9-5 KernelOfMultiplicativeGeneralMapping
1181
32.9-6 CoKernelOfMultiplicativeGeneralMapping
1182
32.10 Mappings that Respect Addition
1183
32.10-1 RespectsAddition
1184
32.10-2 RespectsAdditiveInverses
1185
32.10-3 RespectsZero
1186
32.10-4 IsAdditiveGroupGeneralMapping
1187
32.10-5 KernelOfAdditiveGeneralMapping
1188
32.10-6 CoKernelOfAdditiveGeneralMapping
1189
32.11 Linear Mappings
1190
32.11-1 RespectsScalarMultiplication
1191
32.11-2 IsLeftModuleGeneralMapping
1192
32.11-3 IsLinearMapping
1193
32.12 Ring Homomorphisms
1194
32.12-1 IsRingGeneralMapping
1195
32.12-2 IsRingWithOneGeneralMapping
1196
32.12-3 IsAlgebraGeneralMapping
1197
32.12-4 IsAlgebraWithOneGeneralMapping
1198
32.12-5 IsFieldHomomorphism
1199
32.13 General Mappings
1200
32.13-1 IsGeneralMapping
1201
32.13-2 IsConstantTimeAccessGeneralMapping
1202
32.13-3 IsEndoGeneralMapping
1203
32.14 Technical Matters Concerning General Mappings
1204
32.14-1 IsSPGeneralMapping
1205
32.14-2 IsGeneralMappingFamily
1206
32.14-3 FamilyRange
1207
32.14-4 FamilySource
1208
32.14-5 FamiliesOfGeneralMappingsAndRanges
1209
32.14-6 GeneralMappingsFamily
1210
32.14-7 TypeOfDefaultGeneralMapping
1211
33 Relations
1212
33.1 General Binary Relations
1213
33.1-1 IsBinaryRelation
1214
33.1-2 BinaryRelationByElements
1215
33.1-3 IdentityBinaryRelation
1216
33.1-4 EmptyBinaryRelation
1217
33.2 Properties and Attributes of Binary Relations
1218
33.2-1 IsReflexiveBinaryRelation
1219
33.2-2 IsSymmetricBinaryRelation
1220
33.2-3 IsTransitiveBinaryRelation
1221
33.2-4 IsAntisymmetricBinaryRelation
1222
33.2-5 IsPreOrderBinaryRelation
1223
33.2-6 IsPartialOrderBinaryRelation
1224
33.2-7 IsHasseDiagram
1225
33.2-8 IsEquivalenceRelation
1226
33.2-9 Successors
1227
33.2-10 DegreeOfBinaryRelation
1228
33.2-11 PartialOrderOfHasseDiagram
1229
33.3 Binary Relations on Points
1230
33.3-1 BinaryRelationOnPoints
1231
33.3-2 RandomBinaryRelationOnPoints
1232
33.3-3 AsBinaryRelationOnPoints
1233
33.4 Closure Operations and Other Constructors
1234
33.4-1 ReflexiveClosureBinaryRelation
1235
33.4-2 SymmetricClosureBinaryRelation
1236
33.4-3 TransitiveClosureBinaryRelation
1237
33.4-4 HasseDiagramBinaryRelation
1238
33.4-5 StronglyConnectedComponents
1239
33.4-6 PartialOrderByOrderingFunction
1240
33.5 Equivalence Relations
1241
33.5-1 EquivalenceRelationByPartition
1242
33.5-2 EquivalenceRelationByRelation
1243
33.5-3 EquivalenceRelationByPairs
1244
33.5-4 EquivalenceRelationByProperty
1245
33.6 Attributes of and Operations on Equivalence Relations
1246
33.6-1 EquivalenceRelationPartition
1247
33.6-2 GeneratorsOfEquivalenceRelationPartition
1248
33.6-3 JoinEquivalenceRelations
1249
33.7 Equivalence Classes
1250
33.7-1 IsEquivalenceClass
1251
33.7-2 EquivalenceClassRelation
1252
33.7-3 EquivalenceClasses
1253
33.7-4 EquivalenceClassOfElement
1254
34 Orderings
1255
34.1 IsOrdering (Filter)
1256
34.1-1 IsOrdering
1257
34.1-2 OrderingsFamily
1258
34.2 Building new orderings
1259
34.2-1 OrderingByLessThanFunctionNC
1260
34.2-2 OrderingByLessThanOrEqualFunctionNC
1261
34.3 Properties and basic functionality
1262
34.3-1 IsWellFoundedOrdering
1263
34.3-2 IsTotalOrdering
1264
34.3-3 IsIncomparableUnder
1265
34.3-4 FamilyForOrdering
1266
34.3-5 LessThanFunction
1267
34.3-6 LessThanOrEqualFunction
1268
34.3-7 IsLessThanUnder
1269
34.3-8 IsLessThanOrEqualUnder
1270
34.4 Orderings on families of associative words
1271
34.4-1 IsOrderingOnFamilyOfAssocWords
1272
34.4-2 IsTranslationInvariantOrdering
1273
34.4-3 IsReductionOrdering
1274
34.4-4 OrderingOnGenerators
1275
34.4-5 LexicographicOrdering
1276
34.4-6 ShortLexOrdering
1277
34.4-7 IsShortLexOrdering
1278
34.4-8 WeightLexOrdering
1279
34.4-9 IsWeightLexOrdering
1280
34.4-10 WeightOfGenerators
1281
34.4-11 BasicWreathProductOrdering
1282
34.4-12 IsBasicWreathProductOrdering
1283
34.4-13 WreathProductOrdering
1284
34.4-14 IsWreathProductOrdering
1285
34.4-15 LevelsOfGenerators
1286
35 Magmas
1287
35.1 Magma Categories
1288
35.1-1 IsMagma
1289
35.1-2 IsMagmaWithOne
1290
35.1-3 IsMagmaWithInversesIfNonzero
1291
35.1-4 IsMagmaWithInverses
1292
35.2 Magma Generation
1293
35.2-1 Magma
1294
35.2-2 MagmaWithOne
1295
35.2-3 MagmaWithInverses
1296
35.2-4 MagmaByGenerators
1297
35.2-5 MagmaWithOneByGenerators
1298
35.2-6 MagmaWithInversesByGenerators
1299
35.2-7 Submagma
1300
35.2-8 SubmagmaWithOne
1301
35.2-9 SubmagmaWithInverses
1302
35.2-10 AsMagma
1303
35.2-11 AsSubmagma
1304
35.2-12 IsMagmaWithZeroAdjoined
1305
35.2-13 InjectionZeroMagma
1306
35.2-14 UnderlyingInjectionZeroMagma
1307
35.3 Magmas Defined by Multiplication Tables
1308
35.3-1 MagmaByMultiplicationTable
1309
35.3-2 MagmaWithOneByMultiplicationTable
1310
35.3-3 MagmaWithInversesByMultiplicationTable
1311
35.3-4 MagmaElement
1312
35.3-5 MultiplicationTable
1313
35.4 Attributes and Properties for Magmas
1314
35.4-1 GeneratorsOfMagma
1315
35.4-2 GeneratorsOfMagmaWithOne
1316
35.4-3 GeneratorsOfMagmaWithInverses
1317
35.4-4 Centralizer
1318
35.4-5 Centre
1319
35.4-6 Idempotents
1320
35.4-7 IsAssociative
1321
35.4-8 IsCentral
1322
35.4-9 IsCommutative
1323
35.4-10 MultiplicativeNeutralElement
1324
35.4-11 MultiplicativeZero
1325
35.4-12 SquareRoots
1326
35.4-13 TrivialSubmagmaWithOne
1327
36 Words
1328
36.1 Categories of Words and Nonassociative Words
1329
36.1-1 IsWord
1330
36.1-2 IsWordCollection
1331
36.1-3 IsNonassocWord
1332
36.1-4 IsNonassocWordCollection
1333
36.2 Comparison of Words
1334
36.2-1 \=
1335
36.2-2 \<
1336
36.3 Operations for Words
1337
36.3-1 MappedWord
1338
36.4 Free Magmas
1339
36.4-1 FreeMagma
1340
36.4-2 FreeMagmaWithOne
1341
36.5 External Representation for Nonassociative Words
1342
37 Associative Words
1343
37.1 Categories of Associative Words
1344
37.1-1 IsAssocWord
1345
37.2 Free Groups, Monoids and Semigroups
1346
37.2-1 FreeGroup
1347
37.2-2 IsFreeGroup
1348
37.2-3 AssignGeneratorVariables
1349
37.3 Comparison of Associative Words
1350
37.3-1 \=
1351
37.3-2 \<
1352
37.3-3 IsShortLexLessThanOrEqual
1353
37.3-4 IsBasicWreathLessThanOrEqual
1354
37.4 Operations for Associative Words
1355
37.4-1 Length
1356
37.4-2 ExponentSumWord
1357
37.4-3 Subword
1358
37.4-4 PositionWord
1359
37.4-5 SubstitutedWord
1360
37.4-6 EliminatedWord
1361
37.5 Operations for Associative Words by their Syllables
1362
37.5-1 NumberSyllables
1363
37.5-2 ExponentSyllable
1364
37.5-3 GeneratorSyllable
1365
37.5-4 SubSyllables
1366
37.6 Representations for Associative Words
1367
37.6-1 IsLetterAssocWordRep
1368
37.6-2 IsLetterWordsFamily
1369
37.6-3 IsBLetterAssocWordRep
1370
37.6-4 IsBLetterWordsFamily
1371
37.6-5 IsSyllableAssocWordRep
1372
37.6-6 IsSyllableWordsFamily
1373
37.6-7 Is16BitsFamily
1374
37.6-8 LetterRepAssocWord
1375
37.6-9 AssocWordByLetterRep
1376
37.7 The External Representation for Associative Words
1377
37.8 Straight Line Programs
1378
37.8-1 IsStraightLineProgram
1379
37.8-2 StraightLineProgram
1380
37.8-3 LinesOfStraightLineProgram
1381
37.8-4 NrInputsOfStraightLineProgram
1382
37.8-5 ResultOfStraightLineProgram
1383
37.8-6 StringOfResultOfStraightLineProgram
1384
37.8-7 CompositionOfStraightLinePrograms
1385
37.8-8 IntegratedStraightLineProgram
1386
37.8-9 RestrictOutputsOfSLP
1387
37.8-10 IntermediateResultOfSLP
1388
37.8-11 IntermediateResultOfSLPWithoutOverwrite
1389
37.8-12 IntermediateResultsOfSLPWithoutOverwrite
1390
37.8-13 ProductOfStraightLinePrograms
1391
37.8-14 SlotUsagePattern
1392
37.9 Straight Line Program Elements
1393
37.9-1 IsStraightLineProgElm
1394
37.9-2 StraightLineProgElm
1395
37.9-3 StraightLineProgGens
1396
37.9-4 EvalStraightLineProgElm
1397
37.9-5 StretchImportantSLPElement
1398
38 Rewriting Systems
1399
38.1 Operations on rewriting systems
1400
38.1-1 IsRewritingSystem
1401
38.1-2 Rules
1402
38.1-3 OrderOfRewritingSystem
1403
38.1-4 ReducedForm
1404
38.1-5 IsConfluent
1405
38.1-6 ConfluentRws
1406
38.1-7 IsReduced
1407
38.1-8 ReduceRules
1408
38.1-9 AddRule
1409
38.1-10 AddRuleReduced
1410
38.1-11 MakeConfluent
1411
38.1-12 GeneratorsOfRws
1412
38.2 Operations on elements of the algebra
1413
38.2-1 ReducedProduct
1414
38.3 Properties of rewriting systems
1415
38.3-1 IsBuiltFromAdditiveMagmaWithInverses
1416
38.4 Rewriting in Groups and Monoids
1417
38.5 Developing rewriting systems
1418
39 Groups
1419
39.1 Group Elements
1420
39.2 Creating Groups
1421
39.2-1 Group
1422
39.2-2 GroupByGenerators
1423
39.2-3 GroupWithGenerators
1424
39.2-4 GeneratorsOfGroup
1425
39.2-5 AsGroup
1426
39.2-6 ConjugateGroup
1427
39.2-7 IsGroup
1428
39.2-8 InfoGroup
1429
39.3 Subgroups
1430
39.3-1 Subgroup
1431
39.3-2 Index (GAP operation)
1432
39.3-3 IndexInWholeGroup
1433
39.3-4 AsSubgroup
1434
39.3-5 IsSubgroup
1435
39.3-6 IsNormal
1436
39.3-7 IsCharacteristicSubgroup
1437
39.3-8 ConjugateSubgroup
1438
39.3-9 ConjugateSubgroups
1439
39.3-10 IsSubnormal
1440
39.3-11 SubgroupByProperty
1441
39.3-12 SubgroupShell
1442
39.4 Closures of (Sub)groups
1443
39.4-1 ClosureGroup
1444
39.4-2 ClosureGroupAddElm
1445
39.4-3 ClosureGroupDefault
1446
39.4-4 ClosureSubgroup
1447
39.5 Expressing Group Elements as Words in Generators
1448
39.5-1 EpimorphismFromFreeGroup
1449
39.5-2 Factorization
1450
39.5-3 GrowthFunctionOfGroup
1451
39.6 Structure Descriptions
1452
39.6-1 StructureDescription
1453
39.7 Cosets
1454
39.7-1 RightCoset
1455
39.7-2 RightCosets
1456
39.7-3 CanonicalRightCosetElement
1457
39.7-4 IsRightCoset
1458
39.7-5 CosetDecomposition
1459
39.8 Transversals
1460
39.8-1 RightTransversal
1461
39.9 Double Cosets
1462
39.9-1 DoubleCoset
1463
39.9-2 RepresentativesContainedRightCosets
1464
39.9-3 DoubleCosets
1465
39.9-4 IsDoubleCoset
1466
39.9-5 DoubleCosetRepsAndSizes
1467
39.9-6 InfoCoset
1468
39.10 Conjugacy Classes
1469
39.10-1 ConjugacyClass
1470
39.10-2 ConjugacyClasses
1471
39.10-3 ConjugacyClassesByRandomSearch
1472
39.10-4 ConjugacyClassesByOrbits
1473
39.10-5 NrConjugacyClasses
1474
39.10-6 RationalClass
1475
39.10-7 RationalClasses
1476
39.10-8 GaloisGroup
1477
39.10-9 IsConjugate
1478
39.10-10 NthRootsInGroup
1479
39.11 Normal Structure
1480
39.11-1 Normalizer
1481
39.11-2 Core
1482
39.11-3 PCore
1483
39.11-4 NormalClosure
1484
39.11-5 NormalIntersection
1485
39.11-6 ComplementClassesRepresentatives
1486
39.11-7 InfoComplement
1487
39.12 Specific and Parametrized Subgroups
1488
39.12-1 TrivialSubgroup
1489
39.12-2 CommutatorSubgroup
1490
39.12-3 DerivedSubgroup
1491
39.12-4 CommutatorLength
1492
39.12-5 FittingSubgroup
1493
39.12-6 FrattiniSubgroup
1494
39.12-7 PrefrattiniSubgroup
1495
39.12-8 PerfectResiduum
1496
39.12-9 RadicalGroup
1497
39.12-10 Socle
1498
39.12-11 SupersolvableResiduum
1499
39.12-12 PRump
1500
39.13 Sylow Subgroups and Hall Subgroups
1501
39.13-1 SylowSubgroup
1502
39.13-2 SylowComplement
1503
39.13-3 HallSubgroup
1504
39.13-4 SylowSystem
1505
39.13-5 ComplementSystem
1506
39.13-6 HallSystem
1507
39.14 Subgroups characterized by prime powers
