Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1XGAP - Reference Manual[101X345Release 4.8.10, 15-Jan-2018678The GAP Group9101112The GAP Group13Email: [7Xmailto:[email protected][107X14Homepage: [7Xhttps://www.gap-system.org[107X1516-------------------------------------------------------17[1XCopyright[101X18[33X[0;0YCopyright © (1987-2018) for the core part of the [5XGAP[105X system by the [5XGAP[105X19Group.[133X2021[33X[0;0YMost parts of this distribution, including the core part of the [5XGAP[105X system22are distributed under the terms of the GNU General Public License, see23[7Xhttp://www.gnu.org/licenses/gpl.html[107X or the file [11XGPL[111X in the [11Xetc[111X directory of24the [5XGAP[105X installation.[133X2526[33X[0;0YMore detailed information about copyright and licenses of parts of this27distribution can be found in Section [14X1.4[114X of this manual.[133X2829[33X[0;0Y[5XGAP[105X is developed over a long time and has many authors and contributors.30More detailed information can be found in Section [14X1.2[114X of this manual.[133X313233-------------------------------------------------------343536[1XContents (ref)[101X37381 [33X[0;0YPreface[133X391.1 [33X[0;0YThe [5XGAP[105X System[133X401.2 [33X[0;0YAuthors and Maintainers[133X411.3 [33X[0;0YAcknowledgements[133X421.4 [33X[0;0YCopyright and License[133X431.5 [33X[0;0YFurther Information about [5XGAP[105X[133X442 [33X[0;0YThe Help System[133X452.1 [33X[0;0YInvoking the Help[133X462.2 [33X[0;0YBrowsing through the Sections[133X472.3 [33X[0;0YChanging the Help Viewer[133X482.3-1 SetHelpViewer492.4 [33X[0;0YThe Pager Command[133X502.4-1 Pager513 [33X[0;0YRunning GAP[133X523.1 [33X[0;0YCommand Line Options[133X533.2 [33X[0;0YThe gap.ini and gaprc files[133X543.2-1 [33X[0;0YThe gap.ini file[133X553.2-2 [33X[0;0YThe gaprc file[133X563.2-3 [33X[0;0YConfiguring User preferences[133X573.2-4 DeclareUserPreference583.3 [33X[0;0YSaving and Loading a Workspace[133X593.3-1 SaveWorkspace603.4 [33X[0;0YTesting for the System Architecture[133X613.4-1 ARCH_IS_UNIX623.4-2 ARCH_IS_MAC_OS_X633.4-3 ARCH_IS_WINDOWS643.5 [33X[0;0YGlobal Values that Control the [5XGAP[105X Session[133X653.5-1 GAPInfo663.6 [33X[0;0YColoring the Prompt and Input[133X673.6-1 ColorPrompt684 [33X[0;0YThe Programming Language[133X694.1 [33X[0;0YLanguage Overview[133X704.2 [33X[0;0YLexical Structure[133X714.3 [33X[0;0YSymbols[133X724.4 [33X[0;0YWhitespaces[133X734.5 [33X[0;0YKeywords[133X744.6 [33X[0;0YIdentifiers[133X754.6-1 IsValidIdentifier764.7 [33X[0;0YExpressions[133X774.8 [33X[0;0YVariables[133X784.8-1 IsBound794.8-2 Unbind804.9 [33X[0;0YMore About Global Variables[133X814.9-1 IsReadOnlyGlobal824.9-2 MakeReadOnlyGlobal834.9-3 MakeReadWriteGlobal844.9-4 ValueGlobal854.9-5 IsBoundGlobal864.9-6 UnbindGlobal874.9-7 BindGlobal884.9-8 NamesGVars894.9-9 NamesSystemGVars904.9-10 NamesUserGVars914.9-11 TemporaryGlobalVarName924.10 [33X[0;0YNamespaces for [5XGAP[105X packages[133X934.11 [33X[0;0YFunction Calls[133X944.11-1 [33X[0;0YFunction Call With Arguments[133X954.11-2 [33X[0;0YFunction Call With Options[133X964.12 [33X[0;0YComparisons[133X974.13 [33X[0;0YArithmetic Operators[133X984.14 [33X[0;0YStatements[133X994.15 [33X[0;0YAssignments[133X1004.16 [33X[0;0YProcedure Calls[133X1014.17 [33X[0;0YIf[133X1024.18 [33X[0;0YWhile[133X1034.19 [33X[0;0YRepeat[133X1044.20 [33X[0;0YFor[133X1054.21 [33X[0;0YBreak[133X1064.22 [33X[0;0YContinue[133X1074.23 [33X[0;0YFunction[133X1084.24 [33X[0;0YReturn (With or without Value)[133X1095 [33X[0;0YFunctions[133X1105.1 [33X[0;0YInformation about a function[133X1115.1-1 NameFunction1125.1-2 NumberArgumentsFunction1135.1-3 NamesLocalVariablesFunction1145.1-4 FilenameFunc1155.1-5 StartlineFunc1165.1-6 PageSource1175.2 [33X[0;0YCalling a function with a list argument that is interpreted as several118arguments[133X1195.2-1 CallFuncList1205.3 [33X[0;0YCalling a function with a time limit[133X1215.3-1 CallWithTimeout1225.3-2 GAPInfo.TimeoutsSupported1235.4 [33X[0;0YFunctions that do nothing[133X1245.4-1 ReturnTrue1255.4-2 ReturnFalse1265.4-3 ReturnFail1275.4-4 ReturnNothing1285.4-5 ReturnFirst1295.4-6 IdFunc1305.5 [33X[0;0YFunction Types[133X1315.5-1 IsFunction1325.5-2 IsOperation1335.5-3 FunctionsFamily1345.6 [33X[0;0YNaming Conventions[133X1356 [33X[0;0YMain Loop and Break Loop[133X1366.1 [33X[0;0YMain Loop[133X1376.2 [33X[0;0YSpecial Rules for Input Lines[133X1386.3 [33X[0;0YView and Print[133X1396.3-1 [33X[0;0YDefault delegations in the library[133X1406.3-2 [33X[0;0YRecommendations for the implementation[133X1416.3-3 View1426.3-4 Print1436.3-5 ViewObj1446.3-6 Display1456.3-7 SetNameObject1466.4 [33X[0;0YBreak Loops[133X1476.4-1 [33X[0;0Yquit from a break loop[133X1486.4-2 [33X[0;0Yreturn from a break loop[133X1496.4-3 OnBreak1506.4-4 OnBreakMessage1516.4-5 Where1526.5 [33X[0;0YVariable Access in a Break Loop[133X1536.5-1 [33X[0;0YDownEnv and UpEnv[133X1546.6 [33X[0;0YError and ErrorCount[133X1556.6-1 Error1566.6-2 ErrorNoReturn1576.6-3 ErrorCount1586.7 [33X[0;0YLeaving GAP[133X1596.7-1 QUIT1606.7-2 GAP_EXIT_CODE1616.7-3 QUIT_GAP1626.7-4 FORCE_QUIT_GAP1636.7-5 InstallAtExit1646.7-6 SaveOnExitFile1656.8 [33X[0;0YLine Editing[133X1666.9 [33X[0;0YEditing using the [10Xreadline[110X library[133X1676.9-1 [33X[0;0YReadline customization[133X1686.9-2 [33X[0;0YThe command line history[133X1696.9-3 SaveCommandLineHistory1706.9-4 [33X[0;0YWriting your own command line editing functions[133X1716.10 [33X[0;0YEditing Files[133X1726.10-1 Edit1736.11 [33X[0;0YEditor Support[133X1746.12 [33X[0;0YChanging the Screen Size[133X1756.12-1 SizeScreen1766.13 [33X[0;0YTeaching Mode[133X1776.13-1 TeachingMode1787 [33X[0;0YDebugging and Profiling Facilities[133X1797.1 [33X[0;0YRecovery from NoMethodFound-Errors[133X1807.1-1 ShowArguments1817.1-2 ShowArgument1827.1-3 ShowDetails1837.1-4 ShowMethods1847.1-5 ShowOtherMethods1857.2 [33X[0;0YInspecting Applicable Methods[133X1867.2-1 ApplicableMethod1877.3 [33X[0;0YTracing Methods[133X1887.3-1 TraceMethods1897.3-2 TraceAllMethods1907.3-3 UntraceMethods1917.3-4 UntraceAllMethods1927.3-5 TraceImmediateMethods1937.4 [33X[0;0YInfo Functions[133X1947.4-1 NewInfoClass1957.4-2 DeclareInfoClass1967.4-3 SetInfoLevel1977.4-4 InfoLevel1987.4-5 Info1997.4-6 [33X[0;0YCustomizing [2XInfo[102X ([14X7.4-5[114X) statements[133X2007.4-7 InfoWarning2017.5 [33X[0;0YAssertions[133X2027.5-1 SetAssertionLevel2037.5-2 AssertionLevel2047.5-3 Assert2057.6 [33X[0;0YTiming[133X2067.6-1 Runtimes2077.6-2 Runtime2087.6-3 time2097.7 [33X[0;0YProfiling[133X2107.7-1 [33X[0;0YFunction Profiling[133X2117.7-2 ProfileGlobalFunctions2127.7-3 ProfileOperations2137.7-4 ProfileOperationsAndMethods2147.7-5 ProfileFunctions2157.7-6 UnprofileFunctions2167.7-7 ProfileMethods2177.7-8 UnprofileMethods2187.7-9 DisplayProfile2197.7-10 ClearProfile2207.7-11 [33X[0;0YAn Example of Function Profiling[133X2217.7-12 [33X[0;0YLine By Line Profiling[133X2227.7-13 [33X[0;0YLine by Line profiling example[133X2237.7-14 ProfileLineByLine2247.7-15 CoverageLineByLine2257.7-16 UnprofileLineByLine2267.7-17 UncoverageLineByLine2277.7-18 ActivateProfileColour2287.7-19 IsLineByLineProfileActive2297.7-20 DisplayCacheStats2307.7-21 ClearCacheStats2317.8 [33X[0;0YInformation about the version used[133X2327.9 [33X[0;0YTest Files[133X2337.9-1 [33X[0;0YStarting and stopping test[133X2347.9-2 Test2357.9-3 TestDirectory2367.10 [33X[0;0YDebugging Recursion[133X2377.10-1 SetRecursionTrapInterval2387.11 [33X[0;0YGlobal Memory Information[133X2397.11-1 GasmanStatistics2407.11-2 GasmanMessageStatus2417.11-3 GasmanLimits2428 [33X[0;0YOptions Stack[133X2438.1 [33X[0;0YFunctions Dealing with the Options Stack[133X2448.1-1 PushOptions2458.1-2 PopOptions2468.1-3 ResetOptionsStack2478.1-4 OnQuit2488.1-5 ValueOption2498.1-6 DisplayOptionsStack2508.1-7 InfoOptions2518.2 [33X[0;0YOptions Stack – an Example[133X2529 [33X[0;0YFiles and Filenames[133X2539.1 [33X[0;0YPortability[133X2549.1-1 LastSystemError2559.2 [33X[0;0YGAP Root Directories[133X2569.3 [33X[0;0YDirectories[133X2579.3-1 IsDirectory2589.3-2 Directory2599.3-3 DirectoryTemporary2609.3-4 DirectoryCurrent2619.3-5 DirectoriesLibrary2629.3-6 DirectoriesSystemPrograms2639.3-7 DirectoryContents2649.3-8 DirectoryDesktop2659.3-9 DirectoryHome2669.4 [33X[0;0YFile Names[133X2679.4-1 [33X[0;0YFilename[133X2689.5 [33X[0;0YSpecial Filenames[133X2699.6 [33X[0;0YFile Access[133X2709.6-1 IsExistingFile2719.6-2 IsReadableFile2729.6-3 IsWritableFile2739.6-4 IsExecutableFile2749.6-5 IsDirectoryPath2759.7 [33X[0;0YFile Operations[133X2769.7-1 Read2779.7-2 ReadAsFunction2789.7-3 [33X[0;0YPrintTo and AppendTo[133X2799.7-4 [33X[0;0YLogTo[133X2809.7-5 [33X[0;0YInputLogTo[133X2819.7-6 [33X[0;0YOutputLogTo[133X2829.7-7 CrcFile2839.7-8 RemoveFile2849.7-9 Reread28510 [33X[0;0YStreams[133X28610.1 [33X[0;0YCategories for Streams and the StreamsFamily[133X28710.1-1 IsStream28810.1-2 IsClosedStream28910.1-3 IsInputStream29010.1-4 IsInputTextStream29110.1-5 IsInputTextNone29210.1-6 IsOutputStream29310.1-7 IsOutputTextStream29410.1-8 IsOutputTextNone29510.1-9 StreamsFamily29610.2 [33X[0;0YOperations applicable to All Streams[133X29710.2-1 CloseStream29810.2-2 FileDescriptorOfStream29910.2-3 UNIXSelect30010.3 [33X[0;0YOperations for Input Streams[133X30110.3-1 Read30210.3-2 ReadAsFunction30310.3-3 ReadByte30410.3-4 ReadLine30510.3-5 ReadAll30610.3-6 IsEndOfStream30710.3-7 PositionStream30810.3-8 RewindStream30910.3-9 SeekPositionStream31010.4 [33X[0;0YOperations for Output Streams[133X31110.4-1 WriteByte31210.4-2 WriteLine31310.4-3 WriteAll31410.4-4 [33X[0;0YPrintTo and AppendTo (for streams)[133X31510.4-5 LogTo31610.4-6 InputLogTo31710.4-7 OutputLogTo31810.4-8 SetPrintFormattingStatus31910.5 [33X[0;0YFile Streams[133X32010.5-1 InputTextFile32110.5-2 OutputTextFile32210.6 [33X[0;0YUser Streams[133X32310.6-1 InputTextUser32410.6-2 OutputTextUser32510.6-3 InputFromUser32610.7 [33X[0;0YString Streams[133X32710.7-1 InputTextString32810.7-2 OutputTextString32910.8 [33X[0;0YInput-Output Streams[133X33010.8-1 IsInputOutputStream33110.8-2 InputOutputLocalProcess33210.8-3 ReadAllLine33310.9 [33X[0;0YDummy Streams[133X33410.9-1 InputTextNone33510.9-2 OutputTextNone33610.10 [33X[0;0YHandling of Streams in the Background[133X33710.10-1 InstallCharReadHookFunc33810.10-2 UnInstallCharReadHookFunc33910.11 [33X[0;0YComma separated files[133X34010.11-1 ReadCSV34110.11-2 PrintCSV34211 [33X[0;0YProcesses[133X34311.1 [33X[0;0YProcess and Exec[133X34411.1-1 