1508
39.14-1 Omega
1509
39.14-2 Agemo
1510
39.15 Group Properties
1511
39.15-1 IsCyclic
1512
39.15-2 IsElementaryAbelian
1513
39.15-3 IsNilpotentGroup
1514
39.15-4 NilpotencyClassOfGroup
1515
39.15-5 IsPerfectGroup
1516
39.15-6 IsSolvableGroup
1517
39.15-7 IsPolycyclicGroup
1518
39.15-8 IsSupersolvableGroup
1519
39.15-9 IsMonomialGroup
1520
39.15-10 IsSimpleGroup
1521
39.15-11 IsAlmostSimpleGroup
1522
39.15-12 IsomorphismTypeInfoFiniteSimpleGroup
1523
39.15-13 SimpleGroup
1524
39.15-14 SimpleGroupsIterator
1525
39.15-15 SmallSimpleGroup
1526
39.15-16 AllSmallNonabelianSimpleGroups
1527
39.15-17 IsFinitelyGeneratedGroup
1528
39.15-18 IsSubsetLocallyFiniteGroup
1529
39.15-19 IsPGroup
1530
39.15-20 PrimePGroup
1531
39.15-21 PClassPGroup
1532
39.15-22 RankPGroup
1533
39.15-23 IsPSolvable
1534
39.15-24 IsPNilpotent
1535
39.16 Numerical Group Attributes
1536
39.16-1 AbelianInvariants
1537
39.16-2 Exponent
1538
39.16-3 EulerianFunction
1539
39.17 Subgroup Series
1540
39.17-1 ChiefSeries
1541
39.17-2 ChiefSeriesThrough
1542
39.17-3 ChiefSeriesUnderAction
1543
39.17-4 SubnormalSeries
1544
39.17-5 CompositionSeries
1545
39.17-6 DisplayCompositionSeries
1546
39.17-7 DerivedSeriesOfGroup
1547
39.17-8 DerivedLength
1548
39.17-9 ElementaryAbelianSeries
1549
39.17-10 InvariantElementaryAbelianSeries
1550
39.17-11 LowerCentralSeriesOfGroup
1551
39.17-12 UpperCentralSeriesOfGroup
1552
39.17-13 PCentralSeries
1553
39.17-14 JenningsSeries
1554
39.17-15 DimensionsLoewyFactors
1555
39.17-16 AscendingChain
1556
39.17-17 IntermediateGroup
1557
39.17-18 IntermediateSubgroups
1558
39.18 Factor Groups
1559
39.18-1 NaturalHomomorphismByNormalSubgroup
1560
39.18-2 FactorGroup
1561
39.18-3 CommutatorFactorGroup
1562
39.18-4 MaximalAbelianQuotient
1563
39.18-5 HasAbelianFactorGroup
1564
39.18-6 HasElementaryAbelianFactorGroup
1565
39.18-7 CentralizerModulo
1566
39.19 Sets of Subgroups
1567
39.19-1 ConjugacyClassSubgroups
1568
39.19-2 IsConjugacyClassSubgroupsRep
1569
39.19-3 ConjugacyClassesSubgroups
1570
39.19-4 ConjugacyClassesMaximalSubgroups
1571
39.19-5 AllSubgroups
1572
39.19-6 MaximalSubgroupClassReps
1573
39.19-7 MaximalSubgroups
1574
39.19-8 NormalSubgroups
1575
39.19-9 MaximalNormalSubgroups
1576
39.19-10 MinimalNormalSubgroups
1577
39.20 Subgroup Lattice
1578
39.20-1 LatticeSubgroups
1579
39.20-2 ClassElementLattice
1580
39.20-3 DotFileLatticeSubgroups
1581
39.20-4 MaximalSubgroupsLattice
1582
39.20-5 MinimalSupergroupsLattice
1583
39.20-6 RepresentativesPerfectSubgroups
1584
39.20-7 ConjugacyClassesPerfectSubgroups
1585
39.20-8 Zuppos
1586
39.20-9 InfoLattice
1587
39.21 Specific Methods for Subgroup Lattice Computations
1588
39.21-1 LatticeByCyclicExtension
1589
39.21-2 InvariantSubgroupsElementaryAbelianGroup
1590
39.21-3 SubgroupsSolvableGroup
1591
39.21-4 SizeConsiderFunction
1592
39.21-5 ExactSizeConsiderFunction
1593
39.21-6 InfoPcSubgroup
1594
39.22 Special Generating Sets
1595
39.22-1 GeneratorsSmallest
1596
39.22-2 LargestElementGroup
1597
39.22-3 MinimalGeneratingSet
1598
39.22-4 SmallGeneratingSet
1599
39.22-5 IndependentGeneratorsOfAbelianGroup
1600
39.22-6 IndependentGeneratorExponents
1601
39.23 1-Cohomology
1602
39.23-1 OneCocycles
1603
39.23-2 OneCoboundaries
1604
39.23-3 OCOneCocycles
1605
39.23-4 ComplementClassesRepresentativesEA
1606
39.23-5 InfoCoh
1607
39.24 Schur Covers and Multipliers
1608
39.24-1 EpimorphismSchurCover
1609
39.24-2 SchurCover
1610
39.24-3 AbelianInvariantsMultiplier
1611
39.24-4 Epicentre
1612
39.24-5 NonabelianExteriorSquare
1613
39.24-6 EpimorphismNonabelianExteriorSquare
1614
39.24-7 IsCentralFactor
1615
39.24-8 Covering groups of symmetric groups
1616
39.24-9 BasicSpinRepresentationOfSymmetricGroup
1617
39.24-10 SchurCoverOfSymmetricGroup
1618
39.24-11 DoubleCoverOfAlternatingGroup
1619
39.25 Tests for the Availability of Methods
1620
39.25-1 CanEasilyTestMembership
1621
39.25-2 CanEasilyComputeWithIndependentGensAbelianGroup
1622
39.25-3 CanComputeSize
1623
39.25-4 CanComputeSizeAnySubgroup
1624
39.25-5 CanComputeIndex
1625
39.25-6 CanComputeIsSubset
1626
39.25-7 KnowsHowToDecompose
1627
40 Group Homomorphisms
1628
40.1 Creating Group Homomorphisms
1629
40.1-1 GroupHomomorphismByImages
1630
40.1-2 GroupHomomorphismByImagesNC
1631
40.1-3 GroupGeneralMappingByImages
1632
40.1-4 GroupHomomorphismByFunction
1633
40.1-5 AsGroupGeneralMappingByImages
1634
40.2 Operations for Group Homomorphisms
1635
40.3 Efficiency of Homomorphisms
1636
40.3-1 Mappings given on generators
1637
40.3-2 Action homomorphisms
1638
40.3-3 Mappings given by functions
1639
40.3-4 Other operations
1640
40.3-5 ImagesSmallestGenerators
1641
40.4 Homomorphism for very large groups
1642
40.5 Nice Monomorphisms
1643
40.5-1 IsHandledByNiceMonomorphism
1644
40.5-2 NiceMonomorphism
1645
40.5-3 NiceObject
1646
40.5-4 IsCanonicalNiceMonomorphism
1647
40.6 Group Automorphisms
1648
40.6-1 ConjugatorIsomorphism
1649
40.6-2 ConjugatorAutomorphism
1650
40.6-3 InnerAutomorphism
1651
40.6-4 IsConjugatorIsomorphism
1652
40.6-5 ConjugatorOfConjugatorIsomorphism
1653
40.7 Groups of Automorphisms
1654
40.7-1 AutomorphismGroup
1655
40.7-2 IsGroupOfAutomorphisms
1656
40.7-3 AutomorphismDomain
1657
40.7-4 IsAutomorphismGroup
1658
40.7-5 InnerAutomorphismsAutomorphismGroup
1659
40.7-6 InducedAutomorphism
1660
40.8 Calculating with Group Automorphisms
1661
40.8-1 AssignNiceMonomorphismAutomorphismGroup
1662
40.8-2 NiceMonomorphismAutomGroup
1663
40.9 Searching for Homomorphisms
1664
40.9-1 IsomorphismGroups
1665
40.9-2 AllHomomorphismClasses
1666
40.9-3 AllHomomorphisms
1667
40.9-4 GQuotients
1668
40.9-5 IsomorphicSubgroups
1669
40.9-6 MorClassLoop
1670
40.10 Representations for Group Homomorphisms
1671
40.10-1 IsGroupGeneralMappingByImages
1672
40.10-2 MappingGeneratorsImages
1673
40.10-3 IsGroupGeneralMappingByAsGroupGeneralMappingByImages
1674
40.10-4 IsPreimagesByAsGroupGeneralMappingByImages
1675
40.10-5 IsPermGroupGeneralMapping
1676
40.10-6 IsToPermGroupGeneralMappingByImages
1677
40.10-7 IsGroupGeneralMappingByPcgs
1678
40.10-8 IsPcGroupGeneralMappingByImages
1679
40.10-9 IsToPcGroupGeneralMappingByImages
1680
40.10-10 IsFromFpGroupGeneralMappingByImages
1681
40.10-11 IsFromFpGroupStdGensGeneralMappingByImages
1682
41 Group Actions
1683
41.1 About Group Actions
1684
41.2 Basic Actions
1685
41.2-1 OnPoints
1686
41.2-2 OnRight
1687
41.2-3 OnLeftInverse
1688
41.2-4 OnSets
1689
41.2-5 OnTuples
1690
41.2-6 OnPairs
1691
41.2-7 OnSetsSets
1692
41.2-8 OnSetsDisjointSets
1693
41.2-9 OnSetsTuples
1694
41.2-10 OnTuplesSets
1695
41.2-11 OnTuplesTuples
1696
41.2-12 OnLines
1697
41.2-13 OnIndeterminates
1698
41.2-14 Permuted
1699
41.2-15 OnSubspacesByCanonicalBasis
1700
41.3 Action on canonical representatives
1701
41.4 Orbits
1702
41.4-1 Orbit
1703
41.4-2 Orbits
1704
41.4-3 OrbitsDomain
1705
41.4-4 OrbitLength
1706
41.4-5 OrbitLengths
1707
41.4-6 OrbitLengthsDomain
1708
41.5 Stabilizers
1709
41.5-1 OrbitStabilizer
1710
41.5-2 Stabilizer
1711
41.5-3 OrbitStabilizerAlgorithm
1712
41.6 Elements with Prescribed Images
1713
41.6-1 RepresentativeAction
1714
41.7 The Permutation Image of an Action
1715
41.7-1 ActionHomomorphism
1716
41.7-2 Action
1717
41.7-3 SparseActionHomomorphism
1718
41.8 Action of a group on itself
1719
41.8-1 FactorCosetAction
1720
41.8-2 RegularActionHomomorphism
1721
41.8-3 AbelianSubfactorAction
1722
41.9 Permutations Induced by Elements and Cycles
1723
41.9-1 Permutation
1724
41.9-2 PermutationCycle
1725
41.9-3 Cycle
1726
41.9-4 CycleLength
1727
41.9-5 Cycles
1728
41.9-6 CycleLengths
1729
41.9-7 CycleIndex
1730
41.10 Tests for Actions
1731
41.10-1 IsTransitive
1732
41.10-2 Transitivity
1733
41.10-3 RankAction
1734
41.10-4 IsSemiRegular
1735
41.10-5 IsRegular
1736
41.10-6 Earns
1737
41.10-7 IsPrimitive
1738
41.11 Block Systems
1739
41.11-1 Blocks
1740
41.11-2 MaximalBlocks
1741
41.11-3 RepresentativesMinimalBlocks
1742
41.11-4 AllBlocks
1743
41.12 External Sets
1744
41.12-1 IsExternalSet
1745
41.12-2 ExternalSet
1746
41.12-3 ActingDomain
1747
41.12-4 FunctionAction
1748
41.12-5 HomeEnumerator
1749
41.12-6 IsExternalSubset
1750
41.12-7 ExternalSubset
1751
41.12-8 IsExternalOrbit
1752
41.12-9 ExternalOrbit
1753
41.12-10 StabilizerOfExternalSet
1754
41.12-11 ExternalOrbits
1755
41.12-12 ExternalOrbitsStabilizers
1756
41.12-13 CanonicalRepresentativeOfExternalSet
1757
41.12-14 CanonicalRepresentativeDeterminatorOfExternalSet
1758
41.12-15 ActorOfExternalSet
1759
41.12-16 UnderlyingExternalSet
1760
41.12-17 SurjectiveActionHomomorphismAttr
1761
42 Permutations
1762
42.1 IsPerm (Filter)
1763
42.1-1 IsPerm
1764
42.1-2 IsPermCollection
1765
42.1-3 PermutationsFamily
1766
42.2 Comparison of Permutations
1767
42.2-1 \=
1768
42.2-2 DistancePerms
1769
42.2-3 SmallestGeneratorPerm
1770
42.3 Moved Points of Permutations
1771
42.3-1 SmallestMovedPoint
1772
42.3-2 LargestMovedPoint
1773
42.3-3 MovedPoints
1774
42.3-4 NrMovedPoints
1775
42.4 Sign and Cycle Structure
1776
42.4-1 SignPerm
1777
42.4-2 CycleStructurePerm
1778
42.5 Creating Permutations
1779
42.5-1 ListPerm
1780
42.5-2 PermList
1781
42.5-3 MappingPermListList
1782
42.5-4 RestrictedPerm
1783
42.5-5 AsPermutation
1784
43 Permutation Groups
1785
43.1 IsPermGroup (Filter)
1786
43.1-1 IsPermGroup
1787
43.2 The Natural Action
1788
43.2-1 OrbitPerms
1789
43.2-2 OrbitsPerms
1790
43.3 Computing a Permutation Representation
1791
43.3-1 IsomorphismPermGroup
1792
43.3-2 SmallerDegreePermutationRepresentation
1793
43.4 Symmetric and Alternating Groups
1794
43.4-1 IsNaturalSymmetricGroup
1795
43.4-2 IsSymmetricGroup
1796
43.4-3 IsAlternatingGroup
1797
43.4-4 SymmetricParentGroup
1798
43.5 Primitive Groups
1799
43.5-1 ONanScottType
1800
43.5-2 SocleTypePrimitiveGroup
1801
43.6 Stabilizer Chains
1802
43.7 Randomized Methods for Permutation Groups
1803
43.8 Construction of Stabilizer Chains
1804
43.8-1 StabChain
1805
43.8-2 StabChainOptions
1806
43.8-3 DefaultStabChainOptions
1807
43.8-4 StabChainBaseStrongGenerators
1808
43.8-5 MinimalStabChain
1809
43.9 Stabilizer Chain Records
1810
43.10 Operations for Stabilizer Chains
1811
43.10-1 BaseStabChain
1812
43.10-2 BaseOfGroup
1813
43.10-3 SizeStabChain
1814
43.10-4 StrongGeneratorsStabChain
1815
43.10-5 GroupStabChain
1816
43.10-6 OrbitStabChain
1817
43.10-7 IndicesStabChain
1818
43.10-8 ListStabChain
1819
43.10-9 ElementsStabChain
1820
43.10-10 IteratorStabChain
1821
43.10-11 InverseRepresentative
1822
43.10-12 SiftedPermutation
1823
43.10-13 MinimalElementCosetStabChain
1824
43.10-14 LargestElementStabChain
1825
43.10-15 ApproximateSuborbitsStabilizerPermGroup
1826
43.11 Low Level Routines to Modify and Create Stabilizer Chains
1827
43.11-1 CopyStabChain
1828
43.11-2 CopyOptionsDefaults
1829
43.11-3 ChangeStabChain
1830
43.11-4 ExtendStabChain
1831
43.11-5 ReduceStabChain
1832
43.11-6 RemoveStabChain
1833
43.11-7 EmptyStabChain
1834
43.11-8 InsertTrivialStabilizer
1835
43.11-9 IsFixedStabilizer
1836
43.11-10 AddGeneratorsExtendSchreierTree
1837
43.12 Backtrack
1838
43.12-1 SubgroupProperty
1839
43.12-2 ElementProperty
1840
43.12-3 TwoClosure
1841
43.12-4 InfoBckt
1842
43.13 Working with large degree permutation groups
1843
44 Matrix Groups
1844
44.1 IsMatrixGroup (Filter)
1845
44.1-1 IsMatrixGroup
1846
44.2 Attributes and Properties for Matrix Groups
1847
44.2-1 DimensionOfMatrixGroup
1848
44.2-2 DefaultFieldOfMatrixGroup
1849
44.2-3 FieldOfMatrixGroup
1850
44.2-4 TransposedMatrixGroup
1851
44.2-5 IsFFEMatrixGroup
1852
44.3 Actions of Matrix Groups
1853
44.3-1 ProjectiveActionOnFullSpace
1854
44.3-2 ProjectiveActionHomomorphismMatrixGroup
1855
44.3-3 BlowUpIsomorphism
1856
44.4 GL and SL
1857
44.4-1 IsGeneralLinearGroup
1858
44.4-2 IsNaturalGL
1859
44.4-3 IsSpecialLinearGroup
1860
44.4-4 IsNaturalSL
1861
44.4-5 IsSubgroupSL
1862
44.5 Invariant Forms
1863
44.5-1 InvariantBilinearForm
1864
44.5-2 IsFullSubgroupGLorSLRespectingBilinearForm
1865
44.5-3 InvariantSesquilinearForm
1866
44.5-4 IsFullSubgroupGLorSLRespectingSesquilinearForm
1867
44.5-5 InvariantQuadraticForm
1868
44.5-6 IsFullSubgroupGLorSLRespectingQuadraticForm
1869
44.6 Matrix Groups in Characteristic 0
1870
44.6-1 IsCyclotomicMatrixGroup
1871
44.6-2 IsRationalMatrixGroup
1872
44.6-3 IsIntegerMatrixGroup
1873
44.6-4 IsNaturalGLnZ
1874
44.6-5 IsNaturalSLnZ
1875
44.6-6 InvariantLattice
1876
44.6-7 NormalizerInGLnZ
1877
44.6-8 CentralizerInGLnZ
1878
44.6-9 ZClassRepsQClass
1879
44.6-10 IsBravaisGroup
1880
44.6-11 BravaisGroup
1881
44.6-12 BravaisSubgroups
1882
44.6-13 BravaisSupergroups
1883
44.6-14 NormalizerInGLnZBravaisGroup
1884
44.7 Acting OnRight and OnLeft
1885
44.7-1 CrystGroupDefaultAction
1886
44.7-2 SetCrystGroupDefaultAction
1887
45 Polycyclic Groups
1888
45.1 Polycyclic Generating Systems
1889
45.2 Computing a Pcgs
1890
45.2-1 Pcgs
1891
45.2-2 IsPcgs
1892
45.2-3 CanEasilyComputePcgs
1893
45.3 Defining a Pcgs Yourself
1894
45.3-1 PcgsByPcSequence
1895
45.4 Elementary Operations for a Pcgs
1896
45.4-1 RelativeOrders
1897
45.4-2 IsFiniteOrdersPcgs
1898
45.4-3 IsPrimeOrdersPcgs
1899
45.4-4 PcSeries
1900
45.4-5 GroupOfPcgs
1901
45.4-6 OneOfPcgs
1902
45.5 Elementary Operations for a Pcgs and an Element
1903
45.5-1 RelativeOrderOfPcElement
1904
45.5-2 ExponentOfPcElement
1905
45.5-3 ExponentsOfPcElement
1906
45.5-4 DepthOfPcElement
1907
45.5-5 LeadingExponentOfPcElement
1908
45.5-6 PcElementByExponents
1909
45.5-7 LinearCombinationPcgs
1910
45.5-8 SiftedPcElement
1911
45.5-9 CanonicalPcElement
1912
45.5-10 ReducedPcElement
1913
45.5-11 CleanedTailPcElement
1914
45.5-12 HeadPcElementByNumber
1915
45.6 Exponents of Special Products
1916
45.6-1 ExponentsConjugateLayer
1917
45.6-2 ExponentsOfRelativePower
1918
45.6-3 ExponentsOfConjugate
1919
45.6-4 ExponentsOfCommutator
1920
45.7 Subgroups of Polycyclic Groups - Induced Pcgs
1921
45.7-1 IsInducedPcgs
1922
45.7-2 InducedPcgsByPcSequence
1923
45.7-3 ParentPcgs
1924
45.7-4 InducedPcgs
1925
45.7-5 InducedPcgsByGenerators
1926
45.7-6 InducedPcgsByPcSequenceAndGenerators
1927
45.7-7 LeadCoeffsIGS
1928
45.7-8 ExtendedPcgs
1929
45.7-9 SubgroupByPcgs
1930
45.8 Subgroups of Polycyclic Groups – Canonical Pcgs
1931
45.8-1 IsCanonicalPcgs
1932
45.8-2 CanonicalPcgs
1933
45.9 Factor Groups of Polycyclic Groups – Modulo Pcgs
1934
45.9-1 ModuloPcgs
1935
45.9-2 IsModuloPcgs
1936
45.9-3 NumeratorOfModuloPcgs
1937
45.9-4 DenominatorOfModuloPcgs
1938
45.9-5 \mod
1939
45.9-6 CorrespondingGeneratorsByModuloPcgs
1940
45.9-7 CanonicalPcgsByGeneratorsWithImages
1941
45.10 Factor Groups of Polycyclic Groups in their Own Representation
1942
45.10-1 ProjectedPcElement
1943
45.10-2 ProjectedInducedPcgs
1944
45.10-3 LiftedPcElement
1945
45.10-4 LiftedInducedPcgs
1946
45.11 Pcgs and Normal Series
1947
45.11-1 IsPcgsElementaryAbelianSeries
1948
45.11-2 PcgsElementaryAbelianSeries
1949
45.11-3 IndicesEANormalSteps
1950
45.11-4 EANormalSeriesByPcgs
1951
45.11-5 IsPcgsCentralSeries
1952
45.11-6 PcgsCentralSeries
1953
45.11-7 IndicesCentralNormalSteps
1954
45.11-8 CentralNormalSeriesByPcgs
1955
45.11-9 IsPcgsPCentralSeriesPGroup
1956
45.11-10 PcgsPCentralSeriesPGroup
1957
45.11-11 IndicesPCentralNormalStepsPGroup
1958
45.11-12 PCentralNormalSeriesByPcgsPGroup
1959
45.11-13 IsPcgsChiefSeries
1960
45.11-14 PcgsChiefSeries
1961
45.11-15 IndicesChiefNormalSteps
1962
45.11-16 ChiefNormalSeriesByPcgs
1963
45.11-17 IndicesNormalSteps
1964
45.11-18 NormalSeriesByPcgs
1965
45.12 Sum and Intersection of Pcgs
1966
45.12-1 SumFactorizationFunctionPcgs
1967
45.13 Special Pcgs
1968
45.13-1 IsSpecialPcgs
1969
45.13-2 SpecialPcgs
1970
45.13-3 LGWeights
1971
45.13-4 LGLayers
1972
45.13-5 LGFirst
1973
45.13-6 LGLength
1974
45.13-7 IsInducedPcgsWrtSpecialPcgs
1975
45.13-8 InducedPcgsWrtSpecialPcgs
1976
45.14 Action on Subfactors Defined by a Pcgs
1977
45.14-1 VectorSpaceByPcgsOfElementaryAbelianGroup
1978
45.14-2 LinearAction
1979
45.14-3 LinearActionLayer
1980
45.14-4 AffineAction
1981
45.14-5 AffineActionLayer
1982
45.15 Orbit Stabilizer Methods for Polycyclic Groups
1983
45.15-1 StabilizerPcgs
1984
45.15-2 Pcgs_OrbitStabilizer
1985
45.16 Operations which have Special Methods for Groups with Pcgs
1986
45.17 Conjugacy Classes in Solvable Groups
1987
45.17-1 ClassesSolvableGroup
1988
45.17-2 CentralizerSizeLimitConsiderFunction
1989
46 Pc Groups
1990
46.1 The family pcgs
1991
46.1-1 FamilyPcgs
1992
46.1-2 IsFamilyPcgs
1993
46.1-3 InducedPcgsWrtFamilyPcgs
1994
46.1-4 IsParentPcgsFamilyPcgs
1995
46.2 Elements of pc groups
1996
46.2-1 Comparison of elements of pc groups
1997
46.2-2 Arithmetic operations for elements of pc groups
1998
46.3 Pc groups versus fp groups
1999
46.3-1 IsPcGroup
2000
46.3-2 IsomorphismFpGroupByPcgs
2001
46.4 Constructing Pc Groups
2002
46.4-1 PcGroupFpGroup
2003
46.4-2 SingleCollector
2004
46.4-3 SetConjugate
2005
46.4-4 SetCommutator
2006
46.4-5 SetPower
2007
46.4-6 GroupByRws
2008
46.4-7 IsConfluent
2009
46.4-8 IsomorphismRefinedPcGroup
2010
46.4-9 RefinedPcGroup
2011
46.5 Computing Pc Groups
2012
46.5-1 PcGroupWithPcgs
2013
46.5-2 IsomorphismPcGroup
2014
46.5-3 IsomorphismSpecialPcGroup
2015
46.6 Saving a Pc Group
2016
46.6-1 GapInputPcGroup
2017
46.7 Operations for Pc Groups
2018
46.8 2-Cohomology and Extensions
2019
46.8-1 TwoCoboundaries
2020
46.8-2 TwoCocycles
2021
46.8-3 TwoCohomology
2022
46.8-4 Extensions
2023
46.8-5 Extension
2024
46.8-6 SplitExtension
2025
46.8-7 ModuleOfExtension
2026
46.8-8 CompatiblePairs
2027
46.8-9 ExtensionRepresentatives
2028
46.8-10 SplitExtension
2029
46.9 Coding a Pc Presentation
2030
46.9-1 CodePcgs
2031
46.9-2 CodePcGroup
2032
46.9-3 PcGroupCode
2033
46.10 Random Isomorphism Testing
2034
46.10-1 RandomIsomorphismTest
2035
47 Finitely Presented Groups
2036
47.1 IsSubgroupFpGroup and IsFpGroup
2037
47.1-1 IsSubgroupFpGroup
2038
47.1-2 IsFpGroup
2039
47.1-3 InfoFpGroup
2040
47.2 Creating Finitely Presented Groups
2041
47.2-1 \/
2042
47.2-2 FactorGroupFpGroupByRels
2043
47.2-3 ParseRelators
2044
47.2-4 StringFactorizationWord
2045
47.3 Comparison of Elements of Finitely Presented Groups
2046
47.3-1 \=
2047
47.3-2 \<
2048
47.3-3 FpElmComparisonMethod
2049
47.3-4 SetReducedMultiplication
2050
47.4 Preimages in the Free Group
2051
47.4-1 FreeGroupOfFpGroup
2052
47.4-2 FreeGeneratorsOfFpGroup
2053
47.4-3 RelatorsOfFpGroup
2054
47.4-4 UnderlyingElement
2055
47.4-5 ElementOfFpGroup
2056
47.5 Operations for Finitely Presented Groups
2057
47.5-1 PseudoRandom
2058
47.6 Coset Tables and Coset Enumeration
2059
47.6-1 CosetTable
2060
47.6-2 TracedCosetFpGroup
2061
47.6-3 FactorCosetAction
2062
47.6-4 CosetTableBySubgroup
2063
47.6-5 CosetTableFromGensAndRels
2064
47.6-6 CosetTableDefaultMaxLimit
2065
47.6-7 CosetTableDefaultLimit
2066
47.6-8 MostFrequentGeneratorFpGroup
2067
47.6-9 IndicesInvolutaryGenerators
2068
47.7 Standardization of coset tables
2069
47.7-1 CosetTableStandard
2070
47.7-2 StandardizeTable
2071
47.8 Coset tables for subgroups in the whole group
2072
47.8-1 CosetTableInWholeGroup
2073
47.8-2 SubgroupOfWholeGroupByCosetTable
2074
47.9 Augmented Coset Tables and Rewriting
2075
47.9-1 AugmentedCosetTableInWholeGroup
2076
47.9-2 AugmentedCosetTableMtc
2077
47.9-3 AugmentedCosetTableRrs
2078
47.9-4 RewriteWord
2079
47.10 Low Index Subgroups
2080
47.10-1 LowIndexSubgroupsFpGroupIterator
2081
47.11 Converting Groups to Finitely Presented Groups
2082
47.11-1 IsomorphismFpGroup
2083
47.11-2 IsomorphismFpGroupByGenerators
2084
47.12 New Presentations and Presentations for Subgroups
2085
47.12-1 IsomorphismSimplifiedFpGroup
2086
47.13 Preimages under Homomorphisms from an FpGroup
2087
47.13-1 SubgroupOfWholeGroupByQuotientSubgroup
2088
47.13-2 IsSubgroupOfWholeGroupByQuotientRep
2089
47.13-3 AsSubgroupOfWholeGroupByQuotient
2090
47.13-4 DefiningQuotientHomomorphism
2091
47.14 Quotient Methods
2092
47.14-1 PQuotient
2093
47.14-2 EpimorphismQuotientSystem
2094
47.14-3 EpimorphismPGroup
2095
47.14-4 EpimorphismNilpotentQuotient
2096
47.14-5 SolvableQuotient
2097
47.14-6 EpimorphismSolvableQuotient
2098
47.14-7 LargerQuotientBySubgroupAbelianization
2099
47.15 Abelian Invariants for Subgroups
2100
47.15-1 AbelianInvariantsSubgroupFpGroup
2101
47.15-2 AbelianInvariantsSubgroupFpGroupMtc
2102
47.15-3 AbelianInvariantsSubgroupFpGroupRrs
2103
47.15-4 AbelianInvariantsNormalClosureFpGroup
2104
47.15-5 AbelianInvariantsNormalClosureFpGroupRrs
2105
47.16 Testing Finiteness of Finitely Presented Groups
2106
47.16-1 IsInfiniteAbelianizationGroup
2107
47.16-2 NewmanInfinityCriterion
2108
48 Presentations and Tietze Transformations
2109
48.1 Creating Presentations
2110
48.1-1 PresentationFpGroup
2111
48.1-2 TzSort
2112
48.1-3 GeneratorsOfPresentation
2113
48.1-4 FpGroupPresentation
2114
48.1-5 PresentationViaCosetTable
2115
48.1-6 SimplifiedFpGroup
2116
48.2 Subgroup Presentations
2117
48.2-1 PresentationSubgroup
2118
48.2-2 PresentationSubgroupRrs
2119
48.2-3 PrimaryGeneratorWords
2120
48.2-4 PresentationSubgroupMtc
2121
48.2-5 PresentationNormalClosureRrs
2122
48.2-6 PresentationNormalClosure
2123
48.3 Relators in a Presentation
2124
48.3-1 TietzeWordAbstractWord
2125
48.3-2 AbstractWordTietzeWord
2126
48.4 Printing Presentations
2127
48.4-1 TzPrintGenerators
2128
48.4-2 TzPrintRelators
2129
48.4-3 TzPrintLengths
2130
48.4-4 TzPrintStatus
2131
48.4-5 TzPrintPresentation
2132
48.4-6 TzPrint
2133
48.4-7 TzPrintPairs
2134
48.5 Changing Presentations
2135
48.5-1 AddGenerator
2136
48.5-2 TzNewGenerator
2137
48.5-3 AddRelator
2138
48.5-4 RemoveRelator
2139
48.6 Tietze Transformations
2140
48.6-1 TzGo
2141
48.6-2 SimplifyPresentation
2142
48.6-3 TzGoGo
2143
48.7 Elementary Tietze Transformations
2144
48.7-1 TzEliminate
2145
48.7-2 TzSearch
2146
48.7-3 TzSearchEqual
2147
48.7-4 TzFindCyclicJoins
2148