Process34511.1-2 Exec34612 [33X[0;0YObjects and Elements[133X34712.1 [33X[0;0YObjects[133X34812.1-1 IsObject34912.2 [33X[0;0YElements as equivalence classes[133X35012.3 [33X[0;0YSets[133X35112.4 [33X[0;0YDomains[133X35212.5 [33X[0;0YIdentical Objects[133X35312.5-1 IsIdenticalObj35412.5-2 IsNotIdenticalObj35512.6 [33X[0;0YMutability and Copyability[133X35612.6-1 IsCopyable35712.6-2 IsMutable35812.6-3 Immutable35912.6-4 MakeImmutable36012.6-5 [33X[0;0YMutability of Iterators[133X36112.6-6 [33X[0;0YMutability of Results of Arithmetic Operations[133X36212.7 [33X[0;0YDuplication of Objects[133X36312.7-1 ShallowCopy36412.7-2 StructuralCopy36512.8 [33X[0;0YOther Operations Applicable to any Object[133X36612.8-1 SetName36712.8-2 Name36812.8-3 InfoText36912.8-4 IsInternallyConsistent37012.8-5 MemoryUsage37113 [33X[0;0YTypes of Objects[133X37213.1 [33X[0;0YFamilies[133X37313.1-1 FamilyObj37413.2 [33X[0;0YFilters[133X37513.2-1 RankFilter37613.2-2 NamesFilter37713.2-3 ShowImpliedFilters37813.3 [33X[0;0YCategories[133X37913.3-1 CategoriesOfObject38013.4 [33X[0;0YRepresentation[133X38113.4-1 RepresentationsOfObject38213.5 [33X[0;0YAttributes[133X38313.5-1 KnownAttributesOfObject38413.6 [33X[0;0YSetter and Tester for Attributes[133X38513.6-1 Tester38613.6-2 Setter38713.6-3 AttributeValueNotSet38813.6-4 InfoAttributes38913.6-5 DisableAttributeValueStoring39013.6-6 EnableAttributeValueStoring39113.7 [33X[0;0YProperties[133X39213.7-1 KnownPropertiesOfObject39313.7-2 KnownTruePropertiesOfObject39413.8 [33X[0;0YOther Filters[133X39513.9 [33X[0;0YTypes[133X39613.9-1 TypeObj39713.9-2 DataType39814 [33X[0;0YIntegers[133X39914.1 [33X[0;0YIntegers: Global Variables[133X40014.1-1 Integers40114.1-2 IsIntegers40214.2 [33X[0;0YElementary Operations for Integers[133X40314.2-1 IsInt40414.2-2 IsPosInt40514.2-3 Int40614.2-4 IsEvenInt40714.2-5 IsOddInt40814.2-6 AbsInt40914.2-7 SignInt41014.2-8 LogInt41114.2-9 RootInt41214.2-10 SmallestRootInt41314.2-11 ListOfDigits41414.2-12 Random41514.3 [33X[0;0YQuotients and Remainders[133X41614.3-1 QuoInt41714.3-2 BestQuoInt41814.3-3 RemInt41914.3-4 GcdInt42014.3-5 Gcdex42114.3-6 LcmInt42214.3-7 CoefficientsQadic42314.3-8 CoefficientsMultiadic42414.3-9 ChineseRem42514.3-10 PowerModInt42614.4 [33X[0;0YPrime Integers and Factorization[133X42714.4-1 Primes42814.4-2 IsPrimeInt42914.4-3 PrimalityProof43014.4-4 IsPrimePowerInt43114.4-5 NextPrimeInt43214.4-6 PrevPrimeInt43314.4-7 FactorsInt43414.4-8 PrimeDivisors43514.4-9 PartialFactorization43614.4-10 PrintFactorsInt43714.4-11 PrimePowersInt43814.4-12 DivisorsInt43914.5 [33X[0;0YResidue Class Rings[133X44014.5-1 \mod44114.5-2 ZmodnZ44214.5-3 ZmodnZObj44314.5-4 IsZmodnZObj44414.6 [33X[0;0YCheck Digits[133X44514.6-1 CheckDigitISBN44614.6-2 CheckDigitTestFunction44714.7 [33X[0;0YRandom Sources[133X44814.7-1 IsRandomSource44914.7-2 Random45014.7-3 State45114.7-4 IsMersenneTwister45214.7-5 RandomSource45315 [33X[0;0YNumber Theory[133X45415.1 [33X[0;0YInfoNumtheor (Info Class)[133X45515.1-1 InfoNumtheor45615.2 [33X[0;0YPrime Residues[133X45715.2-1 PrimeResidues45815.2-2 Phi45915.2-3 Lambda46015.2-4 GeneratorsPrimeResidues46115.3 [33X[0;0YPrimitive Roots and Discrete Logarithms[133X46215.3-1 OrderMod46315.3-2 LogMod46415.3-3 PrimitiveRootMod46515.3-4 IsPrimitiveRootMod46615.4 [33X[0;0YRoots Modulo Integers[133X46715.4-1 Jacobi46815.4-2 Legendre46915.4-3 RootMod47015.4-4 RootsMod47115.4-5 RootsUnityMod47215.5 [33X[0;0YMultiplicative Arithmetic Functions[133X47315.5-1 Sigma47415.5-2 Tau47515.5-3 MoebiusMu47615.6 [33X[0;0YContinued Fractions[133X47715.6-1 ContinuedFractionExpansionOfRoot47815.6-2 ContinuedFractionApproximationOfRoot47915.7 [33X[0;0YMiscellaneous[133X48015.7-1 TwoSquares48116 [33X[0;0YCombinatorics[133X48216.1 [33X[0;0YCombinatorial Numbers[133X48316.1-1 Factorial48416.1-2 Binomial48516.1-3 Bell48616.1-4 Bernoulli48716.1-5 Stirling148816.1-6 Stirling248916.2 [33X[0;0YCombinations, Arrangements and Tuples[133X49016.2-1 Combinations49116.2-2 [33X[0;0YIterator and enumerator of combinations[133X49216.2-3 NrCombinations49316.2-4 Arrangements49416.2-5 NrArrangements49516.2-6 UnorderedTuples49616.2-7 NrUnorderedTuples49716.2-8 Tuples49816.2-9 EnumeratorOfTuples49916.2-10 IteratorOfTuples50016.2-11 NrTuples50116.2-12 PermutationsList50216.2-13 NrPermutationsList50316.2-14 Derangements50416.2-15 NrDerangements50516.2-16 PartitionsSet50616.2-17 NrPartitionsSet50716.2-18 Partitions50816.2-19 IteratorOfPartitions50916.2-20 NrPartitions51016.2-21 OrderedPartitions51116.2-22 NrOrderedPartitions51216.2-23 PartitionsGreatestLE51316.2-24 PartitionsGreatestEQ51416.2-25 RestrictedPartitions51516.2-26 NrRestrictedPartitions51616.2-27 SignPartition51716.2-28 AssociatedPartition51816.2-29 PowerPartition51916.2-30 PartitionTuples52016.2-31 NrPartitionTuples52116.3 [33X[0;0YFibonacci and Lucas Sequences[133X52216.3-1 Fibonacci52316.3-2 Lucas52416.4 [33X[0;0YPermanent of a Matrix[133X52516.4-1 Permanent52617 [33X[0;0YRational Numbers[133X52717.1 [33X[0;0YRationals: Global Variables[133X52817.1-1 Rationals52917.2 [33X[0;0YElementary Operations for Rationals[133X53017.2-1 IsRat53117.2-2 IsPosRat53217.2-3 IsNegRat53317.2-4 NumeratorRat53417.2-5 DenominatorRat53517.2-6 Rat53617.2-7 Random53718 [33X[0;0YCyclotomic Numbers[133X53818.1 [33X[0;0YOperations for Cyclotomics[133X53918.1-1 E54018.1-2 Cyclotomics54118.1-3 IsCyclotomic54218.1-4 IsIntegralCyclotomic54318.1-5 Int54418.1-6 String54518.1-7 Conductor54618.1-8 AbsoluteValue54718.1-9 RoundCyc54818.1-10 CoeffsCyc54918.1-11 DenominatorCyc55018.1-12 ExtRepOfObj55118.1-13 DescriptionOfRootOfUnity55218.1-14 IsGaussInt55318.1-15 IsGaussRat55418.1-16 DefaultField55518.2 [33X[0;0YInfinity and negative Infinity[133X55618.2-1 IsInfinity55718.3 [33X[0;0YComparisons of Cyclotomics[133X55818.4 [33X[0;0YATLAS Irrationalities[133X55918.4-1 [33X[0;0YEB, EC, [22X...[122X, EH[133X56018.4-2 [33X[0;0YEI and ER[133X56118.4-3 [33X[0;0YEY, EX, [22X...[122X, ES[133X56218.4-4 [33X[0;0YEM, EL, [22X...[122X, EJ[133X56318.4-5 NK56418.4-6 AtlasIrrationality56518.5 [33X[0;0YGalois Conjugacy of Cyclotomics[133X56618.5-1 GaloisCyc56718.5-2 ComplexConjugate56818.5-3 StarCyc56918.5-4 Quadratic57018.5-5 GaloisMat57118.5-6 RationalizedMat57218.6 [33X[0;0YInternally Represented Cyclotomics[133X57318.6-1 SetCyclotomicsLimit57419 [33X[0;0YFloats[133X57519.1 [33X[0;0YA sample run[133X57619.2 [33X[0;0YMethods[133X57719.2-1 [33X[0;0YMathematical operations[133X57819.2-2 EqFloat57919.2-3 PrecisionFloat58019.2-4 [33X[0;0YInterval operations[133X58119.2-5 IsPInfinity58219.2-6 FLOAT58319.2-7 Float58419.2-8 Rat58519.2-9 SetFloats58619.3 [33X[0;0YHigh-precision-specific methods[133X58719.4 [33X[0;0YComplex arithmetic[133X58819.5 [33X[0;0YInterval-specific methods[133X58920 [33X[0;0YBooleans[133X59020.1 [33X[0;0YIsBool (Filter)[133X59120.1-1 IsBool59220.2 [33X[0;0YFail (Variable)[133X59320.2-1 fail59420.3 [33X[0;0YComparisons of Booleans[133X59520.3-1 [33X[0;0YEquality and inequality of Booleans[133X59620.3-2 [33X[0;0YOrdering of Booleans[133X59720.4 [33X[0;0YOperations for Booleans[133X59820.4-1 [33X[0;0YLogical disjunction[133X59920.4-2 [33X[0;0YLogical conjunction[133X60020.4-3 [33X[0;0YLogical negation[133X60121 [33X[0;0YLists[133X60221.1 [33X[0;0YList Categories[133X60321.1-1 IsList60421.1-2 IsDenseList60521.1-3 IsHomogeneousList60621.1-4 IsTable60721.1-5 IsRectangularTable60821.1-6 IsConstantTimeAccessList60921.2 [33X[0;0YBasic Operations for Lists[133X61021.2-1 \[\]61121.3 [33X[0;0YList Elements[133X61221.3-1 \{\}61321.4 [33X[0;0YList Assignment[133X61421.4-1 \{\}\:\=61521.4-2 Add61621.4-3 Remove61721.4-4 CopyListEntries61821.4-5 Append61921.5 [33X[0;0YIsBound and Unbind for Lists[133X62021.5-1 IsBound62121.5-2 Unbind62221.6 [33X[0;0YIdentical Lists[133X62321.7 [33X[0;0YDuplication of Lists[133X62421.8 [33X[0;0YMembership Test for Lists[133X62521.8-1 \in62621.9 [33X[0;0YEnlarging Internally Represented Lists[133X62721.9-1 EmptyPlist62821.10 [33X[0;0YComparisons of Lists[133X62921.11 [33X[0;0YArithmetic for Lists[133X63021.12 [33X[0;0YFilters Controlling the Arithmetic Behaviour of Lists[133X63121.12-1 IsGeneralizedRowVector63221.12-2 IsMultiplicativeGeneralizedRowVector63321.12-3 IsListDefault63421.12-4 NestingDepthA63521.12-5 NestingDepthM63621.13 [33X[0;0YAdditive Arithmetic for Lists[133X63721.13-1 [33X[0;0YZero for lists[133X63821.13-2 [33X[0;0YAdditiveInverse for lists[133X63921.13-3 [33X[0;0YAddition of lists[133X64021.13-4 [33X[0;0YSubtraction of lists[133X64121.14 [33X[0;0YMultiplicative Arithmetic for Lists[133X64221.14-1 [33X[0;0YOne for lists[133X64321.14-2 [33X[0;0YInverse for lists[133X64421.14-3 [33X[0;0YMultiplication of lists[133X64521.14-4 [33X[0;0YDivision of lists[133X64621.14-5 [33X[0;0Ymod for lists[133X64721.14-6 [33X[0;0YLeft quotients of lists[133X64821.15 [33X[0;0YMutability Status and List Arithmetic[133X64921.15-1 ListWithIdenticalEntries65021.16 [33X[0;0YFinding Positions in Lists[133X65121.16-1 Position65221.16-2 Positions65321.16-3 PositionCanonical65421.16-4 PositionNthOccurrence65521.16-5 PositionSorted65621.16-6 PositionSet65721.16-7 PositionProperty65821.16-8 PositionsProperty65921.16-9 PositionBound66021.16-10 PositionNot66121.16-11 PositionNonZero66221.16-12 PositionSublist66321.17 [33X[0;0YProperties and Attributes for Lists[133X66421.17-1 IsMatchingSublist66521.17-2 IsDuplicateFree66621.17-3 IsSortedList66721.17-4 IsSSortedList66821.17-5 Length66921.17-6 ConstantTimeAccessList67021.18 [33X[0;0YSorting Lists[133X67121.18-1 Sort67221.18-2 SortParallel67321.18-3 Sortex67421.18-4 SortingPerm67521.19 [33X[0;0YSorted Lists and Sets[133X67621.19-1 \in67721.19-2 IsEqualSet67821.19-3 IsSubsetSet67921.19-4 AddSet68021.19-5 RemoveSet68121.19-6 UniteSet68221.19-7 IntersectSet68321.19-8 SubtractSet68421.20 [33X[0;0YOperations for Lists[133X68521.20-1 Concatenation68621.20-2 Compacted68721.20-3 Collected68821.20-4 DuplicateFreeList68921.20-5 AsDuplicateFreeList69021.20-6 Flat69121.20-7 Reversed69221.20-8 Shuffle69321.20-9 IsLexicographicallyLess69421.20-10 Apply69521.20-11 Perform69621.20-12 PermListList69721.20-13 [33X[0;0YMaximum[133X69821.20-14 [33X[0;0YMinimum[133X69921.20-15 [33X[0;0YMaximumList and MinimumList[133X70021.20-16 [33X[0;0YCartesian[133X70121.20-17 [33X[0;0YIteratorOfCartesianProduct[133X70221.20-18 Permuted70321.20-19 List70421.20-20 Filtered70521.20-21 Number70621.20-22 First70721.20-23 ForAll70821.20-24 ForAny70921.20-25 Product71021.20-26 Sum71121.20-27 