48.8 Tietze Transformations that introduce new Generators
2149
48.8-1 TzSubstitute
2150
48.8-2 TzSubstituteCyclicJoins
2151
48.9 Tracing generator images through Tietze transformations
2152
48.9-1 TzInitGeneratorImages
2153
48.9-2 OldGeneratorsOfPresentation
2154
48.9-3 TzImagesOldGens
2155
48.9-4 TzPreImagesNewGens
2156
48.9-5 TzPrintGeneratorImages
2157
48.10 The Decoding Tree Procedure
2158
48.10-1 DecodeTree
2159
48.11 Tietze Options
2160
48.11-1 TzOptions
2161
48.11-2 TzPrintOptions
2162
49 Group Products
2163
49.1 Direct Products
2164
49.1-1 DirectProduct
2165
49.2 Semidirect Products
2166
49.2-1 SemidirectProduct
2167
49.3 Subdirect Products
2168
49.3-1 SubdirectProduct
2169
49.3-2 SubdirectProducts
2170
49.4 Wreath Products
2171
49.4-1 WreathProduct
2172
49.4-2 WreathProductImprimitiveAction
2173
49.4-3 WreathProductProductAction
2174
49.4-4 KuKGenerators
2175
49.5 Free Products
2176
49.5-1 FreeProduct
2177
49.6 Embeddings and Projections for Group Products
2178
49.6-1 Embedding
2179
49.6-2 Projection
2180
50 Group Libraries
2181
50.1 Basic Groups
2182
50.1-1 TrivialGroup
2183
50.1-2 CyclicGroup
2184
50.1-3 AbelianGroup
2185
50.1-4 ElementaryAbelianGroup
2186
50.1-5 FreeAbelianGroup
2187
50.1-6 DihedralGroup
2188
50.1-7 QuaternionGroup
2189
50.1-8 ExtraspecialGroup
2190
50.1-9 AlternatingGroup
2191
50.1-10 SymmetricGroup
2192
50.1-11 MathieuGroup
2193
50.1-12 SuzukiGroup
2194
50.1-13 ReeGroup
2195
50.2 Classical Groups
2196
50.2-1 GeneralLinearGroup
2197
50.2-2 SpecialLinearGroup
2198
50.2-3 GeneralUnitaryGroup
2199
50.2-4 SpecialUnitaryGroup
2200
50.2-5 SymplecticGroup
2201
50.2-6 GeneralOrthogonalGroup
2202
50.2-7 SpecialOrthogonalGroup
2203
50.2-8 Omega
2204
50.2-9 GeneralSemilinearGroup
2205
50.2-10 SpecialSemilinearGroup
2206
50.2-11 ProjectiveGeneralLinearGroup
2207
50.2-12 ProjectiveSpecialLinearGroup
2208
50.2-13 ProjectiveGeneralUnitaryGroup
2209
50.2-14 ProjectiveSpecialUnitaryGroup
2210
50.2-15 ProjectiveSymplecticGroup
2211
50.2-16 ProjectiveOmega
2212
50.3 Conjugacy Classes in Classical Groups
2213
50.3-1 NrConjugacyClassesGL
2214
50.4 Constructors for Basic Groups
2215
50.5 Selection Functions
2216
50.6 Transitive Permutation Groups
2217
50.6-1 TransitiveGroup
2218
50.6-2 NrTransitiveGroups
2219
50.6-3 TransitiveIdentification
2220
50.7 Small Groups
2221
50.7-1 SmallGroup
2222
50.7-2 AllSmallGroups
2223
50.7-3 OneSmallGroup
2224
50.7-4 NumberSmallGroups
2225
50.7-5 IdSmallGroup
2226
50.7-6 IdsOfAllSmallGroups
2227
50.7-7 IdGap3SolvableGroup
2228
50.7-8 SmallGroupsInformation
2229
50.7-9 UnloadSmallGroupsData
2230
50.8 Finite Perfect Groups
2231
50.8-1 SizesPerfectGroups
2232
50.8-2 PerfectGroup
2233
50.8-3 PerfectIdentification
2234
50.8-4 NumberPerfectGroups
2235
50.8-5 NumberPerfectLibraryGroups
2236
50.8-6 SizeNumbersPerfectGroups
2237
50.8-7 DisplayInformationPerfectGroups
2238
50.8-8 More about the Perfect Groups Library
2239
50.9 Primitive Permutation Groups
2240
50.9-1 PrimitiveGroup
2241
50.9-2 NrPrimitiveGroups
2242
50.9-3 PrimitiveGroupsIterator
2243
50.9-4 COHORTS_PRIMITIVE_GROUPS
2244
50.10 Index numbers of primitive groups
2245
50.10-1 PrimitiveIdentification
2246
50.10-2 SimsNo
2247
50.10-3 PRIMITIVE_INDICES_MAGMA
2248
50.11 Irreducible Solvable Matrix Groups
2249
50.11-1 IrreducibleSolvableGroupMS
2250
50.11-2 NumberIrreducibleSolvableGroups
2251
50.11-3 AllIrreducibleSolvableGroups
2252
50.11-4 OneIrreducibleSolvableGroup
2253
50.11-5 PrimitiveIndexIrreducibleSolvableGroup
2254
50.11-6 IrreducibleSolvableGroup
2255
50.12 Irreducible Maximal Finite Integral Matrix Groups
2256
50.12-1 ImfNumberQQClasses
2257
50.12-2 DisplayImfInvariants
2258
50.12-3 ImfInvariants
2259
50.12-4 ImfMatrixGroup
2260
50.12-5 IsomorphismPermGroup
2261
50.12-6 IsomorphismPermGroupImfGroup
2262
51 Semigroups and Monoids
2263
51.1 Semigroups
2264
51.1-1 IsSemigroup
2265
51.1-2 Semigroup
2266
51.1-3 Subsemigroup
2267
51.1-4 IsSubsemigroup
2268
51.1-5 SemigroupByGenerators
2269
51.1-6 AsSemigroup
2270
51.1-7 AsSubsemigroup
2271
51.1-8 GeneratorsOfSemigroup
2272
51.1-9 IsGeneratorsOfSemigroup
2273
51.1-10 FreeSemigroup
2274
51.1-11 SemigroupByMultiplicationTable
2275
51.2 Monoids
2276
51.2-1 IsMonoid
2277
51.2-2 Monoid
2278
51.2-3 Submonoid
2279
51.2-4 MonoidByGenerators
2280
51.2-5 AsMonoid
2281
51.2-6 AsSubmonoid
2282
51.2-7 GeneratorsOfMonoid
2283
51.2-8 TrivialSubmonoid
2284
51.2-9 FreeMonoid
2285
51.2-10 MonoidByMultiplicationTable
2286
51.3 Inverse semigroups and monoids
2287
51.3-1 InverseSemigroup
2288
51.3-2 InverseMonoid
2289
51.3-3 GeneratorsOfInverseSemigroup
2290
51.3-4 GeneratorsOfInverseMonoid
2291
51.3-5 IsInverseSubsemigroup
2292
51.4 Properties of Semigroups
2293
51.4-1 IsRegularSemigroup
2294
51.4-2 IsRegularSemigroupElement
2295
51.4-3 InversesOfSemigroupElement
2296
51.4-4 IsSimpleSemigroup
2297
51.4-5 IsZeroSimpleSemigroup
2298
51.4-6 IsZeroGroup
2299
51.4-7 IsReesCongruenceSemigroup
2300
51.4-8 IsInverseSemigroup
2301
51.5 Ideals of semigroups
2302
51.5-1 SemigroupIdealByGenerators
2303
51.5-2 ReesCongruenceOfSemigroupIdeal
2304
51.5-3 IsLeftSemigroupIdeal
2305
51.6 Congruences for semigroups
2306
51.6-1 IsSemigroupCongruence
2307
51.6-2 IsReesCongruence
2308
51.7 Quotients
2309
51.7-1 IsQuotientSemigroup
2310
51.7-2 HomomorphismQuotientSemigroup
2311
51.7-3 QuotientSemigroupPreimage
2312
51.8 Green's Relations
2313
51.8-1 GreensRRelation
2314
51.8-2 IsGreensRelation
2315
51.8-3 IsGreensClass
2316
51.8-4 IsGreensLessThanOrEqual
2317
51.8-5 RClassOfHClass
2318
51.8-6 EggBoxOfDClass
2319
51.8-7 DisplayEggBoxOfDClass
2320
51.8-8 GreensRClassOfElement
2321
51.8-9 GreensRClasses
2322
51.8-10 GroupHClassOfGreensDClass
2323
51.8-11 IsGroupHClass
2324
51.8-12 IsRegularDClass
2325
51.9 Rees Matrix Semigroups
2326
51.9-1 ReesMatrixSemigroup
2327
51.9-2 ReesMatrixSubsemigroup
2328
51.9-3 IsomorphismReesMatrixSemigroup
2329
51.9-4 IsReesMatrixSemigroupElement
2330
51.9-5 ReesMatrixSemigroupElement
2331
51.9-6 IsReesMatrixSubsemigroup
2332
51.9-7 IsReesMatrixSemigroup
2333
51.9-8 Matrix
2334
51.9-9 Rows and columns
2335
51.9-10 UnderlyingSemigroup
2336
51.9-11 AssociatedReesMatrixSemigroupOfDClass
2337
52 Finitely Presented Semigroups and Monoids
2338
52.1 IsSubsemigroupFpSemigroup (Filter)
2339
52.1-1 IsSubsemigroupFpSemigroup
2340
52.1-2 IsSubmonoidFpMonoid
2341
52.1-3 IsFpSemigroup
2342
52.1-4 IsFpMonoid
2343
52.1-5 IsElementOfFpSemigroup
2344
52.1-6 IsElementOfFpMonoid
2345
52.1-7 FpGrpMonSmgOfFpGrpMonSmgElement
2346
52.2 Creating Finitely Presented Semigroups
2347
52.2-1 \/
2348
52.2-2 FactorFreeSemigroupByRelations
2349
52.2-3 IsomorphismFpSemigroup
2350
52.3 Comparison of Elements of Finitely Presented Semigroups
2351
52.3-1 \=
2352
52.4 Preimages in the Free Semigroup
2353
52.4-1 UnderlyingElement
2354
52.4-2 ElementOfFpSemigroup
2355
52.4-3 FreeSemigroupOfFpSemigroup
2356
52.4-4 FreeGeneratorsOfFpSemigroup
2357
52.4-5 RelationsOfFpSemigroup
2358
52.5 Finitely presented monoids
2359
52.5-1 \/
2360
52.6 Rewriting Systems and the Knuth-Bendix Procedure
2361
52.6-1 ReducedConfluentRewritingSystem
2362
52.6-2 KB_REW
2363
52.6-3 KnuthBendixRewritingSystem
2364
52.6-4 SemigroupOfRewritingSystem
2365
52.6-5 MonoidOfRewritingSystem
2366
52.6-6 FreeSemigroupOfRewritingSystem
2367
52.6-7 FreeMonoidOfRewritingSystem
2368
52.7 Todd-Coxeter Procedure
2369
52.7-1 CosetTableOfFpSemigroup
2370
53 Transformations
2371
53.1 The family and categories of transformations
2372
53.1-1 IsTransformation
2373
53.1-2 IsTransformationCollection
2374
53.1-3 TransformationFamily
2375
53.2 Creating transformations
2376
53.2-1 Transformation
2377
53.2-2 Transformation
2378
53.2-3 TransformationByImageAndKernel
2379
53.2-4 Idempotent
2380
53.2-5 TransformationOp
2381
53.2-6 TransformationNumber
2382
53.2-7 RandomTransformation
2383
53.2-8 IdentityTransformation
2384
53.2-9 ConstantTransformation
2385
53.3 Changing the representation of a transformation
2386
53.3-1 AsTransformation
2387
53.3-2 RestrictedTransformation
2388
53.3-3 PermutationOfImage
2389
53.4 Operators for transformations
2390
53.4-1 PermLeftQuoTransformation
2391
53.4-2 IsInjectiveListTrans
2392
53.4-3 ComponentTransformationInt
2393
53.4-4 PreImagesOfTransformation
2394
53.5 Attributes for transformations
2395
53.5-1 DegreeOfTransformation
2396
53.5-2 ImageListOfTransformation
2397
53.5-3 ImageSetOfTransformation
2398
53.5-4 RankOfTransformation
2399
53.5-5 MovedPoints
2400
53.5-6 NrMovedPoints
2401
53.5-7 SmallestMovedPoint
2402
53.5-8 LargestMovedPoint
2403
53.5-9 SmallestImageOfMovedPoint
2404
53.5-10 LargestImageOfMovedPoint
2405
53.5-11 FlatKernelOfTransformation
2406
53.5-12 KernelOfTransformation
2407
53.5-13 InverseOfTransformation
2408
53.5-14 Inverse
2409
53.5-15 IndexPeriodOfTransformation
2410
53.5-16 SmallestIdempotentPower
2411
53.5-17 ComponentsOfTransformation
2412
53.5-18 NrComponentsOfTransformation
2413
53.5-19 ComponentRepsOfTransformation
2414
53.5-20 CyclesOfTransformation
2415
53.5-21 CycleTransformationInt
2416
53.5-22 LeftOne
2417
53.5-23 TrimTransformation
2418
53.6 Displaying transformations
2419
53.7 Semigroups of transformations
2420
53.7-1 IsTransformationSemigroup
2421
53.7-2 DegreeOfTransformationSemigroup
2422
53.7-3 FullTransformationSemigroup
2423
53.7-4 IsFullTransformationSemigroup
2424
53.7-5 IsomorphismTransformationSemigroup
2425
53.7-6 AntiIsomorphismTransformationSemigroup
2426
54 Partial permutations
2427
54.1 The family and categories of partial permutations
2428
54.1-1 IsPartialPerm
2429
54.1-2 IsPartialPermCollection
2430
54.1-3 PartialPermFamily
2431
54.2 Creating partial permutations
2432
54.2-1 PartialPerm
2433
54.2-2 PartialPermOp
2434
54.2-3 RestrictedPartialPerm
2435
54.2-4 JoinOfPartialPerms
2436
54.2-5 MeetOfPartialPerms
2437
54.2-6 EmptyPartialPerm
2438
54.2-7 RandomPartialPerm
2439
54.3 Attributes for partial permutations
2440
54.3-1 DegreeOfPartialPerm
2441
54.3-2 CodegreeOfPartialPerm
2442
54.3-3 RankOfPartialPerm
2443
54.3-4 DomainOfPartialPerm
2444
54.3-5 ImageOfPartialPermCollection
2445
54.3-6 ImageListOfPartialPerm
2446
54.3-7 ImageSetOfPartialPerm
2447
54.3-8 FixedPointsOfPartialPerm
2448
54.3-9 MovedPoints
2449
54.3-10 NrFixedPoints
2450
54.3-11 NrMovedPoints
2451
54.3-12 SmallestMovedPoint
2452
54.3-13 LargestMovedPoint
2453
54.3-14 SmallestImageOfMovedPoint
2454
54.3-15 LargestImageOfMovedPoint
2455
54.3-16 IndexPeriodOfPartialPerm
2456
54.3-17 SmallestIdempotentPower
2457
54.3-18 ComponentsOfPartialPerm
2458
54.3-19 NrComponentsOfPartialPerm
2459
54.3-20 ComponentRepsOfPartialPerm
2460
54.3-21 LeftOne
2461
54.3-22 One
2462
54.3-23 Zero
2463
54.4 Changing the representation of a partial permutation
2464
54.4-1 AsPartialPerm
2465
54.4-2 AsPartialPerm
2466
54.5 Operators and operations for partial permutations
2467
54.5-1 PermLeftQuoPartialPerm
2468