Iterated71221.20-28 ListN71321.21 [33X[0;0YAdvanced List Manipulations[133X71421.21-1 ListX71521.21-2 SetX71621.21-3 SumX71721.21-4 ProductX71821.22 [33X[0;0YRanges[133X71921.22-1 IsRange72021.22-2 ConvertToRangeRep72121.23 [33X[0;0YEnumerators[133X72221.23-1 IsQuickPositionList72322 [33X[0;0YBoolean Lists[133X72422.1 [33X[0;0YIsBlist (Filter)[133X72522.1-1 IsBlist72622.2 [33X[0;0YBoolean Lists Representing Subsets[133X72722.2-1 BlistList72822.2-2 ListBlist72922.2-3 SizeBlist73022.2-4 IsSubsetBlist73122.3 [33X[0;0YSet Operations via Boolean Lists[133X73222.3-1 [33X[0;0YUnionBlist[133X73322.3-2 [33X[0;0YIntersectionBlist[133X73422.3-3 DifferenceBlist73522.4 [33X[0;0YFunction that Modify Boolean Lists[133X73622.4-1 UniteBlist73722.4-2 UniteBlistList73822.4-3 IntersectBlist73922.4-4 SubtractBlist74022.5 [33X[0;0YMore about Boolean Lists[133X74122.5-1 IsBlistRep74223 [33X[0;0YRow Vectors[133X74323.1 [33X[0;0YIsRowVector (Filter)[133X74423.1-1 IsRowVector74523.2 [33X[0;0YOperators for Row Vectors[133X74623.2-1 NormedRowVector74723.3 [33X[0;0YRow Vectors over Finite Fields[133X74823.3-1 [33X[0;0YConvertToVectorRep[133X74923.3-2 NumberFFVector75023.4 [33X[0;0YCoefficient List Arithmetic[133X75123.4-1 AddRowVector75223.4-2 AddCoeffs75323.4-3 MultRowVector75423.4-4 CoeffsMod75523.5 [33X[0;0YShifting and Trimming Coefficient Lists[133X75623.5-1 LeftShiftRowVector75723.5-2 RightShiftRowVector75823.5-3 ShrinkRowVector75923.5-4 RemoveOuterCoeffs76023.6 [33X[0;0YFunctions for Coding Theory[133X76123.6-1 WeightVecFFE76223.6-2 DistanceVecFFE76323.6-3 DistancesDistributionVecFFEsVecFFE76423.6-4 DistancesDistributionMatFFEVecFFE76523.6-5 AClosestVectorCombinationsMatFFEVecFFE76623.6-6 CosetLeadersMatFFE76723.7 [33X[0;0YVectors as coefficients of polynomials[133X76823.7-1 ValuePol76923.7-2 ProductCoeffs77023.7-3 ReduceCoeffs77123.7-4 ReduceCoeffsMod77223.7-5 PowerModCoeffs77323.7-6 ShiftedCoeffs77424 [33X[0;0YMatrices[133X77524.1 [33X[0;0YInfoMatrix (Info Class)[133X77624.1-1 InfoMatrix77724.2 [33X[0;0YCategories of Matrices[133X77824.2-1 IsMatrix77924.2-2 IsOrdinaryMatrix78024.2-3 IsLieMatrix78124.3 [33X[0;0YOperators for Matrices[133X78224.4 [33X[0;0YProperties and Attributes of Matrices[133X78324.4-1 DimensionsMat78424.4-2 DefaultFieldOfMatrix78524.4-3 TraceMat78624.4-4 DeterminantMat78724.4-5 DeterminantMatDestructive78824.4-6 DeterminantMatDivFree78924.4-7 IsMonomialMatrix79024.4-8 IsDiagonalMat79124.4-9 IsUpperTriangularMat79224.4-10 IsLowerTriangularMat79324.5 [33X[0;0YMatrix Constructions[133X79424.5-1 IdentityMat79524.5-2 NullMat79624.5-3 EmptyMatrix79724.5-4 DiagonalMat79824.5-5 PermutationMat79924.5-6 TransposedMatImmutable80024.5-7 TransposedMatDestructive80124.5-8 KroneckerProduct80224.5-9 ReflectionMat80324.5-10 PrintArray80424.6 [33X[0;0YRandom Matrices[133X80524.6-1 RandomMat80624.6-2 RandomInvertibleMat80724.6-3 RandomUnimodularMat80824.7 [33X[0;0YMatrices Representing Linear Equations and the Gaussian Algorithm[133X80924.7-1 RankMat81024.7-2 TriangulizedMat81124.7-3 TriangulizeMat81224.7-4 NullspaceMat81324.7-5 NullspaceMatDestructive81424.7-6 SolutionMat81524.7-7 SolutionMatDestructive81624.7-8 BaseFixedSpace81724.8 [33X[0;0YEigenvectors and eigenvalues[133X81824.8-1 GeneralisedEigenvalues81924.8-2 GeneralisedEigenspaces82024.8-3 Eigenvalues82124.8-4 Eigenspaces82224.8-5 Eigenvectors82324.9 [33X[0;0YElementary Divisors[133X82424.9-1 ElementaryDivisorsMat82524.9-2 ElementaryDivisorsTransformationsMat82624.9-3 DiagonalizeMat82724.10 [33X[0;0YEchelonized Matrices[133X82824.10-1 SemiEchelonMat82924.10-2 SemiEchelonMatDestructive83024.10-3 SemiEchelonMatTransformation83124.10-4 SemiEchelonMats83224.10-5 SemiEchelonMatsDestructive83324.11 [33X[0;0YMatrices as Basis of a Row Space[133X83424.11-1 BaseMat83524.11-2 BaseMatDestructive83624.11-3 BaseOrthogonalSpaceMat83724.11-4 SumIntersectionMat83824.11-5 BaseSteinitzVectors83924.12 [33X[0;0YTriangular Matrices[133X84024.12-1 DiagonalOfMat84124.12-2 UpperSubdiagonal84224.12-3 DepthOfUpperTriangularMatrix84324.13 [33X[0;0YMatrices as Linear Mappings[133X84424.13-1 CharacteristicPolynomial84524.13-2 JordanDecomposition84624.13-3 BlownUpMat84724.13-4 BlownUpVector84824.13-5 CompanionMat84924.14 [33X[0;0YMatrices over Finite Fields[133X85024.14-1 ImmutableMatrix85124.14-2 ConvertToMatrixRep85224.14-3 ProjectiveOrder85324.14-4 SimultaneousEigenvalues85424.15 [33X[0;0YInverse and Nullspace of an Integer Matrix Modulo an Ideal[133X85524.15-1 InverseMatMod85624.15-2 NullspaceModQ85724.16 [33X[0;0YSpecial Multiplication Algorithms for Matrices over GF(2)[133X85824.16-1 PROD_GF2MAT_GF2MAT_SIMPLE85924.16-2 PROD_GF2MAT_GF2MAT_ADVANCED86024.17 [33X[0;0YBlock Matrices[133X86124.17-1 AsBlockMatrix86224.17-2 BlockMatrix86324.17-3 MatrixByBlockMatrix86425 [33X[0;0YIntegral matrices and lattices[133X86525.1 [33X[0;0YLinear equations over the integers and Integral Matrices[133X86625.1-1 NullspaceIntMat86725.1-2 SolutionIntMat86825.1-3 SolutionNullspaceIntMat86925.1-4 BaseIntMat87025.1-5 BaseIntersectionIntMats87125.1-6 ComplementIntMat87225.2 [33X[0;0YNormal Forms over the Integers[133X87325.2-1 TriangulizedIntegerMat87425.2-2 TriangulizedIntegerMatTransform87525.2-3 TriangulizeIntegerMat87625.2-4 HermiteNormalFormIntegerMat87725.2-5 HermiteNormalFormIntegerMatTransform87825.2-6 SmithNormalFormIntegerMat87925.2-7 SmithNormalFormIntegerMatTransforms88025.2-8 DiagonalizeIntMat88125.2-9 NormalFormIntMat88225.2-10 AbelianInvariantsOfList88325.3 [33X[0;0YDeterminant of an integer matrix[133X88425.3-1 DeterminantIntMat88525.4 [33X[0;0YDecompositions[133X88625.4-1 Decomposition88725.4-2 LinearIndependentColumns88825.4-3 PadicCoefficients88925.4-4 IntegralizedMat89025.4-5 DecompositionInt89125.5 [33X[0;0YLattice Reduction[133X89225.5-1 LLLReducedBasis89325.5-2 LLLReducedGramMat89425.6 [33X[0;0YOrthogonal Embeddings[133X89525.6-1 OrthogonalEmbeddings89625.6-2 ShortestVectors89726 [33X[0;0YVector and matrix objects[133X89826.1 [33X[0;0YFundamental ideas and rules[133X89926.2 [33X[0;0YCategories of vectors and matrices[133X90026.3 [33X[0;0YConstructing vector and matrix objects[133X90126.4 [33X[0;0YOperations for row vector objects[133X90226.5 [33X[0;0YOperations for row list matrix objects[133X90326.6 [33X[0;0YOperations for flat matrix objects[133X90427 [33X[0;0YStrings and Characters[133X90527.1 [33X[0;0YIsChar and IsString[133X90627.1-1 IsChar90727.1-2 IsString90827.1-3 [33X[0;0YStrings As Lists[133X90927.1-4 [33X[0;0YPrinting Strings[133X91027.2 [33X[0;0YSpecial Characters[133X91127.3 [33X[0;0YTriple Quoted Strings[133X91227.4 [33X[0;0YInternally Represented Strings[133X91327.4-1 IsStringRep91427.4-2 ConvertToStringRep91527.4-3 CopyToStringRep91627.4-4 IsEmptyString91727.4-5 EmptyString91827.4-6 CharsFamily91927.5 [33X[0;0YRecognizing Characters[133X92027.5-1 IsDigitChar92127.5-2 IsLowerAlphaChar92227.5-3 IsUpperAlphaChar92327.5-4 IsAlphaChar92427.6 [33X[0;0YComparisons of Strings[133X92527.6-1 \=92627.6-2 \<92727.7 [33X[0;0YOperations to Produce or Manipulate Strings[133X92827.7-1 DisplayString92927.7-2 DEFAULTDISPLAYSTRING93027.7-3 ViewString93127.7-4 DEFAULTVIEWSTRING93227.7-5 PrintString93327.7-6 String93427.7-7 StripLineBreakCharacters93527.7-8 HexStringInt93627.7-9 StringPP93727.7-10 WordAlp93827.7-11 LowercaseString93927.7-12 SplitString94027.7-13 ReplacedString94127.7-14 NormalizeWhitespace94227.7-15 NormalizedWhitespace94327.7-16 RemoveCharacters94427.7-17 JoinStringsWithSeparator94527.7-18 Chomp94627.7-19 StartsWith94727.7-20 NumbersString94827.7-21 StringNumbers94927.8 [33X[0;0YCharacter Conversion[133X95027.8-1 IntChar95127.8-2 CharInt95227.8-3 SIntChar95327.8-4 CharSInt95427.9 [33X[0;0YOperations to Evaluate Strings[133X95527.9-1 Int95627.9-2 Ordinal95727.9-3 EvalString95827.9-4 CrcString95927.10 [33X[0;0YCalendar Arithmetic[133X96027.10-1 DaysInYear96127.10-2 DaysInMonth96227.10-3 DMYDay96327.10-4 DayDMY96427.10-5 WeekDay96527.10-6 StringDate96627.10-7 HMSMSec96727.10-8 SecHMSM96827.10-9 StringTime96927.10-10 SecondsDMYhms97027.10-11 DMYhmsSeconds97127.11 [33X[0;0YObtaining LaTeX Representations of Objects[133X97228 [33X[0;0YDictionaries and General Hash Tables[133X97328.1 [33X[0;0YUsing Dictionaries[133X97428.2 [33X[0;0YDictionaries[133X97528.2-1 NewDictionary97628.3 [33X[0;0YDictionaries via Binary Lists[133X97728.3-1 DictionaryByPosition97828.3-2 IsDictionary97928.3-3 IsLookupDictionary98028.3-4 AddDictionary98128.3-5 KnowsDictionary98228.3-6 LookupDictionary98328.4 [33X[0;0YGeneral Hash Tables[133X98428.5 [33X[0;0YHash keys[133X98528.5-1 DenseIntKey98628.5-2 SparseIntKey98728.6 [33X[0;0YDense hash tables[133X98828.6-1 DenseHashTable98928.7 [33X[0;0YSparse hash tables[133X99028.7-1 SparseHashTable99128.7-2 DoubleHashArraySize99229 [33X[0;0YRecords[133X99329.1 [33X[0;0YIsRecord and RecNames[133X99429.1-1 IsRecord99529.1-2 RecNames99629.2 [33X[0;0YAccessing Record Elements[133X99729.3 [33X[0;0YRecord Assignment[133X99829.4 [33X[0;0YIdentical Records[133X99929.5 [33X[0;0YComparisons of Records[133X100029.6 [33X[0;0YIsBound and Unbind for Records[133X100129.6-1 IsBound100229.6-2 Unbind100329.7 [33X[0;0YRecord Access Operations[133X100429.7-1 NameRNam100529.7-2 RNamObj100629.7-3 \.100730 [33X[0;0YCollections[133X100830.1 [33X[0;0YIsCollection (Filter)[133X100930.1-1 IsCollection101030.2 [33X[0;0YCollection Families[133X101130.2-1 CollectionsFamily101230.2-2 IsCollectionFamily101330.2-3 ElementsFamily101430.2-4 CategoryCollections101530.3 [33X[0;0YLists and Collections[133X101630.3-1 IsListOrCollection101730.3-2 Enumerator101830.3-3 EnumeratorSorted101930.3-4 EnumeratorByFunctions102030.3-5 List102130.3-6 SortedList102230.3-7 SSortedList102330.3-8 AsList102430.3-9 AsSortedList102530.3-10 AsSSortedList102630.3-11 Elements102730.4 [33X[0;0YAttributes and Properties for Collections[133X102830.4-1 IsEmpty102930.4-2 IsFinite103030.4-3 IsTrivial103130.4-4 IsNonTrivial103230.4-5 IsWholeFamily103330.4-6 Size103430.4-7 Representative103530.4-8 RepresentativeSmallest103630.5 [33X[0;0YOperations for Collections[133X103730.5-1 IsSubset103830.5-2 [33X[0;0YIntersection[133X103930.5-3 [33X[0;0YUnion[133X104030.5-4 Difference104130.6 [33X[0;0YMembership Test for Collections[133X104230.6-1 \in104330.7 [33X[0;0YRandom Elements[133X104430.7-1 Random104530.7-2 PseudoRandom104630.7-3 RandomList104730.8 [33X[0;0YIterators[133X104830.8-1 Iterator104930.8-2 IteratorSorted105030.8-3 IsIterator105130.8-4 IsDoneIterator105230.8-5 NextIterator105330.8-6 IteratorList105430.8-7 TrivialIterator105530.8-8 IteratorByFunctions105631 [33X[0;0YDomains and their Elements[133X105731.1 [33X[0;0YOperational Structure of Domains[133X105831.2 [33X[0;0YEquality and Comparison of Domains[133X105931.3 [33X[0;0YConstructing Domains[133X106031.4 [33X[0;0YChanging the Structure[133X106131.5 [33X[0;0YChanging the Representation[133X106231.6 [33X[0;0YDomain Categories[133X106331.7 [33X[0;0YParents[133X106431.7-1 Parent106531.8 [33X[0;0YConstructing Subdomains[133X106631.9 [33X[0;0YOperations for Domains[133X106731.9-1 IsGeneralizedDomain106831.9-2 GeneratorsOfDomain106931.9-3 Domain107031.10 [33X[0;0YAttributes and Properties of Elements[133X107131.10-1 Characteristic107231.10-2 OneImmutable107331.10-3 ZeroImmutable107431.10-4 MultiplicativeZeroOp107531.10-5 IsOne107631.10-6 IsZero107731.10-7 IsIdempotent107831.10-8 InverseImmutable107931.10-9 AdditiveInverseImmutable108031.10-10 Order108131.11 [33X[0;0YComparison Operations for Elements[133X108231.11-1 [33X[0;0Y\= and \<[133X108331.11-2 CanEasilyCompareElements108431.12 [33X[0;0YArithmetic Operations for Elements[133X108531.12-1 [33X[0;0Y\+, \*, \/, \^, \mod[133X108631.12-2 LeftQuotient108731.12-3 Comm108831.12-4 LieBracket108931.12-5 Sqrt109031.13 [33X[0;0YRelations Between Domains[133X109131.13-1 UseSubsetRelation109231.13-2 UseFactorRelation109331.13-3 UseIsomorphismRelation109431.13-4 InstallSubsetMaintenance109531.13-5 InstallFactorMaintenance109631.13-6 InstallIsomorphismMaintenance109731.14 [33X[0;0YUseful Categories of Elements[133X109831.14-1 IsExtAElement109931.14-2 IsNearAdditiveElement110031.14-3 IsAdditiveElement110131.14-4 IsNearAdditiveElementWithZero110231.14-5 IsAdditiveElementWithZero110331.14-6 IsNearAdditiveElementWithInverse110431.14-7 IsAdditiveElementWithInverse110531.14-8 IsExtLElement110631.14-9 IsExtRElement110731.14-10 IsMultiplicativeElement110831.14-11 IsMultiplicativeElementWithOne110931.14-12 IsMultiplicativeElementWithZero111031.14-13 IsMultiplicativeElementWithInverse111131.14-14 IsVector111231.14-15 IsNearRingElement111331.14-16 IsRingElement111431.14-17 IsNearRingElementWithOne111531.14-18 IsRingElementWithOne111631.14-19 IsNearRingElementWithInverse111731.14-20 IsRingElementWithInverse111831.15 [33X[0;0YUseful Categories for all Elements of a Family[133X111931.15-1 IsAssociativeElement112031.15-2 IsAdditivelyCommutativeElement112131.15-3 IsCommutativeElement112231.15-4 IsFiniteOrderElement112331.15-5 IsJacobianElement112431.15-6 IsZeroSquaredElement112532 [33X[0;0YMappings[133X112632.1 [33X[0;0YIsDirectProductElement (Filter)[133X112732.1-1 IsDirectProductElement112832.2 [33X[0;0YCreating Mappings[133X112932.2-1 GeneralMappingByElements113032.2-2 [33X[0;0YMappingByFunction[133X113132.2-3 InverseGeneralMapping113232.2-4 CompositionMapping113332.2-5 CompositionMapping2113432.2-6 IsCompositionMappingRep113532.2-7 ConstituentsCompositionMapping113632.2-8 ZeroMapping113732.2-9 IdentityMapping113832.2-10 [33X[0;0YEmbedding[133X113932.2-11 [33X[0;0YProjection[133X114032.2-12 RestrictedMapping114132.3 [33X[0;0YProperties and Attributes of (General) Mappings[133X114232.3-1 IsTotal114332.3-2 IsSingleValued114432.3-3 IsMapping114532.3-4 IsInjective114632.3-5 IsSurjective114732.3-6 IsBijective114832.3-7 Range114932.3-8 Source115032.3-9 UnderlyingRelation115132.3-10 UnderlyingGeneralMapping115232.4 [33X[0;0YImages under Mappings[133X115332.4-1 ImagesSource115432.4-2 ImagesRepresentative115532.4-3 ImagesElm115632.4-4 ImagesSet115732.4-5 ImageElm115832.4-6 [33X[0;0YImage[133X115932.4-7 [33X[0;0YImages[133X116032.5 [33X[0;0YPreimages under Mappings[133X116132.5-1 PreImagesRange116232.5-2 PreImagesElm116332.5-3 PreImageElm116432.5-4 PreImagesRepresentative116532.5-5 PreImagesSet116632.5-6 [33X[0;0YPreImage[133X116732.5-7 [33X[0;0YPreImages[133X116832.6 [33X[0;0YArithmetic Operations for General Mappings[133X116932.7 [33X[0;0YMappings which are Compatible with Algebraic Structures[133X117032.8 [33X[0;0YMagma Homomorphisms[133X117132.8-1 IsMagmaHomomorphism117232.8-2 MagmaHomomorphismByFunctionNC117332.8-3 NaturalHomomorphismByGenerators117432.9 [33X[0;0YMappings that Respect Multiplication[133X117532.9-1 RespectsMultiplication117632.9-2 RespectsOne117732.9-3 RespectsInverses117832.9-4 IsGroupGeneralMapping117932.9-5 KernelOfMultiplicativeGeneralMapping118032.9-6 CoKernelOfMultiplicativeGeneralMapping118132.10 [33X[0;0YMappings that Respect Addition[133X118232.10-1 RespectsAddition118332.10-2 RespectsAdditiveInverses118432.10-3 RespectsZero118532.10-4 IsAdditiveGroupGeneralMapping118632.10-5 KernelOfAdditiveGeneralMapping118732.10-6 CoKernelOfAdditiveGeneralMapping118832.11 [33X[0;0YLinear Mappings[133X118932.11-1 RespectsScalarMultiplication119032.11-2 IsLeftModuleGeneralMapping119132.11-3 IsLinearMapping119232.12 [33X[0;0YRing Homomorphisms[133X119332.12-1 IsRingGeneralMapping119432.12-2 IsRingWithOneGeneralMapping119532.12-3 IsAlgebraGeneralMapping119632.12-4 IsAlgebraWithOneGeneralMapping119732.12-5 IsFieldHomomorphism119832.13 [33X[0;0YGeneral Mappings[133X119932.13-1 IsGeneralMapping120032.13-2 IsConstantTimeAccessGeneralMapping120132.13-3 IsEndoGeneralMapping120232.14 [33X[0;0YTechnical Matters Concerning General Mappings[133X120332.14-1 IsSPGeneralMapping120432.14-2 IsGeneralMappingFamily120532.14-3 FamilyRange120632.14-4 FamilySource120732.14-5 FamiliesOfGeneralMappingsAndRanges120832.14-6 GeneralMappingsFamily120932.14-7 TypeOfDefaultGeneralMapping121033 [33X[0;0YRelations[133X121133.1 [33X[0;0YGeneral Binary Relations[133X121233.1-1 IsBinaryRelation121333.1-2 BinaryRelationByElements121433.1-3 [33X[0;0YIdentityBinaryRelation[133X121533.1-4 EmptyBinaryRelation121633.2 [33X[0;0YProperties and Attributes of Binary Relations[133X121733.2-1 IsReflexiveBinaryRelation121833.2-2 IsSymmetricBinaryRelation121933.2-3 IsTransitiveBinaryRelation122033.2-4 IsAntisymmetricBinaryRelation122133.2-5 IsPreOrderBinaryRelation122233.2-6 IsPartialOrderBinaryRelation122333.2-7 IsHasseDiagram122433.2-8 IsEquivalenceRelation122533.2-9 Successors122633.2-10 DegreeOfBinaryRelation122733.2-11 PartialOrderOfHasseDiagram122833.3 [33X[0;0YBinary Relations on Points[133X122933.3-1 BinaryRelationOnPoints123033.3-2 RandomBinaryRelationOnPoints123133.3-3 [33X[0;0YAsBinaryRelationOnPoints[133X123233.4 [33X[0;0YClosure Operations and Other Constructors[133X123333.4-1 ReflexiveClosureBinaryRelation123433.4-2 SymmetricClosureBinaryRelation123533.4-3 TransitiveClosureBinaryRelation123633.4-4 HasseDiagramBinaryRelation123733.4-5 StronglyConnectedComponents123833.4-6 PartialOrderByOrderingFunction123933.5 [33X[0;0YEquivalence Relations[133X124033.5-1 EquivalenceRelationByPartition124133.5-2 EquivalenceRelationByRelation124233.5-3 EquivalenceRelationByPairs124333.5-4 EquivalenceRelationByProperty124433.6 [33X[0;0YAttributes of and Operations on Equivalence Relations[133X124533.6-1 EquivalenceRelationPartition124633.6-2 GeneratorsOfEquivalenceRelationPartition124733.6-3 JoinEquivalenceRelations124833.7 [33X[0;0YEquivalence Classes[133X124933.7-1 IsEquivalenceClass125033.7-2 EquivalenceClassRelation125133.7-3 EquivalenceClasses125233.7-4 EquivalenceClassOfElement125334 [33X[0;0YOrderings[133X125434.1 [33X[0;0YIsOrdering (Filter)[133X125534.1-1 IsOrdering125634.1-2 OrderingsFamily125734.2 [33X[0;0YBuilding new orderings[133X125834.2-1 OrderingByLessThanFunctionNC125934.2-2 OrderingByLessThanOrEqualFunctionNC126034.3 [33X[0;0YProperties and basic functionality[133X126134.3-1 IsWellFoundedOrdering126234.3-2 IsTotalOrdering126334.3-3 IsIncomparableUnder126434.3-4 FamilyForOrdering126534.3-5 LessThanFunction126634.3-6 LessThanOrEqualFunction126734.3-7 IsLessThanUnder126834.3-8 IsLessThanOrEqualUnder126934.4 [33X[0;0YOrderings on families of associative words[133X127034.4-1 IsOrderingOnFamilyOfAssocWords127134.4-2 IsTranslationInvariantOrdering127234.4-3 IsReductionOrdering127334.4-4 OrderingOnGenerators127434.4-5 LexicographicOrdering127534.4-6 ShortLexOrdering127634.4-7 IsShortLexOrdering127734.4-8 WeightLexOrdering127834.4-9 IsWeightLexOrdering127934.4-10 WeightOfGenerators128034.4-11 BasicWreathProductOrdering128134.4-12 IsBasicWreathProductOrdering128234.4-13 WreathProductOrdering128334.4-14 IsWreathProductOrdering128434.4-15 LevelsOfGenerators128535 [33X[0;0YMagmas[133X128635.1 [33X[0;0YMagma Categories[133X128735.1-1 IsMagma128835.1-2 IsMagmaWithOne128935.1-3 IsMagmaWithInversesIfNonzero129035.1-4 IsMagmaWithInverses129135.2 [33X[0;0YMagma Generation[133X129235.2-1 Magma129335.2-2 MagmaWithOne129435.2-3 MagmaWithInverses129535.2-4 MagmaByGenerators129635.2-5 MagmaWithOneByGenerators129735.2-6 MagmaWithInversesByGenerators129835.2-7 Submagma129935.2-8 SubmagmaWithOne130035.2-9 SubmagmaWithInverses130135.2-10 AsMagma130235.2-11 AsSubmagma130335.2-12 IsMagmaWithZeroAdjoined130435.2-13 InjectionZeroMagma130535.2-14 UnderlyingInjectionZeroMagma130635.3 [33X[0;0YMagmas Defined by Multiplication Tables[133X130735.3-1 MagmaByMultiplicationTable130835.3-2 MagmaWithOneByMultiplicationTable130935.3-3 MagmaWithInversesByMultiplicationTable131035.3-4 MagmaElement131135.3-5 [33X[0;0YMultiplicationTable[133X131235.4 [33X[0;0YAttributes and Properties for Magmas[133X131335.4-1 GeneratorsOfMagma131435.4-2 GeneratorsOfMagmaWithOne131535.4-3 GeneratorsOfMagmaWithInverses131635.4-4 Centralizer131735.4-5 Centre131835.4-6 Idempotents131935.4-7 IsAssociative132035.4-8 IsCentral132135.4-9 IsCommutative132235.4-10 MultiplicativeNeutralElement132335.4-11 MultiplicativeZero132435.4-12 SquareRoots132535.4-13 TrivialSubmagmaWithOne132636 [33X[0;0YWords[133X132736.1 [33X[0;0YCategories of Words and Nonassociative Words[133X132836.1-1 IsWord132936.1-2 IsWordCollection133036.1-3 IsNonassocWord133136.1-4 IsNonassocWordCollection133236.2 [33X[0;0YComparison of Words[133X133336.2-1 \=133436.2-2 \<133536.3 [33X[0;0YOperations for Words[133X133636.3-1 MappedWord133736.4 [33X[0;0YFree Magmas[133X133836.4-1 [33X[0;0YFreeMagma[133X133936.4-2 [33X[0;0YFreeMagmaWithOne[133X134036.5 [33X[0;0YExternal Representation for Nonassociative Words[133X134137 [33X[0;0YAssociative Words[133X134237.1 [33X[0;0YCategories of Associative Words[133X134337.1-1 IsAssocWord134437.2 [33X[0;0YFree Groups, Monoids and Semigroups[133X134537.2-1 [33X[0;0YFreeGroup[133X134637.2-2 IsFreeGroup134737.2-3 AssignGeneratorVariables134837.3 [33X[0;0YComparison of Associative Words[133X134937.3-1 \=135037.3-2 \<135137.3-3 