54.5-2 PreImagePartialPerm
2469
54.5-3 ComponentPartialPermInt
2470
54.5-4 NaturalLeqPartialPerm
2471
54.5-5 ShortLexLeqPartialPerm
2472
54.5-6 TrimPartialPerm
2473
54.6 Displaying partial permutations
2474
54.7 Semigroups and inverse semigroups of partial permutations
2475
54.7-1 IsPartialPermSemigroup
2476
54.7-2 DegreeOfPartialPermSemigroup
2477
54.7-3 SymmetricInverseSemigroup
2478
54.7-4 IsSymmetricInverseSemigroup
2479
54.7-5 NaturalPartialOrder
2480
54.7-6 IsomorphismPartialPermMonoid
2481
55 Additive Magmas
2482
55.1 (Near-)Additive Magma Categories
2483
55.1-1 IsNearAdditiveMagma
2484
55.1-2 IsNearAdditiveMagmaWithZero
2485
55.1-3 IsNearAdditiveGroup
2486
55.1-4 IsAdditiveMagma
2487
55.1-5 IsAdditiveMagmaWithZero
2488
55.1-6 IsAdditiveGroup
2489
55.2 (Near-)Additive Magma Generation
2490
55.2-1 NearAdditiveMagma
2491
55.2-2 NearAdditiveMagmaWithZero
2492
55.2-3 NearAdditiveGroup
2493
55.2-4 NearAdditiveMagmaByGenerators
2494
55.2-5 NearAdditiveMagmaWithZeroByGenerators
2495
55.2-6 NearAdditiveGroupByGenerators
2496
55.2-7 SubnearAdditiveMagma
2497
55.2-8 SubnearAdditiveMagmaWithZero
2498
55.2-9 SubnearAdditiveGroup
2499
55.3 Attributes and Properties for (Near-)Additive Magmas
2500
55.3-1 IsAdditivelyCommutative
2501
55.3-2 GeneratorsOfNearAdditiveMagma
2502
55.3-3 GeneratorsOfNearAdditiveMagmaWithZero
2503
55.3-4 GeneratorsOfNearAdditiveGroup
2504
55.3-5 AdditiveNeutralElement
2505
55.3-6 TrivialSubnearAdditiveMagmaWithZero
2506
55.4 Operations for (Near-)Additive Magmas
2507
55.4-1 ClosureNearAdditiveGroup
2508
55.4-2 ShowAdditionTable
2509
56 Rings
2510
56.1 Generating Rings
2511
56.1-1 IsRing
2512
56.1-2 Ring
2513
56.1-3 DefaultRing
2514
56.1-4 RingByGenerators
2515
56.1-5 DefaultRingByGenerators
2516
56.1-6 GeneratorsOfRing
2517
56.1-7 Subring
2518
56.1-8 ClosureRing
2519
56.1-9 Quotient
2520
56.2 Ideals of Rings
2521
56.2-1 TwoSidedIdeal
2522
56.2-2 TwoSidedIdealNC
2523
56.2-3 IsTwoSidedIdeal
2524
56.2-4 TwoSidedIdealByGenerators
2525
56.2-5 LeftIdealByGenerators
2526
56.2-6 RightIdealByGenerators
2527
56.2-7 GeneratorsOfTwoSidedIdeal
2528
56.2-8 GeneratorsOfLeftIdeal
2529
56.2-9 GeneratorsOfRightIdeal
2530
56.2-10 LeftActingRingOfIdeal
2531
56.2-11 AsLeftIdeal
2532
56.3 Rings With One
2533
56.3-1 IsRingWithOne
2534
56.3-2 RingWithOne
2535
56.3-3 RingWithOneByGenerators
2536
56.3-4 GeneratorsOfRingWithOne
2537
56.3-5 SubringWithOne
2538
56.4 Properties of Rings
2539
56.4-1 IsIntegralRing
2540
56.4-2 IsUniqueFactorizationRing
2541
56.4-3 IsLDistributive
2542
56.4-4 IsRDistributive
2543
56.4-5 IsDistributive
2544
56.4-6 IsAnticommutative
2545
56.4-7 IsZeroSquaredRing
2546
56.4-8 IsJacobianRing
2547
56.5 Units and Factorizations
2548
56.5-1 IsUnit
2549
56.5-2 Units
2550
56.5-3 IsAssociated
2551
56.5-4 Associates
2552
56.5-5 StandardAssociate
2553
56.5-6 StandardAssociateUnit
2554
56.5-7 IsIrreducibleRingElement
2555
56.5-8 IsPrime
2556
56.5-9 Factors
2557
56.5-10 PadicValuation
2558
56.6 Euclidean Rings
2559
56.6-1 IsEuclideanRing
2560
56.6-2 EuclideanDegree
2561
56.6-3 EuclideanQuotient
2562
56.6-4 EuclideanRemainder
2563
56.6-5 QuotientRemainder
2564
56.7 Gcd and Lcm
2565
56.7-1 Gcd
2566
56.7-2 GcdOp
2567
56.7-3 GcdRepresentation
2568
56.7-4 GcdRepresentationOp
2569
56.7-5 ShowGcd
2570
56.7-6 Lcm
2571
56.7-7 LcmOp
2572
56.7-8 QuotientMod
2573
56.7-9 PowerMod
2574
56.7-10 InterpolatedPolynomial
2575
56.8 Homomorphisms of Rings
2576
56.8-1 RingGeneralMappingByImages
2577
56.8-2 RingHomomorphismByImages
2578
56.8-3 RingHomomorphismByImagesNC
2579
56.8-4 NaturalHomomorphismByIdeal
2580
56.9 Small Rings
2581
56.9-1 SmallRing
2582
56.9-2 NumberSmallRings
2583
56.9-3 Subrings
2584
56.9-4 Ideals
2585
56.9-5 DirectSum
2586
56.9-6 RingByStructureConstants
2587
57 Modules
2588
57.1 Generating modules
2589
57.1-1 IsLeftOperatorAdditiveGroup
2590
57.1-2 IsLeftModule
2591
57.1-3 GeneratorsOfLeftOperatorAdditiveGroup
2592
57.1-4 GeneratorsOfLeftModule
2593
57.1-5 AsLeftModule
2594
57.1-6 IsRightOperatorAdditiveGroup
2595
57.1-7 IsRightModule
2596
57.1-8 GeneratorsOfRightOperatorAdditiveGroup
2597
57.1-9 GeneratorsOfRightModule
2598
57.1-10 LeftModuleByGenerators
2599
57.1-11 LeftActingDomain
2600
57.2 Submodules
2601
57.2-1 Submodule
2602
57.2-2 SubmoduleNC
2603
57.2-3 ClosureLeftModule
2604
57.2-4 TrivialSubmodule
2605
57.3 Free Modules
2606
57.3-1 IsFreeLeftModule
2607
57.3-2 FreeLeftModule
2608
57.3-3 Dimension
2609
57.3-4 IsFiniteDimensional
2610
57.3-5 UseBasis
2611
57.3-6 IsRowModule
2612
57.3-7 IsMatrixModule
2613
57.3-8 IsFullRowModule
2614
57.3-9 FullRowModule
2615
57.3-10 IsFullMatrixModule
2616
57.3-11 FullMatrixModule
2617
58 Fields and Division Rings
2618
58.1 Generating Fields
2619
58.1-1 IsDivisionRing
2620
58.1-2 IsField
2621
58.1-3 Field
2622
58.1-4 DefaultField
2623
58.1-5 DefaultFieldByGenerators
2624
58.1-6 GeneratorsOfDivisionRing
2625
58.1-7 GeneratorsOfField
2626
58.1-8 DivisionRingByGenerators
2627
58.1-9 AsDivisionRing
2628
58.2 Subfields of Fields
2629
58.2-1 Subfield
2630
58.2-2 FieldOverItselfByGenerators
2631
58.2-3 PrimitiveElement
2632
58.2-4 PrimeField
2633
58.2-5 IsPrimeField
2634
58.2-6 DegreeOverPrimeField
2635
58.2-7 DefiningPolynomial
2636
58.2-8 RootOfDefiningPolynomial
2637
58.2-9 FieldExtension
2638
58.2-10 Subfields
2639
58.3 Galois Action
2640
58.3-1 GaloisGroup
2641
58.3-2 MinimalPolynomial
2642
58.3-3 TracePolynomial
2643
58.3-4 Norm
2644
58.3-5 Traces of field elements and matrices
2645
58.3-6 Conjugates
2646
58.3-7 NormalBase
2647
59 Finite Fields
2648
59.1 Finite Field Elements
2649
59.1-1 IsFFE
2650
59.1-2 Z
2651
59.1-3 IsLexOrderedFFE
2652
59.2 Operations for Finite Field Elements
2653
59.2-1 DegreeFFE
2654
59.2-2 LogFFE
2655
59.2-3 IntFFE
2656
59.2-4 IntFFESymm
2657
59.2-5 IntVecFFE
2658
59.2-6 AsInternalFFE
2659
59.3 Creating Finite Fields
2660
59.3-1 DefaultField
2661
59.3-2 GaloisField
2662
59.3-3 PrimitiveRoot
2663
59.4 Frobenius Automorphisms
2664
59.4-1 FrobeniusAutomorphism
2665
59.5 Conway Polynomials
2666
59.5-1 ConwayPolynomial
2667
59.5-2 IsCheapConwayPolynomial
2668
59.5-3 RandomPrimitivePolynomial
2669
59.6 Printing, Viewing and Displaying Finite Field Elements
2670
59.6-1 ViewObj
2671
60 Abelian Number Fields
2672
60.1 Construction of Abelian Number Fields
2673
60.1-1 CyclotomicField
2674
60.1-2 AbelianNumberField
2675
60.1-3 GaussianRationals
2676
60.2 Operations for Abelian Number Fields
2677
60.2-1 Factors
2678
60.2-2 IsNumberField
2679
60.2-3 IsAbelianNumberField
2680
60.2-4 IsCyclotomicField
2681
60.2-5 GaloisStabilizer
2682
60.3 Integral Bases of Abelian Number Fields
2683
60.3-1 ZumbroichBase
2684
60.3-2 LenstraBase
2685
60.4 Galois Groups of Abelian Number Fields
2686
60.4-1 GaloisGroup
2687
60.4-2 ANFAutomorphism
2688
60.5 Gaussians
2689
60.5-1 GaussianIntegers
2690
60.5-2 IsGaussianIntegers
2691
61 Vector Spaces
2692
61.1 IsLeftVectorSpace (Filter)
2693
61.1-1 IsLeftVectorSpace
2694
61.2 Constructing Vector Spaces
2695
61.2-1 VectorSpace
2696
61.2-2 Subspace
2697
61.2-3 AsVectorSpace
2698
61.2-4 AsSubspace
2699
61.3 Operations and Attributes for Vector Spaces
2700
61.3-1 GeneratorsOfLeftVectorSpace
2701
61.3-2 TrivialSubspace
2702
61.4 Domains of Subspaces of Vector Spaces
2703
61.4-1 Subspaces
2704
61.4-2 IsSubspacesVectorSpace
2705
61.5 Bases of Vector Spaces
2706
61.5-1 IsBasis
2707
61.5-2 Basis
2708
61.5-3 CanonicalBasis
2709
61.5-4 RelativeBasis
2710
61.6 Operations for Vector Space Bases
2711
61.6-1 BasisVectors
2712
61.6-2 UnderlyingLeftModule
2713
61.6-3 Coefficients
2714
61.6-4 LinearCombination
2715
61.6-5 EnumeratorByBasis
2716
61.6-6 IteratorByBasis
2717
61.7 Operations for Special Kinds of Bases
2718
61.7-1 IsCanonicalBasis
2719
61.7-2 IsIntegralBasis
2720
61.7-3 IsNormalBasis
2721
61.8 Mutable Bases
2722
61.8-1 IsMutableBasis
2723
61.8-2 MutableBasis
2724
61.8-3 NrBasisVectors
2725
61.8-4 ImmutableBasis
2726
61.8-5 IsContainedInSpan
2727
61.8-6 CloseMutableBasis
2728
61.9 Row and Matrix Spaces
2729
61.9-1 IsRowSpace
2730
61.9-2 IsMatrixSpace
2731
61.9-3 IsGaussianSpace
2732
61.9-4 FullRowSpace
2733
61.9-5 FullMatrixSpace
2734
61.9-6 DimensionOfVectors
2735
61.9-7 IsSemiEchelonized
2736
61.9-8 SemiEchelonBasis
2737
61.9-9 IsCanonicalBasisFullRowModule
2738
61.9-10 IsCanonicalBasisFullMatrixModule
2739
61.9-11 NormedRowVectors
2740
61.9-12 SiftedVector
2741
61.10 Vector Space Homomorphisms
2742
61.10-1 LeftModuleGeneralMappingByImages
2743
61.10-2 LeftModuleHomomorphismByImages
2744
61.10-3 LeftModuleHomomorphismByMatrix
2745
61.10-4 NaturalHomomorphismBySubspace
2746
61.10-5 Hom
2747
61.10-6 End
2748
61.10-7 IsFullHomModule
2749
61.10-8 IsPseudoCanonicalBasisFullHomModule
2750
61.10-9 IsLinearMappingsModule
2751
61.11 Vector Spaces Handled By Nice Bases
2752
61.11-1 NiceFreeLeftModule
2753
61.11-2 NiceVector
2754
61.11-3 NiceFreeLeftModuleInfo
2755
61.11-4 NiceBasis
2756
61.11-5 IsBasisByNiceBasis
2757
61.11-6 IsHandledByNiceBasis
2758
61.12 How to Implement New Kinds of Vector Spaces
2759
61.12-1 DeclareHandlingByNiceBasis
2760
61.12-2 NiceBasisFiltersInfo
2761
61.12-3 CheckForHandlingByNiceBasis
2762
62 Algebras
2763
62.1 InfoAlgebra (Info Class)
2764
62.1-1 InfoAlgebra
2765
62.2 Constructing Algebras by Generators
2766
62.2-1 Algebra
2767
62.2-2 AlgebraWithOne
2768
62.3 Constructing Algebras as Free Algebras
2769
62.3-1 FreeAlgebra
2770
62.3-2 FreeAlgebraWithOne
2771
62.3-3 FreeAssociativeAlgebra
2772
62.3-4 FreeAssociativeAlgebraWithOne
2773
62.4 Constructing Algebras by Structure Constants
2774
62.4-1 AlgebraByStructureConstants
2775
62.4-2 StructureConstantsTable
2776
62.4-3 EmptySCTable
2777
62.4-4 SetEntrySCTable
2778
62.4-5 GapInputSCTable
2779
62.4-6 TestJacobi
2780
62.4-7 IdentityFromSCTable
2781
62.4-8 QuotientFromSCTable
2782
62.5 Some Special Algebras
2783
62.5-1 QuaternionAlgebra
2784
62.5-2 ComplexificationQuat
2785
62.5-3 OctaveAlgebra
2786
62.5-4 FullMatrixAlgebra
2787
62.5-5 NullAlgebra
2788
62.6 Subalgebras
2789
62.6-1 Subalgebra
2790
62.6-2 SubalgebraNC
2791
62.6-3 SubalgebraWithOne
2792
62.6-4 SubalgebraWithOneNC
2793
62.6-5 TrivialSubalgebra
2794
62.7 Ideals of Algebras
2795
62.8 Categories and Properties of Algebras
2796
62.8-1 IsFLMLOR
2797
62.8-2 IsFLMLORWithOne
2798
62.8-3 IsAlgebra
2799
62.8-4 IsAlgebraWithOne
2800
62.8-5 IsLieAlgebra
2801
62.8-6 IsSimpleAlgebra
2802
62.8-7 IsFiniteDimensional
2803
62.8-8 IsQuaternion
2804
62.9 Attributes and Operations for Algebras
2805
62.9-1 GeneratorsOfAlgebra
2806
62.9-2 GeneratorsOfAlgebraWithOne
2807
62.9-3 ProductSpace
2808
62.9-4 PowerSubalgebraSeries
2809
62.9-5 AdjointBasis
2810
62.9-6 IndicesOfAdjointBasis
2811
62.9-7 AsAlgebra
2812
62.9-8 AsAlgebraWithOne
2813
62.9-9 AsSubalgebra
2814
62.9-10 AsSubalgebraWithOne
2815
62.9-11 MutableBasisOfClosureUnderAction
2816
62.9-12 MutableBasisOfNonassociativeAlgebra
2817
62.9-13 MutableBasisOfIdealInNonassociativeAlgebra