IsShortLexLessThanOrEqual135237.3-4 IsBasicWreathLessThanOrEqual135337.4 [33X[0;0YOperations for Associative Words[133X135437.4-1 Length135537.4-2 ExponentSumWord135637.4-3 Subword135737.4-4 PositionWord135837.4-5 [33X[0;0YSubstitutedWord[133X135937.4-6 EliminatedWord136037.5 [33X[0;0YOperations for Associative Words by their Syllables[133X136137.5-1 NumberSyllables136237.5-2 ExponentSyllable136337.5-3 GeneratorSyllable136437.5-4 SubSyllables136537.6 [33X[0;0YRepresentations for Associative Words[133X136637.6-1 IsLetterAssocWordRep136737.6-2 IsLetterWordsFamily136837.6-3 IsBLetterAssocWordRep136937.6-4 IsBLetterWordsFamily137037.6-5 IsSyllableAssocWordRep137137.6-6 IsSyllableWordsFamily137237.6-7 Is16BitsFamily137337.6-8 LetterRepAssocWord137437.6-9 AssocWordByLetterRep137537.7 [33X[0;0YThe External Representation for Associative Words[133X137637.8 [33X[0;0YStraight Line Programs[133X137737.8-1 IsStraightLineProgram137837.8-2 StraightLineProgram137937.8-3 LinesOfStraightLineProgram138037.8-4 NrInputsOfStraightLineProgram138137.8-5 ResultOfStraightLineProgram138237.8-6 StringOfResultOfStraightLineProgram138337.8-7 CompositionOfStraightLinePrograms138437.8-8 IntegratedStraightLineProgram138537.8-9 RestrictOutputsOfSLP138637.8-10 IntermediateResultOfSLP138737.8-11 IntermediateResultOfSLPWithoutOverwrite138837.8-12 IntermediateResultsOfSLPWithoutOverwrite138937.8-13 ProductOfStraightLinePrograms139037.8-14 SlotUsagePattern139137.9 [33X[0;0YStraight Line Program Elements[133X139237.9-1 IsStraightLineProgElm139337.9-2 StraightLineProgElm139437.9-3 StraightLineProgGens139537.9-4 EvalStraightLineProgElm139637.9-5 StretchImportantSLPElement139738 [33X[0;0YRewriting Systems[133X139838.1 [33X[0;0YOperations on rewriting systems[133X139938.1-1 IsRewritingSystem140038.1-2 Rules140138.1-3 OrderOfRewritingSystem140238.1-4 ReducedForm140338.1-5 [33X[0;0YIsConfluent[133X140438.1-6 ConfluentRws140538.1-7 IsReduced140638.1-8 ReduceRules140738.1-9 AddRule140838.1-10 AddRuleReduced140938.1-11 MakeConfluent141038.1-12 GeneratorsOfRws141138.2 [33X[0;0YOperations on elements of the algebra[133X141238.2-1 ReducedProduct141338.3 [33X[0;0YProperties of rewriting systems[133X141438.3-1 IsBuiltFromAdditiveMagmaWithInverses141538.4 [33X[0;0YRewriting in Groups and Monoids[133X141638.5 [33X[0;0YDeveloping rewriting systems[133X141739 [33X[0;0YGroups[133X141839.1 [33X[0;0YGroup Elements[133X141939.2 [33X[0;0YCreating Groups[133X142039.2-1 Group142139.2-2 GroupByGenerators142239.2-3 GroupWithGenerators142339.2-4 GeneratorsOfGroup142439.2-5 AsGroup142539.2-6 ConjugateGroup142639.2-7 IsGroup142739.2-8 InfoGroup142839.3 [33X[0;0YSubgroups[133X142939.3-1 Subgroup143039.3-2 [33X[0;0YIndex ([5XGAP[105X operation)[133X143139.3-3 IndexInWholeGroup143239.3-4 AsSubgroup143339.3-5 IsSubgroup143439.3-6 IsNormal143539.3-7 IsCharacteristicSubgroup143639.3-8 ConjugateSubgroup143739.3-9 ConjugateSubgroups143839.3-10 IsSubnormal143939.3-11 SubgroupByProperty144039.3-12 SubgroupShell144139.4 [33X[0;0YClosures of (Sub)groups[133X144239.4-1 ClosureGroup144339.4-2 ClosureGroupAddElm144439.4-3 ClosureGroupDefault144539.4-4 ClosureSubgroup144639.5 [33X[0;0YExpressing Group Elements as Words in Generators[133X144739.5-1 EpimorphismFromFreeGroup144839.5-2 Factorization144939.5-3 GrowthFunctionOfGroup145039.6 [33X[0;0YStructure Descriptions[133X145139.6-1 StructureDescription145239.7 [33X[0;0YCosets[133X145339.7-1 RightCoset145439.7-2 RightCosets145539.7-3 CanonicalRightCosetElement145639.7-4 IsRightCoset145739.7-5 CosetDecomposition145839.8 [33X[0;0YTransversals[133X145939.8-1 RightTransversal146039.9 [33X[0;0YDouble Cosets[133X146139.9-1 DoubleCoset146239.9-2 RepresentativesContainedRightCosets146339.9-3 DoubleCosets146439.9-4 IsDoubleCoset146539.9-5 DoubleCosetRepsAndSizes146639.9-6 InfoCoset146739.10 [33X[0;0YConjugacy Classes[133X146839.10-1 ConjugacyClass146939.10-2 ConjugacyClasses147039.10-3 ConjugacyClassesByRandomSearch147139.10-4 ConjugacyClassesByOrbits147239.10-5 NrConjugacyClasses147339.10-6 RationalClass147439.10-7 RationalClasses147539.10-8 GaloisGroup147639.10-9 [33X[0;0YIsConjugate[133X147739.10-10 NthRootsInGroup147839.11 [33X[0;0YNormal Structure[133X147939.11-1 [33X[0;0YNormalizer[133X148039.11-2 Core148139.11-3 PCore148239.11-4 NormalClosure148339.11-5 NormalIntersection148439.11-6 ComplementClassesRepresentatives148539.11-7 InfoComplement148639.12 [33X[0;0YSpecific and Parametrized Subgroups[133X148739.12-1 TrivialSubgroup148839.12-2 CommutatorSubgroup148939.12-3 DerivedSubgroup149039.12-4 CommutatorLength149139.12-5 FittingSubgroup149239.12-6 FrattiniSubgroup149339.12-7 PrefrattiniSubgroup149439.12-8 PerfectResiduum149539.12-9 RadicalGroup149639.12-10 Socle149739.12-11 SupersolvableResiduum149839.12-12 PRump149939.13 [33X[0;0YSylow Subgroups and Hall Subgroups[133X150039.13-1 SylowSubgroup150139.13-2 SylowComplement150239.13-3 HallSubgroup150339.13-4 SylowSystem150439.13-5 ComplementSystem150539.13-6 HallSystem150639.14 [33X[0;0YSubgroups characterized by prime powers[133X150739.14-1 Omega150839.14-2 Agemo150939.15 [33X[0;0YGroup Properties[133X151039.15-1 IsCyclic151139.15-2 IsElementaryAbelian151239.15-3 IsNilpotentGroup151339.15-4 NilpotencyClassOfGroup151439.15-5 IsPerfectGroup151539.15-6 IsSolvableGroup151639.15-7 IsPolycyclicGroup151739.15-8 IsSupersolvableGroup151839.15-9 IsMonomialGroup151939.15-10 IsSimpleGroup152039.15-11 IsAlmostSimpleGroup152139.15-12 [33X[0;0YIsomorphismTypeInfoFiniteSimpleGroup[133X152239.15-13 SimpleGroup152339.15-14 SimpleGroupsIterator152439.15-15 SmallSimpleGroup152539.15-16 AllSmallNonabelianSimpleGroups152639.15-17 IsFinitelyGeneratedGroup152739.15-18 IsSubsetLocallyFiniteGroup152839.15-19 IsPGroup152939.15-20 PrimePGroup153039.15-21 PClassPGroup153139.15-22 RankPGroup153239.15-23 IsPSolvable153339.15-24 IsPNilpotent153439.16 [33X[0;0YNumerical Group Attributes[133X153539.16-1 AbelianInvariants153639.16-2 Exponent153739.16-3 EulerianFunction153839.17 [33X[0;0YSubgroup Series[133X153939.17-1 ChiefSeries154039.17-2 ChiefSeriesThrough154139.17-3 ChiefSeriesUnderAction154239.17-4 SubnormalSeries154339.17-5 CompositionSeries154439.17-6 DisplayCompositionSeries154539.17-7 DerivedSeriesOfGroup154639.17-8 DerivedLength154739.17-9 [33X[0;0YElementaryAbelianSeries[133X154839.17-10 InvariantElementaryAbelianSeries154939.17-11 LowerCentralSeriesOfGroup155039.17-12 UpperCentralSeriesOfGroup155139.17-13 PCentralSeries155239.17-14 JenningsSeries155339.17-15 DimensionsLoewyFactors155439.17-16 AscendingChain155539.17-17 IntermediateGroup155639.17-18 IntermediateSubgroups155739.18 [33X[0;0YFactor Groups[133X155839.18-1 NaturalHomomorphismByNormalSubgroup155939.18-2 FactorGroup156039.18-3 CommutatorFactorGroup156139.18-4 MaximalAbelianQuotient156239.18-5 HasAbelianFactorGroup156339.18-6 HasElementaryAbelianFactorGroup156439.18-7 CentralizerModulo156539.19 [33X[0;0YSets of Subgroups[133X156639.19-1 ConjugacyClassSubgroups156739.19-2 IsConjugacyClassSubgroupsRep156839.19-3 ConjugacyClassesSubgroups156939.19-4 ConjugacyClassesMaximalSubgroups157039.19-5 AllSubgroups157139.19-6 MaximalSubgroupClassReps157239.19-7 MaximalSubgroups157339.19-8 NormalSubgroups157439.19-9 MaximalNormalSubgroups157539.19-10 MinimalNormalSubgroups157639.20 [33X[0;0YSubgroup Lattice[133X157739.20-1 LatticeSubgroups157839.20-2 ClassElementLattice157939.20-3 DotFileLatticeSubgroups158039.20-4 MaximalSubgroupsLattice158139.20-5 MinimalSupergroupsLattice158239.20-6 RepresentativesPerfectSubgroups158339.20-7 ConjugacyClassesPerfectSubgroups158439.20-8 Zuppos158539.20-9 InfoLattice158639.21 [33X[0;0YSpecific Methods for Subgroup Lattice Computations[133X158739.21-1 LatticeByCyclicExtension158839.21-2 InvariantSubgroupsElementaryAbelianGroup158939.21-3 SubgroupsSolvableGroup159039.21-4 SizeConsiderFunction159139.21-5 ExactSizeConsiderFunction159239.21-6 InfoPcSubgroup159339.22 [33X[0;0YSpecial Generating Sets[133X159439.22-1 GeneratorsSmallest159539.22-2 LargestElementGroup159639.22-3 MinimalGeneratingSet159739.22-4 SmallGeneratingSet159839.22-5 IndependentGeneratorsOfAbelianGroup159939.22-6 IndependentGeneratorExponents160039.23 [33X[0;0Y1-Cohomology[133X160139.23-1 [33X[0;0YOneCocycles[133X160239.23-2 OneCoboundaries160339.23-3 OCOneCocycles160439.23-4 ComplementClassesRepresentativesEA160539.23-5 InfoCoh160639.24 [33X[0;0YSchur Covers and Multipliers[133X160739.24-1 EpimorphismSchurCover160839.24-2 SchurCover160939.24-3 AbelianInvariantsMultiplier161039.24-4 Epicentre161139.24-5 NonabelianExteriorSquare161239.24-6 EpimorphismNonabelianExteriorSquare161339.24-7 IsCentralFactor161439.24-8 [33X[0;0YCovering groups of symmetric groups[133X161539.24-9 BasicSpinRepresentationOfSymmetricGroup161639.24-10 SchurCoverOfSymmetricGroup161739.24-11 DoubleCoverOfAlternatingGroup161839.25 [33X[0;0YTests for the Availability of Methods[133X161939.25-1 CanEasilyTestMembership162039.25-2 CanEasilyComputeWithIndependentGensAbelianGroup162139.25-3 CanComputeSize162239.25-4 CanComputeSizeAnySubgroup162339.25-5 CanComputeIndex162439.25-6 CanComputeIsSubset162539.25-7 KnowsHowToDecompose162640 [33X[0;0YGroup Homomorphisms[133X162740.1 [33X[0;0YCreating Group Homomorphisms[133X162840.1-1 GroupHomomorphismByImages162940.1-2 GroupHomomorphismByImagesNC163040.1-3 GroupGeneralMappingByImages163140.1-4 [33X[0;0YGroupHomomorphismByFunction[133X163240.1-5 AsGroupGeneralMappingByImages163340.2 [33X[0;0YOperations for Group Homomorphisms[133X163440.3 [33X[0;0YEfficiency of Homomorphisms[133X163540.3-1 [33X[0;0YMappings given on generators[133X163640.3-2 [33X[0;0YAction homomorphisms[133X163740.3-3 [33X[0;0YMappings given by functions[133X163840.3-4 [33X[0;0YOther operations[133X163940.3-5 ImagesSmallestGenerators164040.4 [33X[0;0YHomomorphism for very large groups[133X164140.5 [33X[0;0YNice Monomorphisms[133X164240.5-1 IsHandledByNiceMonomorphism164340.5-2 NiceMonomorphism164440.5-3 NiceObject164540.5-4 IsCanonicalNiceMonomorphism164640.6 [33X[0;0YGroup Automorphisms[133X164740.6-1 ConjugatorIsomorphism164840.6-2 ConjugatorAutomorphism164940.6-3 InnerAutomorphism165040.6-4 IsConjugatorIsomorphism165140.6-5 ConjugatorOfConjugatorIsomorphism165240.7 [33X[0;0YGroups of Automorphisms[133X165340.7-1 AutomorphismGroup165440.7-2 IsGroupOfAutomorphisms165540.7-3 AutomorphismDomain165640.7-4 IsAutomorphismGroup165740.7-5 InnerAutomorphismsAutomorphismGroup165840.7-6 InducedAutomorphism165940.8 [33X[0;0YCalculating with