2818
62.9-14 DirectSumOfAlgebras
2819
62.9-15 FullMatrixAlgebraCentralizer
2820
62.9-16 RadicalOfAlgebra
2821
62.9-17 CentralIdempotentsOfAlgebra
2822
62.9-18 DirectSumDecomposition
2823
62.9-19 LeviMalcevDecomposition
2824
62.9-20 Grading
2825
62.10 Homomorphisms of Algebras
2826
62.10-1 AlgebraGeneralMappingByImages
2827
62.10-2 AlgebraHomomorphismByImages
2828
62.10-3 AlgebraHomomorphismByImagesNC
2829
62.10-4 AlgebraWithOneGeneralMappingByImages
2830
62.10-5 AlgebraWithOneHomomorphismByImages
2831
62.10-6 AlgebraWithOneHomomorphismByImagesNC
2832
62.10-7 NaturalHomomorphismByIdeal
2833
62.10-8 OperationAlgebraHomomorphism
2834
62.10-9 NiceAlgebraMonomorphism
2835
62.10-10 IsomorphismFpAlgebra
2836
62.10-11 IsomorphismMatrixAlgebra
2837
62.10-12 IsomorphismSCAlgebra
2838
62.10-13 RepresentativeLinearOperation
2839
62.11 Representations of Algebras
2840
62.11-1 LeftAlgebraModuleByGenerators
2841
62.11-2 RightAlgebraModuleByGenerators
2842
62.11-3 BiAlgebraModuleByGenerators
2843
62.11-4 LeftAlgebraModule
2844
62.11-5 RightAlgebraModule
2845
62.11-6 BiAlgebraModule
2846
62.11-7 GeneratorsOfAlgebraModule
2847
62.11-8 IsAlgebraModuleElement
2848
62.11-9 IsLeftAlgebraModuleElement
2849
62.11-10 IsRightAlgebraModuleElement
2850
62.11-11 LeftActingAlgebra
2851
62.11-12 RightActingAlgebra
2852
62.11-13 ActingAlgebra
2853
62.11-14 IsBasisOfAlgebraModuleElementSpace
2854
62.11-15 MatrixOfAction
2855
62.11-16 SubAlgebraModule
2856
62.11-17 LeftModuleByHomomorphismToMatAlg
2857
62.11-18 RightModuleByHomomorphismToMatAlg
2858
62.11-19 AdjointModule
2859
62.11-20 FaithfulModule
2860
62.11-21 ModuleByRestriction
2861
62.11-22 NaturalHomomorphismBySubAlgebraModule
2862
62.11-23 DirectSumOfAlgebraModules
2863
62.11-24 TranslatorSubalgebra
2864
63 Finitely Presented Algebras
2865
64 Lie Algebras
2866
64.1 Lie Objects
2867
64.1-1 LieObject
2868
64.1-2 IsLieObject
2869
64.1-3 LieFamily
2870
64.1-4 UnderlyingFamily
2871
64.1-5 UnderlyingRingElement
2872
64.2 Constructing Lie algebras
2873
64.2-1 LieAlgebraByStructureConstants
2874
64.2-2 RestrictedLieAlgebraByStructureConstants
2875
64.2-3 LieAlgebra
2876
64.2-4 FreeLieAlgebra
2877
64.2-5 FullMatrixLieAlgebra
2878
64.2-6 RightDerivations
2879
64.2-7 SimpleLieAlgebra
2880
64.3 Distinguished Subalgebras
2881
64.3-1 LieCentre
2882
64.3-2 LieCentralizer
2883
64.3-3 LieNormalizer
2884
64.3-4 LieDerivedSubalgebra
2885
64.3-5 LieNilRadical
2886
64.3-6 LieSolvableRadical
2887
64.3-7 CartanSubalgebra
2888
64.4 Series of Ideals
2889
64.4-1 LieDerivedSeries
2890
64.4-2 LieLowerCentralSeries
2891
64.4-3 LieUpperCentralSeries
2892
64.5 Properties of a Lie Algebra
2893
64.5-1 IsLieAbelian
2894
64.5-2 IsLieNilpotent
2895
64.5-3 IsLieSolvable
2896
64.6 Semisimple Lie Algebras and Root Systems
2897
64.6-1 SemiSimpleType
2898
64.6-2 ChevalleyBasis
2899
64.6-3 IsRootSystem
2900
64.6-4 IsRootSystemFromLieAlgebra
2901
64.6-5 RootSystem
2902
64.6-6 UnderlyingLieAlgebra
2903
64.6-7 PositiveRoots
2904
64.6-8 NegativeRoots
2905
64.6-9 PositiveRootVectors
2906
64.6-10 NegativeRootVectors
2907
64.6-11 SimpleSystem
2908
64.6-12 CartanMatrix
2909
64.6-13 BilinearFormMat
2910
64.6-14 CanonicalGenerators
2911
64.7 Semisimple Lie Algebras and Weyl Groups of Root Systems
2912
64.7-1 IsWeylGroup
2913
64.7-2 SparseCartanMatrix
2914
64.7-3 WeylGroup
2915
64.7-4 ApplySimpleReflection
2916
64.7-5 LongestWeylWordPerm
2917
64.7-6 ConjugateDominantWeight
2918
64.7-7 WeylOrbitIterator
2919
64.8 Restricted Lie algebras
2920
64.8-1 IsRestrictedLieAlgebra
2921
64.8-2 PthPowerImages
2922
64.8-3 PthPowerImage
2923
64.8-4 JenningsLieAlgebra
2924
64.8-5 PCentralLieAlgebra
2925
64.8-6 NaturalHomomorphismOfLieAlgebraFromNilpotentGroup
2926
64.9 The Adjoint Representation
2927
64.9-1 AdjointMatrix
2928
64.9-2 AdjointAssociativeAlgebra
2929
64.9-3 KillingMatrix
2930
64.9-4 KappaPerp
2931
64.9-5 IsNilpotentElement
2932
64.9-6 NonNilpotentElement
2933
64.9-7 FindSl2
2934
64.10 Universal Enveloping Algebras
2935
64.10-1 UniversalEnvelopingAlgebra
2936
64.11 Finitely Presented Lie Algebras
2937
64.11-1 FpLieAlgebraByCartanMatrix
2938
64.11-2 NilpotentQuotientOfFpLieAlgebra
2939
64.12 Modules over Lie Algebras and Their Cohomology
2940
64.12-1 IsCochain
2941
64.12-2 Cochain
2942
64.12-3 CochainSpace
2943
64.12-4 ValueCochain
2944
64.12-5 LieCoboundaryOperator
2945
64.12-6 Cocycles
2946
64.12-7 Coboundaries
2947
64.13 Modules over Semisimple Lie Algebras
2948
64.13-1 DominantWeights
2949
64.13-2 DominantCharacter
2950
64.13-3 DecomposeTensorProduct
2951
64.13-4 DimensionOfHighestWeightModule
2952
64.14 Admissible Lattices in UEA
2953
64.14-1 IsUEALatticeElement
2954
64.14-2 LatticeGeneratorsInUEA
2955
64.14-3 ObjByExtRep
2956
64.14-4 IsWeightRepElement
2957
64.14-5 HighestWeightModule
2958
64.15 Tensor Products and Exterior and Symmetric Powers
2959
64.15-1 TensorProductOfAlgebraModules
2960
64.15-2 ExteriorPowerOfAlgebraModule
2961
64.15-3 SymmetricPowerOfAlgebraModule
2962
65 Magma Rings
2963
65.1 Free Magma Rings
2964
65.1-1 FreeMagmaRing
2965
65.1-2 GroupRing
2966
65.1-3 IsFreeMagmaRing
2967
65.1-4 IsFreeMagmaRingWithOne
2968
65.1-5 IsGroupRing
2969
65.1-6 UnderlyingMagma
2970
65.1-7 AugmentationIdeal
2971
65.2 Elements of Free Magma Rings
2972
65.2-1 IsMagmaRingObjDefaultRep
2973
65.2-2 IsElementOfFreeMagmaRing
2974
65.2-3 IsElementOfFreeMagmaRingFamily
2975
65.2-4 CoefficientsAndMagmaElements
2976
65.2-5 ZeroCoefficient
2977
65.2-6 ElementOfMagmaRing
2978
65.3 Natural Embeddings related to Magma Rings
2979
65.4 Magma Rings modulo Relations
2980
65.4-1 IsElementOfMagmaRingModuloRelations
2981
65.4-2 IsElementOfMagmaRingModuloRelationsFamily
2982
65.4-3 NormalizedElementOfMagmaRingModuloRelations
2983
65.4-4 IsMagmaRingModuloRelations
2984
65.5 Magma Rings modulo the Span of a Zero Element
2985
65.5-1 IsElementOfMagmaRingModuloSpanOfZeroFamily
2986
65.5-2 IsMagmaRingModuloSpanOfZero
2987
65.5-3 MagmaRingModuloSpanOfZero
2988
65.6 Technical Details about the Implementation of Magma Rings
2989
66 Polynomials and Rational Functions
2990
66.1 Indeterminates
2991
66.1-1 Indeterminate
2992
66.1-2 IndeterminateNumberOfUnivariateRationalFunction
2993
66.1-3 IndeterminateOfUnivariateRationalFunction
2994
66.1-4 IndeterminateName
2995
66.1-5 CIUnivPols
2996
66.2 Operations for Rational Functions
2997
66.3 Comparison of Rational Functions
2998
66.4 Properties and Attributes of Rational Functions
2999
66.4-1 IsPolynomialFunction
3000
66.4-2 NumeratorOfRationalFunction
3001
66.4-3 DenominatorOfRationalFunction
3002
66.4-4 IsPolynomial
3003
66.4-5 AsPolynomial
3004
66.4-6 IsUnivariateRationalFunction
3005
66.4-7 CoefficientsOfUnivariateRationalFunction
3006
66.4-8 IsUnivariatePolynomial
3007
66.4-9 CoefficientsOfUnivariatePolynomial
3008
66.4-10 IsLaurentPolynomial
3009
66.4-11 IsConstantRationalFunction
3010
66.4-12 IsPrimitivePolynomial
3011
66.4-13 SplittingField
3012
66.5 Univariate Polynomials
3013
66.5-1 UnivariatePolynomial
3014
66.5-2 UnivariatePolynomialByCoefficients
3015
66.5-3 DegreeOfLaurentPolynomial
3016
66.5-4 RootsOfPolynomial
3017
66.5-5 RootsOfUPol
3018
66.5-6 QuotRemLaurpols
3019
66.5-7 UnivariatenessTestRationalFunction
3020
66.5-8 InfoPoly
3021
66.6 Polynomials as Univariate Polynomials in one Indeterminate
3022
66.6-1 DegreeIndeterminate
3023
66.6-2 PolynomialCoefficientsOfPolynomial
3024
66.6-3 LeadingCoefficient
3025
66.6-4 LeadingMonomial
3026
66.6-5 Derivative
3027
66.6-6 Discriminant
3028
66.6-7 Resultant
3029
66.7 Multivariate Polynomials
3030
66.7-1 Value
3031
66.8 Minimal Polynomials
3032
66.8-1 MinimalPolynomial
3033
66.9 Cyclotomic Polynomials
3034
66.9-1 CyclotomicPolynomial
3035
66.10 Polynomial Factorization
3036
66.10-1 Factors
3037
66.10-2 FactorsSquarefree
3038
66.11 Polynomials over the Rationals
3039
66.11-1 PrimitivePolynomial
3040
66.11-2 PolynomialModP
3041
66.11-3 GaloisType
3042
66.11-4 ProbabilityShapes
3043
66.12 Factorization of Polynomials over the Rationals
3044
66.12-1 BombieriNorm
3045
66.12-2 MinimizedBombieriNorm
3046
66.12-3 HenselBound
3047
66.12-4 OneFactorBound
3048
66.13 Laurent Polynomials
3049
66.13-1 LaurentPolynomialByCoefficients
3050
66.13-2 CoefficientsOfLaurentPolynomial
3051
66.13-3 IndeterminateNumberOfLaurentPolynomial
3052
66.14 Univariate Rational Functions
3053
66.14-1 UnivariateRationalFunctionByCoefficients
3054
66.15 Polynomial Rings and Function Fields
3055
66.15-1 PolynomialRing
3056
66.15-2 IndeterminatesOfPolynomialRing
3057
66.15-3 CoefficientsRing
3058
66.15-4 IsPolynomialRing
3059
66.15-5 IsFiniteFieldPolynomialRing
3060
66.15-6 IsAbelianNumberFieldPolynomialRing
3061
66.15-7 IsRationalsPolynomialRing
3062
66.15-8 FunctionField
3063
66.15-9 IsFunctionField
3064
66.16 Univariate Polynomial Rings
3065
66.16-1 UnivariatePolynomialRing
3066
66.16-2 IsUnivariatePolynomialRing
3067
66.17 Monomial Orderings
3068
66.17-1 IsMonomialOrdering
3069
66.17-2 LeadingMonomialOfPolynomial
3070
66.17-3 LeadingTermOfPolynomial
3071
66.17-4 LeadingCoefficientOfPolynomial
3072
66.17-5 MonomialComparisonFunction
3073
66.17-6 MonomialExtrepComparisonFun
3074
66.17-7 MonomialLexOrdering
3075
66.17-8 MonomialGrlexOrdering
3076
66.17-9 MonomialGrevlexOrdering
3077
66.17-10 EliminationOrdering
3078
66.17-11 PolynomialReduction
3079
66.17-12 PolynomialReducedRemainder
3080
66.17-13 PolynomialDivisionAlgorithm
3081
66.17-14 MonomialExtGrlexLess
3082
66.18 Groebner Bases
3083
66.18-1 GroebnerBasis
3084
66.18-2 ReducedGroebnerBasis
3085
66.18-3 StoredGroebnerBasis
3086
66.18-4 InfoGroebner
3087
66.19 Rational Function Families
3088
66.19-1 RationalFunctionsFamily
3089
66.19-2 IsPolynomialFunctionsFamily
3090
66.19-3 CoefficientsFamily
3091
66.20 The Representations of Rational Functions
3092
66.21 The Defining Attributes of Rational Functions
3093
66.21-1 IsRationalFunctionDefaultRep
3094
66.21-2 ExtRepNumeratorRatFun
3095
66.21-3 ExtRepDenominatorRatFun
3096
66.21-4 ZeroCoefficientRatFun
3097
66.21-5 IsPolynomialDefaultRep
3098
66.21-6 ExtRepPolynomialRatFun
3099
66.21-7 IsLaurentPolynomialDefaultRep
3100
66.22 Creation of Rational Functions
3101
66.22-1 RationalFunctionByExtRep
3102
66.22-2 PolynomialByExtRep
3103
66.22-3 LaurentPolynomialByExtRep
3104
66.23 Arithmetic for External Representations of Polynomials
3105
66.23-1 ZippedSum
3106
66.23-2 ZippedProduct
3107
66.23-3 QuotientPolynomialsExtRep
3108
66.24 Cancellation Tests for Rational Functions
3109
66.24-1 RationalFunctionByExtRepWithCancellation
3110
66.24-2 TryGcdCancelExtRepPolynomials
3111
66.24-3 HeuristicCancelPolynomialsExtRep
3112
67 Algebraic extensions of fields
3113
67.1 Creation of Algebraic Extensions
3114
67.1-1 AlgebraicExtension
3115
67.1-2 IsAlgebraicExtension
3116
67.2 Elements in Algebraic Extensions
3117
67.2-1 IsAlgebraicElement
3118
68 p-adic Numbers (preliminary)
3119
68.1 Pure p-adic Numbers
3120
68.1-1 PurePadicNumberFamily
3121
68.1-2 PadicNumber
3122
68.1-3 Valuation
3123
68.1-4 ShiftedPadicNumber
3124
68.1-5 IsPurePadicNumber
3125
68.1-6 IsPurePadicNumberFamily
3126
68.2 Extensions of the p-adic Numbers
3127
68.2-1 PadicExtensionNumberFamily
3128
68.2-2 PadicNumber
3129
68.2-3 IsPadicExtensionNumber
3130
68.2-4 IsPadicExtensionNumberFamily
3131
69 The MeatAxe
3132
69.1 MeatAxe Modules
3133
69.1-1 GModuleByMats
3134
69.2 Module Constructions
3135
69.2-1 PermutationGModule
3136
69.2-2 TensorProductGModule
3137
69.2-3 WedgeGModule
3138
69.3 Selecting a Different MeatAxe
3139
69.3-1 MTX
3140
69.4 Accessing a Module
3141
69.4-1 MTX.Generators
3142
69.4-2 MTX.Dimension
3143
69.4-3 MTX.Field
3144
69.5 Irreducibility Tests
3145
69.5-1 MTX.IsIrreducible
3146
69.5-2 MTX.IsAbsolutelyIrreducible
3147
69.5-3 MTX.DegreeSplittingField
3148
69.6 Decomposition of modules
3149
69.6-1 MTX.IsIndecomposable
3150
69.6-2 MTX.Indecomposition
3151
69.6-3 MTX.HomogeneousComponents
3152
69.7 Finding Submodules
3153
69.7-1 MTX.SubmoduleGModule
3154
69.7-2 MTX.ProperSubmoduleBasis
3155
69.7-3 MTX.BasesSubmodules
3156
69.7-4 MTX.BasesMinimalSubmodules
3157
69.7-5 MTX.BasesMaximalSubmodules
3158
69.7-6 MTX.BasisRadical
3159
69.7-7 MTX.BasisSocle
3160
69.7-8 MTX.BasesMinimalSupermodules
3161
69.7-9 MTX.BasesCompositionSeries
3162
69.7-10 MTX.CompositionFactors
3163
69.7-11 MTX.CollectedFactors
3164
69.8 Induced Actions
3165
69.8-1 MTX.NormedBasisAndBaseChange
3166
69.8-2 MTX.InducedActionSubmodule
3167
69.8-3 MTX.InducedActionFactorModule
3168
69.8-4 MTX.InducedActionMatrix
3169
69.8-5 MTX.InducedAction
3170
69.9 Module Homomorphisms
3171
69.9-1 MTX.BasisModuleHomomorphisms
3172
69.9-2 MTX.BasisModuleEndomorphisms
3173
69.9-3 MTX.IsomorphismModules
3174
69.9-4 MTX.ModuleAutomorphisms
3175
69.10 Module Homomorphisms for irreducible modules
3176
69.10-1 MTX.IsEquivalent
3177
69.10-2 MTX.IsomorphismIrred
3178
69.10-3 MTX.Homomorphism
3179
69.10-4 MTX.Homomorphisms
3180
69.10-5 MTX.Distinguish
3181
69.11 MeatAxe Functionality for Invariant Forms
3182
69.11-1 MTX.InvariantBilinearForm
3183
69.11-2 MTX.InvariantSesquilinearForm
3184
69.11-3 MTX.InvariantQuadraticForm
3185
69.11-4 MTX.BasisInOrbit
3186
69.11-5 MTX.OrthogonalSign
3187
69.12 The Smash MeatAxe
3188
69.12-1 SMTX.RandomIrreducibleSubGModule
3189
69.12-2 SMTX.GoodElementGModule
3190
69.12-3 SMTX.SortHomGModule
3191
69.12-4 SMTX.MinimalSubGModules
3192
69.12-5 SMTX.Setter
3193
69.12-6 SMTX.Getter
3194
69.12-7 SMTX.IrreducibilityTest
3195
69.12-8 SMTX.AbsoluteIrreducibilityTest
3196
69.12-9 SMTX.MinimalSubGModule
3197
69.12-10 SMTX.MatrixSum
3198
69.12-11 SMTX.CompleteBasis
3199
69.13 Smash MeatAxe Flags
3200
69.13-1 SMTX.Subbasis
3201
69.13-2 SMTX.AlgEl
3202
69.13-3 SMTX.AlgElMat
3203
69.13-4 SMTX.AlgElCharPol
3204
69.13-5 SMTX.AlgElCharPolFac
3205
69.13-6 SMTX.AlgElNullspaceVec
3206
69.13-7 SMTX.AlgElNullspaceDimension
3207
69.13-8 SMTX.CentMat
3208
69.13-9 SMTX.CentMatMinPoly
3209
70 Tables of Marks
3210
70.1 More about Tables of Marks
3211
70.2 Table of Marks Objects in GAP
3212
70.3 Constructing Tables of Marks
3213
70.3-1 TableOfMarks
3214
70.3-2 TableOfMarksByLattice
3215
70.3-3 LatticeSubgroupsByTom
3216
70.4 Printing Tables of Marks
3217
70.4-1 ViewObj
3218
70.4-2 PrintObj
3219
70.4-3 Display
3220
70.5 Sorting Tables of Marks
3221
70.5-1 SortedTom
3222
70.5-2 PermutationTom
3223
70.6 Technical Details about Tables of Marks
3224
70.6-1 InfoTom
3225
70.6-2 IsTableOfMarks
3226
70.6-3 TableOfMarksFamily
3227
70.6-4 TableOfMarksComponents
3228
70.6-5 ConvertToTableOfMarks
3229
70.7 Attributes of Tables of Marks
3230
70.7-1 MarksTom
3231
70.7-2 NrSubsTom
3232
70.7-3 LengthsTom
3233
70.7-4 ClassTypesTom
3234
70.7-5 ClassNamesTom
3235
70.7-6 FusionsTom
3236
70.7-7 UnderlyingGroup
3237
70.7-8 IdempotentsTom
3238
70.7-9 Identifier
3239
70.7-10 MatTom
3240
70.7-11 MoebiusTom
3241
70.7-12 WeightsTom
3242
70.8 Properties of Tables of Marks
3243
70.8-1 IsAbelianTom
3244
70.9 Other Operations for Tables of Marks
3245
70.9-1 IsInternallyConsistent
3246
70.9-2 DerivedSubgroupTom
3247
70.9-3 DerivedSubgroupsTomPossible
3248
70.9-4 NormalizerTom
3249
70.9-5 ContainedTom
3250
70.9-6 ContainingTom
3251
70.9-7 CyclicExtensionsTom
3252
70.9-8 DecomposedFixedPointVector
3253
70.9-9 EulerianFunctionByTom
3254
70.9-10 IntersectionsTom
3255
70.9-11 FactorGroupTom
3256
70.9-12 MaximalSubgroupsTom
3257
70.9-13 MinimalSupergroupsTom
3258
70.10 Accessing Subgroups via Tables of Marks
3259
70.10-1 GeneratorsSubgroupsTom
3260
70.10-2 StraightLineProgramsTom
3261
70.10-3 IsTableOfMarksWithGens
3262
70.10-4 RepresentativeTom
3263
70.11 The Interface between Tables of Marks and Character Tables
3264
70.11-1 FusionCharTableTom
3265
70.11-2 PermCharsTom
3266
70.12 Generic Construction of Tables of Marks
3267
70.12-1 TableOfMarksCyclic
3268
70.12-2 TableOfMarksDihedral
3269
70.12-3 TableOfMarksFrobenius
3270
70.13 The Library of Tables of Marks
3271
71 Character Tables
3272
71.1 Some Remarks about Character Theory in GAP
3273
71.2 History of Character Theory Stuff in GAP
3274
71.3 Creating Character Tables
3275
71.3-1 CharacterTable
3276
71.3-2 BrauerTable
3277
71.3-3 CharacterTableRegular
3278
71.3-4 SupportedCharacterTableInfo
3279
71.3-5 ConvertToCharacterTable
3280
71.4 Character Table Categories
3281
71.4-1 IsNearlyCharacterTable
3282
71.4-2 InfoCharacterTable
3283
71.4-3 NearlyCharacterTablesFamily
3284
71.5 Conventions for Character Tables
3285
71.6 The Interface between Character Tables and Groups
3286
71.6-1 UnderlyingGroup
3287
71.6-2 ConjugacyClasses
3288
71.6-3 IdentificationOfConjugacyClasses
3289
71.6-4 CharacterTableWithStoredGroup
3290
71.6-5 CompatibleConjugacyClasses
3291
71.7 Operators for Character Tables
3292
71.8 Attributes and Properties for Groups and Character Tables
3293
71.8-1 CharacterDegrees
3294
71.8-2 Irr
3295
71.8-3 LinearCharacters
3296
71.8-4 OrdinaryCharacterTable
3297
71.8-5 Group Operations Applicable to Character Tables
3298
71.9 Attributes and Properties only for Character Tables
3299
71.9-1 OrdersClassRepresentatives
3300
71.9-2 SizesCentralizers
3301
71.9-3 SizesConjugacyClasses
3302
71.9-4 AutomorphismsOfTable
3303
71.9-5 UnderlyingCharacteristic
3304
71.9-6 Class Names and Character Names
3305
71.9-7 Class Parameters and Character Parameters
3306
71.9-8 Identifier
3307
71.9-9 InfoText
3308
71.9-10 InverseClasses
3309
71.9-11 RealClasses
3310
71.9-12 ClassOrbit
3311
71.9-13 ClassRoots
3312
71.10 Normal Subgroups Represented by Lists of Class Positions
3313
71.10-1 ClassPositionsOfNormalSubgroups
3314
71.10-2 ClassPositionsOfAgemo
3315
71.10-3 ClassPositionsOfCentre
3316
71.10-4 ClassPositionsOfDirectProductDecompositions
3317
71.10-5 ClassPositionsOfDerivedSubgroup
3318
71.10-6 ClassPositionsOfElementaryAbelianSeries
3319
71.10-7 ClassPositionsOfFittingSubgroup
3320
71.10-8 ClassPositionsOfLowerCentralSeries
3321
71.10-9 ClassPositionsOfUpperCentralSeries
3322
71.10-10 ClassPositionsOfSupersolvableResiduum
3323
71.10-11 ClassPositionsOfPCore
3324
71.10-12 ClassPositionsOfNormalClosure
3325
71.11 Operations Concerning Blocks
3326
71.11-1 PrimeBlocks
3327
71.11-2 SameBlock
3328
71.11-3 BlocksInfo
3329
71.11-4 DecompositionMatrix
3330
71.11-5 LaTeXStringDecompositionMatrix
3331
71.12 Other Operations for Character Tables
3332
71.12-1 Index
3333
71.12-2 IsInternallyConsistent
3334
71.12-3 IsPSolvableCharacterTable
3335
71.12-4 IsClassFusionOfNormalSubgroup
3336
71.12-5 Indicator
3337
71.12-6 NrPolyhedralSubgroups
3338
71.12-7 ClassMultiplicationCoefficient
3339
71.12-8 ClassStructureCharTable
3340
71.12-9 MatClassMultCoeffsCharTable
3341
71.13 Printing Character Tables
3342
71.13-1 ViewObj
3343
71.13-2 PrintObj
3344
71.13-3 Display
3345
71.13-4 DisplayOptions
3346
71.13-5 PrintCharacterTable
3347
71.14 Computing the Irreducible Characters of a Group
3348
71.14-1 IrrDixonSchneider
3349
71.14-2 IrrConlon
3350
71.14-3 IrrBaumClausen
3351
71.14-4 IrreducibleRepresentations
3352
71.14-5 IrreducibleRepresentationsDixon
3353
71.15 Representations Given by Modules
3354
71.15-1 IrreducibleModules
3355
71.15-2 AbsolutelyIrreducibleModules
3356
71.15-3 RegularModule
3357
71.16 The Dixon-Schneider Algorithm
3358
71.17 Advanced Methods for Dixon-Schneider Calculations
3359
71.17-1 DixonRecord
3360
71.17-2 DixonInit
3361
71.17-3 DixontinI
3362
71.17-4 DixonSplit
3363
71.17-5 BestSplittingMatrix
3364
71.17-6 DxIncludeIrreducibles
3365
71.17-7 SplitCharacters
3366
71.17-8 IsDxLargeGroup
3367
71.18 Components of a Dixon Record
3368
71.19 An Example of Advanced Dixon-Schneider Calculations
3369
71.20 Constructing Character Tables from Others
3370
71.20-1 CharacterTableDirectProduct
3371
71.20-2 FactorsOfDirectProduct
3372
71.20-3 CharacterTableFactorGroup
3373
71.20-4 CharacterTableIsoclinic
3374
71.20-5 CharacterTableWreathSymmetric
3375
71.21 Sorted Character Tables
3376
71.21-1 CharacterTableWithSortedCharacters
3377
71.21-2 SortedCharacters
3378
71.21-3 CharacterTableWithSortedClasses
3379
71.21-4 SortedCharacterTable
3380
71.21-5 ClassPermutation
3381
71.22 Automorphisms and Equivalence of Character Tables
3382
71.22-1 MatrixAutomorphisms
3383
71.22-2 TableAutomorphisms
3384
71.22-3 TransformingPermutations
3385
71.22-4 TransformingPermutationsCharacterTables
3386
71.22-5 FamiliesOfRows
3387
71.23 Storing Normal Subgroup Information
3388
71.23-1 NormalSubgroupClassesInfo
3389
71.23-2 ClassPositionsOfNormalSubgroup
3390
71.23-3 NormalSubgroupClasses
3391
71.23-4 FactorGroupNormalSubgroupClasses
3392
72 Class Functions
3393
72.1 Why Class Functions?
3394
72.1-1 IsClassFunction
3395
72.2 Basic Operations for Class Functions
3396
72.2-1 UnderlyingCharacterTable
3397
72.2-2 ValuesOfClassFunction
3398
72.3 Comparison of Class Functions
3399
72.4 Arithmetic Operations for Class Functions
3400
72.4-1 Characteristic
3401
72.4-2 ComplexConjugate
3402
72.4-3 Order
3403
72.5 Printing Class Functions
3404
72.5-1 ViewObj
3405
72.5-2 PrintObj
3406
72.5-3 Display
3407
72.6 Creating Class Functions from Values Lists
3408
72.6-1 ClassFunction
3409
72.6-2 VirtualCharacter
3410
72.6-3 Character
3411
72.6-4 ClassFunctionSameType
3412
72.7 Creating Class Functions using Groups
3413
72.7-1 TrivialCharacter
3414
72.7-2 NaturalCharacter
3415
72.7-3 PermutationCharacter
3416
72.8 Operations for Class Functions
3417
72.8-1 IsCharacter
3418
72.8-2 IsVirtualCharacter
3419
72.8-3 IsIrreducibleCharacter