Group Automorphisms[133X166040.8-1 AssignNiceMonomorphismAutomorphismGroup166140.8-2 NiceMonomorphismAutomGroup166240.9 [33X[0;0YSearching for Homomorphisms[133X166340.9-1 IsomorphismGroups166440.9-2 AllHomomorphismClasses166540.9-3 AllHomomorphisms166640.9-4 GQuotients166740.9-5 IsomorphicSubgroups166840.9-6 MorClassLoop166940.10 [33X[0;0YRepresentations for Group Homomorphisms[133X167040.10-1 IsGroupGeneralMappingByImages167140.10-2 MappingGeneratorsImages167240.10-3 IsGroupGeneralMappingByAsGroupGeneralMappingByImages167340.10-4 IsPreimagesByAsGroupGeneralMappingByImages167440.10-5 IsPermGroupGeneralMapping167540.10-6 IsToPermGroupGeneralMappingByImages167640.10-7 IsGroupGeneralMappingByPcgs167740.10-8 IsPcGroupGeneralMappingByImages167840.10-9 IsToPcGroupGeneralMappingByImages167940.10-10 IsFromFpGroupGeneralMappingByImages168040.10-11 IsFromFpGroupStdGensGeneralMappingByImages168141 [33X[0;0YGroup Actions[133X168241.1 [33X[0;0YAbout Group Actions[133X168341.2 [33X[0;0YBasic Actions[133X168441.2-1 OnPoints168541.2-2 OnRight168641.2-3 OnLeftInverse168741.2-4 OnSets168841.2-5 OnTuples168941.2-6 OnPairs169041.2-7 OnSetsSets169141.2-8 OnSetsDisjointSets169241.2-9 OnSetsTuples169341.2-10 OnTuplesSets169441.2-11 OnTuplesTuples169541.2-12 OnLines169641.2-13 OnIndeterminates169741.2-14 Permuted169841.2-15 OnSubspacesByCanonicalBasis169941.3 [33X[0;0YAction on canonical representatives[133X170041.4 [33X[0;0YOrbits[133X170141.4-1 Orbit170241.4-2 Orbits170341.4-3 [33X[0;0YOrbitsDomain[133X170441.4-4 OrbitLength170541.4-5 [33X[0;0YOrbitLengths[133X170641.4-6 [33X[0;0YOrbitLengthsDomain[133X170741.5 [33X[0;0YStabilizers[133X170841.5-1 OrbitStabilizer170941.5-2 Stabilizer171041.5-3 OrbitStabilizerAlgorithm171141.6 [33X[0;0YElements with Prescribed Images[133X171241.6-1 RepresentativeAction171341.7 [33X[0;0YThe Permutation Image of an Action[133X171441.7-1 [33X[0;0YActionHomomorphism[133X171541.7-2 Action171641.7-3 SparseActionHomomorphism171741.8 [33X[0;0YAction of a group on itself[133X171841.8-1 FactorCosetAction171941.8-2 RegularActionHomomorphism172041.8-3 AbelianSubfactorAction172141.9 [33X[0;0YPermutations Induced by Elements and Cycles[133X172241.9-1 [33X[0;0YPermutation[133X172341.9-2 PermutationCycle172441.9-3 Cycle172541.9-4 CycleLength172641.9-5 Cycles172741.9-6 CycleLengths172841.9-7 [33X[0;0YCycleIndex[133X172941.10 [33X[0;0YTests for Actions[133X173041.10-1 [33X[0;0YIsTransitive[133X173141.10-2 [33X[0;0YTransitivity[133X173241.10-3 [33X[0;0YRankAction[133X173341.10-4 [33X[0;0YIsSemiRegular[133X173441.10-5 [33X[0;0YIsRegular[133X173541.10-6 [33X[0;0YEarns[133X173641.10-7 [33X[0;0YIsPrimitive[133X173741.11 [33X[0;0YBlock Systems[133X173841.11-1 [33X[0;0YBlocks[133X173941.11-2 [33X[0;0YMaximalBlocks[133X174041.11-3 [33X[0;0YRepresentativesMinimalBlocks[133X174141.11-4 AllBlocks174241.12 [33X[0;0YExternal Sets[133X174341.12-1 IsExternalSet174441.12-2 ExternalSet174541.12-3 ActingDomain174641.12-4 FunctionAction174741.12-5 HomeEnumerator174841.12-6 IsExternalSubset174941.12-7 ExternalSubset175041.12-8 IsExternalOrbit175141.12-9 ExternalOrbit175241.12-10 StabilizerOfExternalSet175341.12-11 [33X[0;0YExternalOrbits[133X175441.12-12 [33X[0;0YExternalOrbitsStabilizers[133X175541.12-13 CanonicalRepresentativeOfExternalSet175641.12-14 CanonicalRepresentativeDeterminatorOfExternalSet175741.12-15 ActorOfExternalSet175841.12-16 UnderlyingExternalSet175941.12-17 SurjectiveActionHomomorphismAttr176042 [33X[0;0YPermutations[133X176142.1 [33X[0;0YIsPerm (Filter)[133X176242.1-1 IsPerm176342.1-2 IsPermCollection176442.1-3 PermutationsFamily176542.2 [33X[0;0YComparison of Permutations[133X176642.2-1 \=176742.2-2 DistancePerms176842.2-3 SmallestGeneratorPerm176942.3 [33X[0;0YMoved Points of Permutations[133X177042.3-1 SmallestMovedPoint177142.3-2 LargestMovedPoint177242.3-3 MovedPoints177342.3-4 NrMovedPoints177442.4 [33X[0;0YSign and Cycle Structure[133X177542.4-1 SignPerm177642.4-2 CycleStructurePerm177742.5 [33X[0;0YCreating Permutations[133X177842.5-1 ListPerm177942.5-2 PermList178042.5-3 MappingPermListList178142.5-4 RestrictedPerm178242.5-5 AsPermutation178343 [33X[0;0YPermutation Groups[133X178443.1 [33X[0;0YIsPermGroup (Filter)[133X178543.1-1 IsPermGroup178643.2 [33X[0;0YThe Natural Action[133X178743.2-1 OrbitPerms178843.2-2 OrbitsPerms178943.3 [33X[0;0YComputing a Permutation Representation[133X179043.3-1 IsomorphismPermGroup179143.3-2 SmallerDegreePermutationRepresentation179243.4 [33X[0;0YSymmetric and Alternating Groups[133X179343.4-1 IsNaturalSymmetricGroup179443.4-2 IsSymmetricGroup179543.4-3 IsAlternatingGroup179643.4-4 SymmetricParentGroup179743.5 [33X[0;0YPrimitive Groups[133X179843.5-1 ONanScottType179943.5-2 SocleTypePrimitiveGroup180043.6 [33X[0;0YStabilizer Chains[133X180143.7 [33X[0;0YRandomized Methods for Permutation Groups[133X180243.8 [33X[0;0YConstruction of Stabilizer Chains[133X180343.8-1 StabChain180443.8-2 StabChainOptions180543.8-3 DefaultStabChainOptions180643.8-4 StabChainBaseStrongGenerators180743.8-5 MinimalStabChain180843.9 [33X[0;0YStabilizer Chain Records[133X180943.10 [33X[0;0YOperations for Stabilizer Chains[133X181043.10-1 BaseStabChain181143.10-2 BaseOfGroup181243.10-3 SizeStabChain181343.10-4 StrongGeneratorsStabChain181443.10-5 GroupStabChain181543.10-6 OrbitStabChain181643.10-7 IndicesStabChain181743.10-8 ListStabChain181843.10-9 ElementsStabChain181943.10-10 IteratorStabChain182043.10-11 InverseRepresentative182143.10-12 SiftedPermutation182243.10-13 MinimalElementCosetStabChain182343.10-14 LargestElementStabChain182443.10-15 ApproximateSuborbitsStabilizerPermGroup182543.11 [33X[0;0YLow Level Routines to Modify and Create Stabilizer Chains[133X182643.11-1 CopyStabChain182743.11-2 CopyOptionsDefaults182843.11-3 ChangeStabChain182943.11-4 ExtendStabChain183043.11-5 ReduceStabChain183143.11-6 RemoveStabChain183243.11-7 EmptyStabChain183343.11-8 InsertTrivialStabilizer183443.11-9 IsFixedStabilizer183543.11-10 AddGeneratorsExtendSchreierTree183643.12 [33X[0;0YBacktrack[133X183743.12-1 SubgroupProperty183843.12-2 ElementProperty183943.12-3 TwoClosure184043.12-4 InfoBckt184143.13 [33X[0;0YWorking with large degree permutation groups[133X184244 [33X[0;0YMatrix Groups[133X184344.1 [33X[0;0YIsMatrixGroup (Filter)[133X184444.1-1 IsMatrixGroup184544.2 [33X[0;0YAttributes and Properties for Matrix Groups[133X184644.2-1 DimensionOfMatrixGroup184744.2-2 DefaultFieldOfMatrixGroup184844.2-3 FieldOfMatrixGroup184944.2-4 TransposedMatrixGroup185044.2-5 IsFFEMatrixGroup185144.3 [33X[0;0YActions of Matrix Groups[133X185244.3-1 ProjectiveActionOnFullSpace185344.3-2 ProjectiveActionHomomorphismMatrixGroup185444.3-3 BlowUpIsomorphism185544.4 [33X[0;0YGL and SL[133X185644.4-1 IsGeneralLinearGroup185744.4-2 IsNaturalGL185844.4-3 IsSpecialLinearGroup185944.4-4 IsNaturalSL186044.4-5 IsSubgroupSL186144.5 [33X[0;0YInvariant Forms[133X186244.5-1 InvariantBilinearForm186344.5-2 IsFullSubgroupGLorSLRespectingBilinearForm186444.5-3 InvariantSesquilinearForm186544.5-4 IsFullSubgroupGLorSLRespectingSesquilinearForm186644.5-5 InvariantQuadraticForm186744.5-6 IsFullSubgroupGLorSLRespectingQuadraticForm186844.6 [33X[0;0YMatrix Groups in Characteristic 0[133X186944.6-1 IsCyclotomicMatrixGroup187044.6-2 IsRationalMatrixGroup187144.6-3 IsIntegerMatrixGroup187244.6-4 IsNaturalGLnZ187344.6-5 IsNaturalSLnZ187444.6-6 InvariantLattice187544.6-7 NormalizerInGLnZ187644.6-8 CentralizerInGLnZ187744.6-9 ZClassRepsQClass187844.6-10 IsBravaisGroup187944.6-11 BravaisGroup188044.6-12 BravaisSubgroups188144.6-13 BravaisSupergroups188244.6-14 NormalizerInGLnZBravaisGroup188344.7 [33X[0;0YActing OnRight and OnLeft[133X188444.7-1 CrystGroupDefaultAction188544.7-2 SetCrystGroupDefaultAction188645 [33X[0;0YPolycyclic Groups[133X188745.1 [33X[0;0YPolycyclic Generating Systems[133X188845.2 [33X[0;0YComputing a Pcgs[133X188945.2-1 Pcgs189045.2-2 IsPcgs189145.2-3 CanEasilyComputePcgs189245.3 [33X[0;0YDefining a Pcgs Yourself[133X189345.3-1 PcgsByPcSequence189445.4 [33X[0;0YElementary Operations for a Pcgs[133X189545.4-1 RelativeOrders189645.4-2 IsFiniteOrdersPcgs189745.4-3 IsPrimeOrdersPcgs189845.4-4 PcSeries189945.4-5 GroupOfPcgs190045.4-6 OneOfPcgs190145.5 [33X[0;0YElementary Operations for a Pcgs and an Element[133X190245.5-1 RelativeOrderOfPcElement190345.5-2 ExponentOfPcElement190445.5-3 ExponentsOfPcElement190545.5-4 DepthOfPcElement190645.5-5 LeadingExponentOfPcElement190745.5-6 PcElementByExponents190845.5-7 LinearCombinationPcgs190945.5-8 SiftedPcElement191045.5-9 CanonicalPcElement191145.5-10 ReducedPcElement191245.5-11 CleanedTailPcElement191345.5-12 HeadPcElementByNumber191445.6 [33X[0;0YExponents of Special Products[133X191545.6-1 ExponentsConjugateLayer191645.6-2 ExponentsOfRelativePower191745.6-3 ExponentsOfConjugate191845.6-4 ExponentsOfCommutator191945.7 [33X[0;0YSubgroups of Polycyclic Groups - Induced Pcgs[133X192045.7-1 IsInducedPcgs192145.7-2 InducedPcgsByPcSequence192245.7-3 ParentPcgs192345.7-4 InducedPcgs192445.7-5 InducedPcgsByGenerators192545.7-6 InducedPcgsByPcSequenceAndGenerators192645.7-7 LeadCoeffsIGS192745.7-8 ExtendedPcgs192845.7-9 SubgroupByPcgs192945.8 [33X[0;0YSubgroups of Polycyclic Groups – Canonical Pcgs[133X193045.8-1 IsCanonicalPcgs193145.8-2 CanonicalPcgs193245.9 [33X[0;0YFactor Groups of Polycyclic Groups – Modulo Pcgs[133X193345.9-1 ModuloPcgs193445.9-2 IsModuloPcgs193545.9-3 NumeratorOfModuloPcgs193645.9-4 DenominatorOfModuloPcgs193745.9-5 \mod193845.9-6 CorrespondingGeneratorsByModuloPcgs193945.9-7 CanonicalPcgsByGeneratorsWithImages194045.10 [33X[0;0YFactor Groups of Polycyclic Groups in their Own Representation[133X194145.10-1 ProjectedPcElement194245.10-2 ProjectedInducedPcgs194345.10-3 LiftedPcElement194445.10-4 LiftedInducedPcgs194545.11 [33X[0;0YPcgs and Normal Series[133X194645.11-1 IsPcgsElementaryAbelianSeries194745.11-2 PcgsElementaryAbelianSeries194845.11-3 IndicesEANormalSteps194945.11-4 EANormalSeriesByPcgs195045.11-5 IsPcgsCentralSeries195145.11-6 PcgsCentralSeries195245.11-7 IndicesCentralNormalSteps195345.11-8 CentralNormalSeriesByPcgs195445.11-9 IsPcgsPCentralSeriesPGroup195545.11-10 PcgsPCentralSeriesPGroup195645.11-11 IndicesPCentralNormalStepsPGroup195745.11-12 PCentralNormalSeriesByPcgsPGroup195845.11-13 IsPcgsChiefSeries195945.11-14 PcgsChiefSeries196045.11-15 IndicesChiefNormalSteps196145.11-16 ChiefNormalSeriesByPcgs196245.11-17 IndicesNormalSteps196345.11-18 NormalSeriesByPcgs196445.12 [33X[0;0YSum and