3420
72.8-4 DegreeOfCharacter
3421
72.8-5 ScalarProduct
3422
72.8-6 MatScalarProducts
3423
72.8-7 Norm
3424
72.8-8 ConstituentsOfCharacter
3425
72.8-9 KernelOfCharacter
3426
72.8-10 ClassPositionsOfKernel
3427
72.8-11 CentreOfCharacter
3428
72.8-12 ClassPositionsOfCentre
3429
72.8-13 InertiaSubgroup
3430
72.8-14 CycleStructureClass
3431
72.8-15 IsTransitive
3432
72.8-16 Transitivity
3433
72.8-17 CentralCharacter
3434
72.8-18 DeterminantOfCharacter
3435
72.8-19 EigenvaluesChar
3436
72.8-20 Tensored
3437
72.9 Restricted and Induced Class Functions
3438
72.9-1 RestrictedClassFunction
3439
72.9-2 RestrictedClassFunctions
3440
72.9-3 InducedClassFunction
3441
72.9-4 InducedClassFunctions
3442
72.9-5 InducedClassFunctionsByFusionMap
3443
72.9-6 InducedCyclic
3444
72.10 Reducing Virtual Characters
3445
72.10-1 ReducedClassFunctions
3446
72.10-2 ReducedCharacters
3447
72.10-3 IrreducibleDifferences
3448
72.10-4 LLL
3449
72.10-5 Extract
3450
72.10-6 OrthogonalEmbeddingsSpecialDimension
3451
72.10-7 Decreased
3452
72.10-8 DnLattice
3453
72.10-9 DnLatticeIterative
3454
72.11 Symmetrizations of Class Functions
3455
72.11-1 Symmetrizations
3456
72.11-2 SymmetricParts
3457
72.11-3 AntiSymmetricParts
3458
72.11-4 OrthogonalComponents
3459
72.11-5 SymplecticComponents
3460
72.12 Molien Series
3461
72.12-1 MolienSeries
3462
72.12-2 MolienSeriesInfo
3463
72.12-3 ValueMolienSeries
3464
72.12-4 MolienSeriesWithGivenDenominator
3465
72.13 Possible Permutation Characters
3466
72.13-1 PermCharInfo
3467
72.13-2 PermCharInfoRelative
3468
72.14 Computing Possible Permutation Characters
3469
72.14-1 PermChars
3470
72.14-2 TestPerm1, ..., TestPerm5
3471
72.14-3 PermBounds
3472
72.14-4 PermComb
3473
72.14-5 Inequalities
3474
72.15 Operations for Brauer Characters
3475
72.15-1 FrobeniusCharacterValue
3476
72.15-2 BrauerCharacterValue
3477
72.15-3 SizeOfFieldOfDefinition
3478
72.15-4 RealizableBrauerCharacters
3479
72.16 Domains Generated by Class Functions
3480
73 Maps Concerning Character Tables
3481
73.1 Power Maps
3482
73.1-1 PowerMap
3483
73.1-2 PossiblePowerMaps
3484
73.1-3 ElementOrdersPowerMap
3485
73.1-4 PowerMapByComposition
3486
73.2 Orbits on Sets of Possible Power Maps
3487
73.2-1 OrbitPowerMaps
3488
73.2-2 RepresentativesPowerMaps
3489
73.3 Class Fusions between Character Tables
3490
73.3-1 FusionConjugacyClasses
3491
73.3-2 ComputedClassFusions
3492
73.3-3 GetFusionMap
3493
73.3-4 StoreFusion
3494
73.3-5 NamesOfFusionSources
3495
73.3-6 PossibleClassFusions
3496
73.3-7 ConsiderStructureConstants
3497
73.4 Orbits on Sets of Possible Class Fusions
3498
73.4-1 OrbitFusions
3499
73.4-2 RepresentativesFusions
3500
73.5 Parametrized Maps
3501
73.5-1 CompositionMaps
3502
73.5-2 InverseMap
3503
73.5-3 ProjectionMap
3504
73.5-4 Indirected
3505
73.5-5 Parametrized
3506
73.5-6 ContainedMaps
3507
73.5-7 UpdateMap
3508
73.5-8 MeetMaps
3509
73.5-9 CommutativeDiagram
3510
73.5-10 CheckFixedPoints
3511
73.5-11 TransferDiagram
3512
73.5-12 TestConsistencyMaps
3513
73.5-13 Indeterminateness
3514
73.5-14 PrintAmbiguity
3515
73.5-15 ContainedSpecialVectors
3516
73.5-16 CollapsedMat
3517
73.5-17 ContainedDecomposables
3518
73.6 Subroutines for the Construction of Power Maps
3519
73.6-1 InitPowerMap
3520
73.6-2 Congruences
3521
73.6-3 ConsiderKernels
3522
73.6-4 ConsiderSmallerPowerMaps
3523
73.6-5 MinusCharacter
3524
73.6-6 PowerMapsAllowedBySymmetrizations
3525
73.7 Subroutines for the Construction of Class Fusions
3526
73.7-1 InitFusion
3527
73.7-2 CheckPermChar
3528
73.7-3 ConsiderTableAutomorphisms
3529
73.7-4 FusionsAllowedByRestrictions
3530
74 Unknowns
3531
74.1 More about Unknowns
3532
74.1-1 Unknown
3533
74.1-2 LargestUnknown
3534
74.1-3 IsUnknown
3535
74.1-4 Comparison of Unknowns
3536
74.1-5 Arithmetical Operations for Unknowns
3537
75 Monomiality Questions
3538
75.1 InfoMonomial (Info Class)
3539
75.1-1 InfoMonomial
3540
75.2 Character Degrees and Derived Length
3541
75.2-1 Alpha
3542
75.2-2 Delta
3543
75.2-3 IsBergerCondition
3544
75.3 Primitivity of Characters
3545
75.3-1 TestHomogeneous
3546
75.3-2 IsPrimitiveCharacter
3547
75.3-3 TestQuasiPrimitive
3548
75.3-4 TestInducedFromNormalSubgroup
3549
75.4 Testing Monomiality
3550
75.4-1 TestMonomial
3551
75.4-2 TestMonomialUseLattice
3552
75.4-3 IsMonomialNumber
3553
75.4-4 TestMonomialQuick
3554
75.4-5 TestSubnormallyMonomial
3555
75.4-6 TestRelativelySM
3556
75.5 Minimal Nonmonomial Groups
3557
75.5-1 IsMinimalNonmonomial
3558
75.5-2 MinimalNonmonomialGroup
3559
76 Using GAP Packages
3560
76.1 Installing a GAP Package
3561
76.2 Loading a GAP Package
3562
76.2-1 LoadPackage
3563
76.2-2 SetPackagePath
3564
76.2-3 ExtendRootDirectories
3565
76.2-4 DisplayPackageLoadingLog
3566
76.3 Functions for GAP Packages
3567
76.3-1 ReadPackage
3568
76.3-2 TestPackageAvailability
3569
76.3-3 TestPackage
3570
76.3-4 InstalledPackageVersion
3571
76.3-5 DirectoriesPackageLibrary
3572
76.3-6 DirectoriesPackagePrograms
3573
76.3-7 CompareVersionNumbers
3574
76.3-8 IsPackageMarkedForLoading
3575
76.3-9 DeclareAutoreadableVariables
3576
76.3-10 Kernel modules in GAP packages
3577
76.3-11 LoadDynamicModule
3578
76.3-12 The PackageInfo.g File
3579
76.3-13 ValidatePackageInfo
3580
76.3-14 ShowPackageVariables
3581
76.3-15 BibEntry
3582
76.3-16 Cite
3583
77 Replaced and Removed Command Names
3584
77.1 Group Actions – Name Changes
3585
77.2 Package Interface – Obsolete Functions and Name Changes
3586
77.3 Normal Forms of Integer Matrices – Name Changes
3587
77.4 Miscellaneous Name Changes or Removed Names
3588
77.4-1 InfoObsolete
3589
77.5 The former .gaprc file
3590
77.6 Semigroup properties
3591
77.6-1 IsSemilatticeAsSemigroup
3592
78 Method Selection
3593
78.1 Operations and Methods
3594
78.2 Method Installation
3595
78.2-1 InstallMethod
3596
78.2-2 InstallOtherMethod
3597
78.3 Applicable Methods and Method Selection
3598
78.4 Partial Methods
3599
78.4-1 TryNextMethod
3600
78.5 Redispatching
3601
78.5-1 RedispatchOnCondition
3602
78.6 Immediate Methods
3603
78.6-1 InstallImmediateMethod
3604
78.7 Logical Implications
3605
78.7-1 InstallTrueMethod
3606
78.8 Operations and Mathematical Terms
3607
79 Creating New Objects
3608
79.1 Creating Categories
3609
79.1-1 NewCategory
3610
79.1-2 CategoryFamily
3611
79.2 Creating Representations
3612
79.2-1 NewRepresentation
3613
79.3 Creating Attributes and Properties
3614
79.3-1 NewAttribute
3615
79.3-2 NewProperty
3616
79.4 Creating Other Filters
3617
79.4-1 NewFilter
3618
79.4-2 SetFilterObj
3619
79.4-3 ResetFilterObj
3620
79.5 Creating Operations
3621
79.5-1 NewOperation
3622
79.6 Creating Constructors
3623
79.6-1 NewConstructor
3624
79.7 Creating Families
3625
79.7-1 NewFamily
3626
79.8 Creating Types
3627
79.8-1 NewType
3628
79.9 Creating Objects
3629
79.9-1 Objectify
3630
79.9-2 ObjectifyWithAttributes
3631
79.10 Component Objects
3632
79.10-1 NamesOfComponents
3633
79.11 Positional Objects
3634
79.12 Implementing New List Objects
3635
79.13 Example – Constructing Enumerators
3636
79.14 Example – Constructing Iterators
3637
79.15 Arithmetic Issues in the Implementation of New Kinds of Lists
3638
79.16 External Representation
3639
79.16-1 ExtRepOfObj
3640
79.17 Mutability and Copying
3641
79.18 Global Variables in the Library
3642
79.18-1 DeclareCategory
3643
79.18-2 DeclareRepresentation
3644
79.18-3 DeclareAttribute
3645
79.18-4 DeclareProperty
3646
79.18-5 DeclareFilter
3647
79.18-6 DeclareOperation
3648
79.18-7 DeclareGlobalFunction
3649
79.18-8 DeclareGlobalVariable
3650
79.18-9 InstallValue
3651
79.18-10 DeclareSynonym
3652
79.18-11 FlushCaches
3653
79.19 Declaration and Implementation Part
3654
80 Examples of Extending the System
3655
80.1 Addition of a Method
3656
80.2 Extending the Range of Definition of an Existing Operation
3657
80.3 Enforcing Property Tests
3658
80.4 Adding a new Operation
3659
80.5 Adding a new Attribute
3660
80.6 Adding a new Representation
3661
80.7 Components versus Attributes
3662
80.8 Adding new Concepts
3663
80.8-1 Example: M-groups
3664
80.8-2 Example: Groups with a word length
3665
80.8-3 Example: Groups with a decomposition as semidirect product
3666
80.9 Creating Own Arithmetic Objects
3667
80.9-1 ArithmeticElementCreator
3668
80.9-2 Example: ArithmeticElementCreator
3669
81 An Example – Residue Class Rings
3670
81.1 A First Attempt to Implement Elements of Residue Class Rings
3671
81.2 Why Proceed in a Different Way?
3672
81.3 A Second Attempt to Implement Elements of Residue Class Rings
3673
81.4 Compatibility of Residue Class Rings with Prime Fields
3674
81.5 Further Improvements in Implementing Residue Class Rings
3675
82 An Example – Designing Arithmetic Operations
3676
82.1 New Arithmetic Operations vs. New Objects
3677
82.2 Designing new Multiplicative Objects
3678
83 Library Files
3679
83.1 File Types
3680
83.2 Finding Implementations in the Library
3681
83.3 Undocumented Variables
3682
84 Interface to the GAP Help System
3683
84.1 Installing and Removing a Help Book
3684
84.1-1 HELP_ADD_BOOK
3685
84.1-2 HELP_REMOVE_BOOK
3686
84.2 The manual.six File
3687
84.3 The Help Book Handler
3688
84.4 Introducing new Viewer for the Online Help
3689
84.4-1 HELP_VIEWER_INFO
3690
85 Function-Operation-Attribute Triples
3691
85.1 Key Dependent Operations
3692
85.1-1 KeyDependentOperation
3693
85.2 In Parent Attributes
3694
85.2-1 InParentFOA
3695
85.3 Operation Functions
3696
85.3-1 OrbitsishOperation
3697
85.3-2 OrbitishFO
3698
85.3-3 Example: Orbit and OrbitOp
3699
86 Weak Pointers
3700
86.1 Weak Pointer Objects
3701
86.1-1 WeakPointerObj
3702
86.2 Low Level Access Functions for Weak Pointer Objects
3703
86.2-1 SetElmWPObj
3704
86.3 Accessing Weak Pointer Objects as Lists
3705
86.4 Copying Weak Pointer Objects
3706
86.5 The GASMAN Interface for Weak Pointer Objects
3707
87 More about Stabilizer Chains
3708
87.1 Generalized Conjugation Technique
3709
87.2 The General Backtrack Algorithm with Ordered Partitions
3710
87.2-1 Internal representation of ordered partitions
3711
87.2-2 Functions for setting up an R-base
3712
87.2-3 Refinement functions for the backtrack search
3713
87.2-4 Functions for meeting ordered partitions
3714
87.2-5 Avoiding multiplication of permutations
3715
87.3 Stabilizer Chains for Automorphisms Acting on Enumerators
3716
87.3-1 An operation domain for automorphisms
3717
87.3-2 Enumerators for cosets of characteristic factors
3718
87.3-3 Making automorphisms act on such enumerators
3719
3720
3721

3722
3723