Intersection of Pcgs[133X196545.12-1 SumFactorizationFunctionPcgs196645.13 [33X[0;0YSpecial Pcgs[133X196745.13-1 IsSpecialPcgs196845.13-2 [33X[0;0YSpecialPcgs[133X196945.13-3 LGWeights197045.13-4 LGLayers197145.13-5 LGFirst197245.13-6 LGLength197345.13-7 IsInducedPcgsWrtSpecialPcgs197445.13-8 InducedPcgsWrtSpecialPcgs197545.14 [33X[0;0YAction on Subfactors Defined by a Pcgs[133X197645.14-1 VectorSpaceByPcgsOfElementaryAbelianGroup197745.14-2 LinearAction197845.14-3 LinearActionLayer197945.14-4 AffineAction198045.14-5 AffineActionLayer198145.15 [33X[0;0YOrbit Stabilizer Methods for Polycyclic Groups[133X198245.15-1 StabilizerPcgs198345.15-2 Pcgs_OrbitStabilizer198445.16 [33X[0;0YOperations which have Special Methods for Groups with Pcgs[133X198545.17 [33X[0;0YConjugacy Classes in Solvable Groups[133X198645.17-1 ClassesSolvableGroup198745.17-2 CentralizerSizeLimitConsiderFunction198846 [33X[0;0YPc Groups[133X198946.1 [33X[0;0YThe family pcgs[133X199046.1-1 FamilyPcgs199146.1-2 IsFamilyPcgs199246.1-3 InducedPcgsWrtFamilyPcgs199346.1-4 IsParentPcgsFamilyPcgs199446.2 [33X[0;0YElements of pc groups[133X199546.2-1 [33X[0;0YComparison of elements of pc groups[133X199646.2-2 [33X[0;0YArithmetic operations for elements of pc groups[133X199746.3 [33X[0;0YPc groups versus fp groups[133X199846.3-1 IsPcGroup199946.3-2 IsomorphismFpGroupByPcgs200046.4 [33X[0;0YConstructing Pc Groups[133X200146.4-1 PcGroupFpGroup200246.4-2 SingleCollector200346.4-3 SetConjugate200446.4-4 SetCommutator200546.4-5 SetPower200646.4-6 GroupByRws200746.4-7 IsConfluent200846.4-8 IsomorphismRefinedPcGroup200946.4-9 RefinedPcGroup201046.5 [33X[0;0YComputing Pc Groups[133X201146.5-1 PcGroupWithPcgs201246.5-2 IsomorphismPcGroup201346.5-3 IsomorphismSpecialPcGroup201446.6 [33X[0;0YSaving a Pc Group[133X201546.6-1 GapInputPcGroup201646.7 [33X[0;0YOperations for Pc Groups[133X201746.8 [33X[0;0Y[22X2[122X-Cohomology and Extensions[133X201846.8-1 TwoCoboundaries201946.8-2 TwoCocycles202046.8-3 TwoCohomology202146.8-4 Extensions202246.8-5 Extension202346.8-6 SplitExtension202446.8-7 ModuleOfExtension202546.8-8 CompatiblePairs202646.8-9 ExtensionRepresentatives202746.8-10 SplitExtension202846.9 [33X[0;0YCoding a Pc Presentation[133X202946.9-1 CodePcgs203046.9-2 CodePcGroup203146.9-3 PcGroupCode203246.10 [33X[0;0YRandom Isomorphism Testing[133X203346.10-1 RandomIsomorphismTest203447 [33X[0;0YFinitely Presented Groups[133X203547.1 [33X[0;0YIsSubgroupFpGroup and IsFpGroup[133X203647.1-1 IsSubgroupFpGroup203747.1-2 IsFpGroup203847.1-3 InfoFpGroup203947.2 [33X[0;0YCreating Finitely Presented Groups[133X204047.2-1 \/204147.2-2 FactorGroupFpGroupByRels204247.2-3 ParseRelators204347.2-4 StringFactorizationWord204447.3 [33X[0;0YComparison of Elements of Finitely Presented Groups[133X204547.3-1 \=204647.3-2 \<204747.3-3 FpElmComparisonMethod204847.3-4 SetReducedMultiplication204947.4 [33X[0;0YPreimages in the Free Group[133X205047.4-1 FreeGroupOfFpGroup205147.4-2 FreeGeneratorsOfFpGroup205247.4-3 RelatorsOfFpGroup205347.4-4 UnderlyingElement205447.4-5 ElementOfFpGroup205547.5 [33X[0;0YOperations for Finitely Presented Groups[133X205647.5-1 PseudoRandom205747.6 [33X[0;0YCoset Tables and Coset Enumeration[133X205847.6-1 CosetTable205947.6-2 TracedCosetFpGroup206047.6-3 FactorCosetAction206147.6-4 CosetTableBySubgroup206247.6-5 CosetTableFromGensAndRels206347.6-6 CosetTableDefaultMaxLimit206447.6-7 CosetTableDefaultLimit206547.6-8 MostFrequentGeneratorFpGroup206647.6-9 IndicesInvolutaryGenerators206747.7 [33X[0;0YStandardization of coset tables[133X206847.7-1 CosetTableStandard206947.7-2 StandardizeTable207047.8 [33X[0;0YCoset tables for subgroups in the whole group[133X207147.8-1 CosetTableInWholeGroup207247.8-2 SubgroupOfWholeGroupByCosetTable207347.9 [33X[0;0YAugmented Coset Tables and Rewriting[133X207447.9-1 AugmentedCosetTableInWholeGroup207547.9-2 AugmentedCosetTableMtc207647.9-3 AugmentedCosetTableRrs207747.9-4 RewriteWord207847.10 [33X[0;0YLow Index Subgroups[133X207947.10-1 LowIndexSubgroupsFpGroupIterator208047.11 [33X[0;0YConverting Groups to Finitely Presented Groups[133X208147.11-1 IsomorphismFpGroup208247.11-2 IsomorphismFpGroupByGenerators208347.12 [33X[0;0YNew Presentations and Presentations for Subgroups[133X208447.12-1 IsomorphismSimplifiedFpGroup208547.13 [33X[0;0YPreimages under Homomorphisms from an FpGroup[133X208647.13-1 SubgroupOfWholeGroupByQuotientSubgroup208747.13-2 IsSubgroupOfWholeGroupByQuotientRep208847.13-3 AsSubgroupOfWholeGroupByQuotient208947.13-4 DefiningQuotientHomomorphism209047.14 [33X[0;0YQuotient Methods[133X209147.14-1 PQuotient209247.14-2 EpimorphismQuotientSystem209347.14-3 EpimorphismPGroup209447.14-4 EpimorphismNilpotentQuotient209547.14-5 SolvableQuotient209647.14-6 EpimorphismSolvableQuotient209747.14-7 LargerQuotientBySubgroupAbelianization209847.15 [33X[0;0YAbelian Invariants for Subgroups[133X209947.15-1 AbelianInvariantsSubgroupFpGroup210047.15-2 AbelianInvariantsSubgroupFpGroupMtc210147.15-3 [33X[0;0YAbelianInvariantsSubgroupFpGroupRrs[133X210247.15-4 AbelianInvariantsNormalClosureFpGroup210347.15-5 AbelianInvariantsNormalClosureFpGroupRrs210447.16 [33X[0;0YTesting Finiteness of Finitely Presented Groups[133X210547.16-1 IsInfiniteAbelianizationGroup210647.16-2 NewmanInfinityCriterion210748 [33X[0;0YPresentations and Tietze Transformations[133X210848.1 [33X[0;0YCreating Presentations[133X210948.1-1 PresentationFpGroup211048.1-2 TzSort211148.1-3 GeneratorsOfPresentation211248.1-4 FpGroupPresentation211348.1-5 PresentationViaCosetTable211448.1-6 SimplifiedFpGroup211548.2 [33X[0;0YSubgroup Presentations[133X211648.2-1 PresentationSubgroup211748.2-2 [33X[0;0YPresentationSubgroupRrs[133X211848.2-3 PrimaryGeneratorWords211948.2-4 PresentationSubgroupMtc212048.2-5 PresentationNormalClosureRrs212148.2-6 PresentationNormalClosure212248.3 [33X[0;0YRelators in a Presentation[133X212348.3-1 TietzeWordAbstractWord212448.3-2 AbstractWordTietzeWord212548.4 [33X[0;0YPrinting Presentations[133X212648.4-1 TzPrintGenerators212748.4-2 TzPrintRelators212848.4-3 TzPrintLengths212948.4-4 TzPrintStatus213048.4-5 TzPrintPresentation213148.4-6 TzPrint213248.4-7 TzPrintPairs213348.5 [33X[0;0YChanging Presentations[133X213448.5-1 AddGenerator213548.5-2 TzNewGenerator213648.5-3 AddRelator213748.5-4 RemoveRelator213848.6 [33X[0;0YTietze Transformations[133X213948.6-1 TzGo214048.6-2 SimplifyPresentation214148.6-3 TzGoGo214248.7 [33X[0;0YElementary Tietze Transformations[133X214348.7-1 [33X[0;0YTzEliminate[133X214448.7-2 TzSearch214548.7-3 TzSearchEqual214648.7-4 TzFindCyclicJoins214748.8 [33X[0;0YTietze Transformations that introduce new Generators[133X214848.8-1 [33X[0;0YTzSubstitute[133X214948.8-2 TzSubstituteCyclicJoins215048.9 [33X[0;0YTracing generator images through Tietze transformations[133X215148.9-1 TzInitGeneratorImages215248.9-2 OldGeneratorsOfPresentation215348.9-3 TzImagesOldGens215448.9-4 TzPreImagesNewGens215548.9-5 TzPrintGeneratorImages215648.10 [33X[0;0YThe Decoding Tree Procedure[133X215748.10-1 DecodeTree215848.11 [33X[0;0YTietze Options[133X215948.11-1 TzOptions216048.11-2 TzPrintOptions216149 [33X[0;0YGroup Products[133X216249.1 [33X[0;0YDirect Products[133X216349.1-1 DirectProduct216449.2 [33X[0;0YSemidirect Products[133X216549.2-1 [33X[0;0YSemidirectProduct[133X216649.3 [33X[0;0YSubdirect Products[133X216749.3-1 SubdirectProduct216849.3-2 SubdirectProducts216949.4 [33X[0;0YWreath Products[133X217049.4-1 WreathProduct217149.4-2 WreathProductImprimitiveAction217249.4-3 WreathProductProductAction217349.4-4 KuKGenerators217449.5 [33X[0;0YFree Products[133X217549.5-1 [33X[0;0YFreeProduct[133X217649.6 [33X[0;0YEmbeddings and Projections for Group Products[133X217749.6-1 Embedding217849.6-2 Projection217950 [33X[0;0YGroup Libraries[133X218050.1 [33X[0;0YBasic Groups[133X218150.1-1 TrivialGroup218250.1-2 CyclicGroup218350.1-3 AbelianGroup218450.1-4 ElementaryAbelianGroup218550.1-5 FreeAbelianGroup218650.1-6 DihedralGroup218750.1-7 QuaternionGroup218850.1-8 ExtraspecialGroup218950.1-9 [33X[0;0YAlternatingGroup[133X219050.1-10 [33X[0;0YSymmetricGroup[133X219150.1-11 MathieuGroup219250.1-12 SuzukiGroup219350.1-13 ReeGroup219450.2 [33X[0;0YClassical Groups[133X219550.2-1 [33X[0;0YGeneralLinearGroup[133X219650.2-2 [33X[0;0YSpecialLinearGroup[133X219750.2-3 GeneralUnitaryGroup219850.2-4 SpecialUnitaryGroup219950.2-5 [33X[0;0YSymplecticGroup[133X220050.2-6 GeneralOrthogonalGroup220150.2-7 SpecialOrthogonalGroup220250.2-8 Omega220350.2-9 GeneralSemilinearGroup220450.2-10 SpecialSemilinearGroup220550.2-11 ProjectiveGeneralLinearGroup220650.2-12 ProjectiveSpecialLinearGroup220750.2-13 ProjectiveGeneralUnitaryGroup220850.2-14 ProjectiveSpecialUnitaryGroup220950.2-15 ProjectiveSymplecticGroup221050.2-16 ProjectiveOmega221150.3 [33X[0;0YConjugacy Classes in Classical Groups[133X221250.3-1 NrConjugacyClassesGL221350.4 [33X[0;0YConstructors for Basic Groups[133X221450.5 [33X[0;0YSelection Functions[133X221550.6 [33X[0;0YTransitive Permutation Groups[133X221650.6-1 TransitiveGroup221750.6-2 NrTransitiveGroups221850.6-3 TransitiveIdentification221950.7 [33X[0;0YSmall Groups[133X222050.7-1 SmallGroup222150.7-2 AllSmallGroups222250.7-3 OneSmallGroup222350.7-4 NumberSmallGroups222450.7-5 IdSmallGroup222550.7-6 IdsOfAllSmallGroups222650.7-7 IdGap3SolvableGroup222750.7-8 SmallGroupsInformation222850.7-9 UnloadSmallGroupsData222950.8 [33X[0;0YFinite Perfect Groups[133X223050.8-1 SizesPerfectGroups223150.8-2 [33X[0;0YPerfectGroup[133X223250.8-3 PerfectIdentification223350.8-4 NumberPerfectGroups223450.8-5 NumberPerfectLibraryGroups223550.8-6 SizeNumbersPerfectGroups223650.8-7 [33X[0;0YDisplayInformationPerfectGroups[133X223750.8-8 [33X[0;0YMore about the Perfect Groups Library[133X223850.9 [33X[0;0YPrimitive Permutation Groups[133X223950.9-1 PrimitiveGroup224050.9-2 NrPrimitiveGroups224150.9-3 PrimitiveGroupsIterator224250.9-4 COHORTS_PRIMITIVE_GROUPS224350.10 [33X[0;0YIndex numbers of primitive groups[133X224450.10-1 PrimitiveIdentification224550.10-2 SimsNo224650.10-3 PRIMITIVE_INDICES_MAGMA224750.11 [33X[0;0YIrreducible Solvable Matrix Groups[133X224850.11-1 IrreducibleSolvableGroupMS224950.11-2 NumberIrreducibleSolvableGroups225050.11-3 AllIrreducibleSolvableGroups225150.11-4 OneIrreducibleSolvableGroup225250.11-5 PrimitiveIndexIrreducibleSolvableGroup225350.11-6 IrreducibleSolvableGroup225450.12 [33X[0;0YIrreducible Maximal Finite Integral Matrix Groups[133X225550.12-1 ImfNumberQQClasses225650.12-2 DisplayImfInvariants225750.12-3 ImfInvariants225850.12-4 ImfMatrixGroup225950.12-5 IsomorphismPermGroup226050.12-6 IsomorphismPermGroupImfGroup226151 [33X[0;0YSemigroups and Monoids[133X226251.1 [33X[0;0YSemigroups[133X226351.1-1 IsSemigroup226451.1-2 [33X[0;0YSemigroup[133X226551.1-3 Subsemigroup226651.1-4 IsSubsemigroup226751.1-5 SemigroupByGenerators226851.1-6 AsSemigroup226951.1-7 AsSubsemigroup227051.1-8 GeneratorsOfSemigroup227151.1-9 IsGeneratorsOfSemigroup227251.1-10 [33X[0;0YFreeSemigroup[133X227351.1-11 SemigroupByMultiplicationTable227451.2 [33X[0;0YMonoids[133X227551.2-1 IsMonoid227651.2-2 [33X[0;0YMonoid[133X227751.2-3 Submonoid227851.2-4 MonoidByGenerators227951.2-5 AsMonoid228051.2-6 AsSubmonoid228151.2-7 GeneratorsOfMonoid228251.2-8 TrivialSubmonoid228351.2-9 [33X[0;0YFreeMonoid[133X228451.2-10 MonoidByMultiplicationTable228551.3 [33X[0;0YInverse semigroups and monoids[133X228651.3-1 InverseSemigroup228751.3-2 InverseMonoid228851.3-3 GeneratorsOfInverseSemigroup228951.3-4 GeneratorsOfInverseMonoid229051.3-5 IsInverseSubsemigroup229151.4 [33X[0;0YProperties of Semigroups[133X229251.4-1 IsRegularSemigroup229351.4-2 IsRegularSemigroupElement229451.4-3 InversesOfSemigroupElement229551.4-4 IsSimpleSemigroup229651.4-5 IsZeroSimpleSemigroup229751.4-6 IsZeroGroup229851.4-7 IsReesCongruenceSemigroup229951.4-8 IsInverseSemigroup230051.5 [33X[0;0YIdeals of semigroups[133X230151.5-1 SemigroupIdealByGenerators230251.5-2 ReesCongruenceOfSemigroupIdeal230351.5-3 IsLeftSemigroupIdeal230451.6 [33X[0;0YCongruences for semigroups[133X230551.6-1 IsSemigroupCongruence230651.6-2 IsReesCongruence230751.7 [33X[0;0YQuotients[133X230851.7-1 IsQuotientSemigroup230951.7-2 HomomorphismQuotientSemigroup231051.7-3 QuotientSemigroupPreimage231151.8 [33X[0;0YGreen's Relations[133X231251.8-1 GreensRRelation231351.8-2 IsGreensRelation231451.8-3 IsGreensClass231551.8-4 IsGreensLessThanOrEqual231651.8-5 RClassOfHClass231751.8-6 EggBoxOfDClass231851.8-7 DisplayEggBoxOfDClass231951.8-8 GreensRClassOfElement232051.8-9 GreensRClasses232151.8-10 GroupHClassOfGreensDClass232251.8-11 IsGroupHClass232351.8-12 IsRegularDClass232451.9 [33X[0;0YRees Matrix Semigroups[133X232551.9-1 ReesMatrixSemigroup232651.9-2 ReesMatrixSubsemigroup232751.9-3 IsomorphismReesMatrixSemigroup232851.9-4 IsReesMatrixSemigroupElement232951.9-5 ReesMatrixSemigroupElement233051.9-6 IsReesMatrixSubsemigroup233151.9-7 IsReesMatrixSemigroup233251.9-8 Matrix233351.9-9 [33X[0;0YRows and columns[133X233451.9-10 UnderlyingSemigroup233551.9-11 AssociatedReesMatrixSemigroupOfDClass233652 [33X[0;0YFinitely Presented Semigroups and Monoids[133X233752.1 [33X[0;0YIsSubsemigroupFpSemigroup (Filter)[133X233852.1-1 IsSubsemigroupFpSemigroup233952.1-2 IsSubmonoidFpMonoid234052.1-3 IsFpSemigroup234152.1-4 IsFpMonoid234252.1-5 IsElementOfFpSemigroup234352.1-6 IsElementOfFpMonoid234452.1-7 FpGrpMonSmgOfFpGrpMonSmgElement234552.2 [33X[0;0YCreating Finitely Presented Semigroups[133X234652.2-1 \/234752.2-2 FactorFreeSemigroupByRelations234852.2-3 IsomorphismFpSemigroup234952.3 [33X[0;0YComparison of Elements of Finitely Presented Semigroups[133X235052.3-1 \=235152.4 [33X[0;0YPreimages in the Free Semigroup[133X235252.4-1 UnderlyingElement235352.4-2 ElementOfFpSemigroup235452.4-3 FreeSemigroupOfFpSemigroup235552.4-4 FreeGeneratorsOfFpSemigroup235652.4-5 RelationsOfFpSemigroup235752.5 [33X[0;0YFinitely presented monoids[133X235852.5-1 \/235952.6 [33X[0;0YRewriting Systems and the Knuth-Bendix Procedure[133X236052.6-1 ReducedConfluentRewritingSystem236152.6-2 KB_REW236252.6-3 [33X[0;0YKnuthBendixRewritingSystem[133X236352.6-4 SemigroupOfRewritingSystem236452.6-5 MonoidOfRewritingSystem236552.6-6 FreeSemigroupOfRewritingSystem236652.6-7 FreeMonoidOfRewritingSystem236752.7 [33X[0;0YTodd-Coxeter Procedure[133X236852.7-1 CosetTableOfFpSemigroup236953 [33X[0;0YTransformations[133X237053.1 [33X[0;0YThe family and categories of transformations[133X237153.1-1 IsTransformation237253.1-2 IsTransformationCollection237353.1-3 TransformationFamily237453.2 [33X[0;0YCreating transformations[133X237553.2-1 Transformation237653.2-2 Transformation237753.2-3 TransformationByImageAndKernel237853.2-4 Idempotent237953.2-5 TransformationOp238053.2-6 TransformationNumber238153.2-7 [33X[0;0YRandomTransformation[133X238253.2-8 IdentityTransformation238353.2-9 ConstantTransformation238453.3 [33X[0;0YChanging the representation of a transformation[133X238553.3-1 AsTransformation238653.3-2 RestrictedTransformation238753.3-3 PermutationOfImage238853.4 [33X[0;0YOperators for transformations[133X238953.4-1 PermLeftQuoTransformation239053.4-2 IsInjectiveListTrans239153.4-3 ComponentTransformationInt239253.4-4 PreImagesOfTransformation239353.5 [33X[0;0YAttributes for transformations[133X239453.5-1 DegreeOfTransformation239553.5-2 ImageListOfTransformation239653.5-3 ImageSetOfTransformation239753.5-4 RankOfTransformation239853.5-5 MovedPoints239953.5-6 NrMovedPoints240053.5-7 SmallestMovedPoint240153.5-8 LargestMovedPoint240253.5-9 SmallestImageOfMovedPoint240353.5-10 LargestImageOfMovedPoint240453.5-11 FlatKernelOfTransformation240553.5-12 KernelOfTransformation240653.5-13 InverseOfTransformation240753.5-14 Inverse240853.5-15 IndexPeriodOfTransformation240953.5-16 SmallestIdempotentPower241053.5-17 ComponentsOfTransformation241153.5-18 NrComponentsOfTransformation241253.5-19 ComponentRepsOfTransformation241353.5-20 CyclesOfTransformation241453.5-21 CycleTransformationInt241553.5-22 LeftOne241653.5-23 TrimTransformation241753.6 [33X[0;0YDisplaying transformations[133X241853.7 [33X[0;0YSemigroups of transformations[133X241953.7-1 IsTransformationSemigroup242053.7-2 DegreeOfTransformationSemigroup242153.7-3 FullTransformationSemigroup242253.7-4 IsFullTransformationSemigroup242353.7-5 IsomorphismTransformationSemigroup242453.7-6 AntiIsomorphismTransformationSemigroup242554 [33X[0;0YPartial permutations[133X242654.1 [33X[0;0YThe family and categories of partial permutations[133X242754.1-1 IsPartialPerm242854.1-2 IsPartialPermCollection242954.1-3 PartialPermFamily243054.2 [33X[0;0YCreating partial permutations[133X243154.2-1 PartialPerm243254.2-2 PartialPermOp243354.2-3 RestrictedPartialPerm243454.2-4 JoinOfPartialPerms243554.2-5 MeetOfPartialPerms243654.2-6 EmptyPartialPerm243754.2-7 [33X[0;0YRandomPartialPerm[133X243854.3 [33X[0;0YAttributes for partial permutations[133X243954.3-1 DegreeOfPartialPerm244054.3-2 CodegreeOfPartialPerm244154.3-3 RankOfPartialPerm244254.3-4 DomainOfPartialPerm244354.3-5 ImageOfPartialPermCollection244454.3-6 ImageListOfPartialPerm244554.3-7 ImageSetOfPartialPerm244654.3-8 FixedPointsOfPartialPerm244754.3-9 MovedPoints244854.3-10 NrFixedPoints244954.3-11 NrMovedPoints245054.3-12 SmallestMovedPoint245154.3-13 LargestMovedPoint245254.3-14 SmallestImageOfMovedPoint245354.3-15 LargestImageOfMovedPoint245454.3-16 IndexPeriodOfPartialPerm245554.3-17 SmallestIdempotentPower245654.3-18 ComponentsOfPartialPerm245754.3-19 NrComponentsOfPartialPerm245854.3-20 ComponentRepsOfPartialPerm245954.3-21 LeftOne246054.3-22 One246154.3-23 Zero246254.4 [33X[0;0YChanging the representation of a partial permutation[133X246354.4-1 AsPartialPerm246454.4-2 AsPartialPerm246554.5 [33X[0;0YOperators and operations for partial permutations[133X246654.5-1 PermLeftQuoPartialPerm246754.5-2 PreImagePartialPerm246854.5-3 ComponentPartialPermInt246954.5-4 NaturalLeqPartialPerm247054.5-5 ShortLexLeqPartialPerm247154.5-6 TrimPartialPerm247254.6 [33X[0;0YDisplaying partial permutations[133X247354.7 [33X[0;0YSemigroups and inverse semigroups of partial permutations[133X247454.7-1 IsPartialPermSemigroup247554.7-2 DegreeOfPartialPermSemigroup247654.7-3 SymmetricInverseSemigroup247754.7-4 IsSymmetricInverseSemigroup247854.7-5 NaturalPartialOrder247954.7-6 IsomorphismPartialPermMonoid248055 [33X[0;0YAdditive Magmas[133X248155.1 [33X[0;0Y(Near-)Additive Magma Categories[133X248255.1-1 IsNearAdditiveMagma248355.1-2 IsNearAdditiveMagmaWithZero248455.1-3 IsNearAdditiveGroup248555.1-4 IsAdditiveMagma248655.1-5 IsAdditiveMagmaWithZero248755.1-6 IsAdditiveGroup248855.2 [33X[0;0Y(Near-)Additive Magma Generation[133X248955.2-1 NearAdditiveMagma249055.2-2 NearAdditiveMagmaWithZero249155.2-3 NearAdditiveGroup249255.2-4 NearAdditiveMagmaByGenerators249355.2-5 NearAdditiveMagmaWithZeroByGenerators249455.2-6 NearAdditiveGroupByGenerators249555.2-7 SubnearAdditiveMagma249655.2-8 SubnearAdditiveMagmaWithZero249755.2-9 SubnearAdditiveGroup249855.3 [33X[0;0YAttributes and Properties for (Near-)Additive Magmas[133X249955.3-1 IsAdditivelyCommutative250055.3-2 GeneratorsOfNearAdditiveMagma250155.3-3 GeneratorsOfNearAdditiveMagmaWithZero250255.3-4 GeneratorsOfNearAdditiveGroup250355.3-5 AdditiveNeutralElement250455.3-6 TrivialSubnearAdditiveMagmaWithZero250555.4 [33X[0;0YOperations for (Near-)Additive Magmas[133X250655.4-1 [33X[0;0YClosureNearAdditiveGroup[133X250755.4-2 ShowAdditionTable250856 [33X[0;0YRings[133X250956.1 [33X[0;0YGenerating Rings[133X251056.1-1 IsRing251156.1-2 [33X[0;0YRing[133X251256.1-3 [33X[0;0YDefaultRing[133X251356.1-4 RingByGenerators251456.1-5 DefaultRingByGenerators251556.1-6 GeneratorsOfRing251656.1-7 Subring251756.1-8 [33X[0;0YClosureRing[133X251856.1-9 Quotient251956.2 [33X[0;0YIdeals of Rings[133X252056.2-1 TwoSidedIdeal252156.2-2 TwoSidedIdealNC252256.2-3 IsTwoSidedIdeal252356.2-4 TwoSidedIdealByGenerators252456.2-5 LeftIdealByGenerators252556.2-6 RightIdealByGenerators252656.2-7 GeneratorsOfTwoSidedIdeal252756.2-8 GeneratorsOfLeftIdeal252856.2-9 GeneratorsOfRightIdeal252956.2-10 LeftActingRingOfIdeal253056.2-11 AsLeftIdeal253156.3 [33X[0;0YRings With One[133X253256.3-1 IsRingWithOne253356.3-2 [33X[0;0YRingWithOne[133X253456.3-3 RingWithOneByGenerators253556.3-4 GeneratorsOfRingWithOne253656.3-5 SubringWithOne253756.4 [33X[0;0YProperties of Rings[133X253856.4-1 IsIntegralRing253956.4-2 IsUniqueFactorizationRing254056.4-3 IsLDistributive254156.4-4 IsRDistributive254256.4-5 IsDistributive254356.4-6 IsAnticommutative254456.4-7 IsZeroSquaredRing254556.4-8 IsJacobianRing254656.5 [33X[0;0YUnits and Factorizations[133X254756.5-1 IsUnit254856.5-2 Units254956.5-3 IsAssociated255056.5-4 Associates255156.5-5 StandardAssociate255256.5-6 StandardAssociateUnit255356.5-7 IsIrreducibleRingElement255456.5-8 IsPrime255556.5-9 Factors255656.5-10 PadicValuation255756.6 [33X[0;0YEuclidean Rings[133X255856.6-1 IsEuclideanRing255956.6-2 EuclideanDegree256056.6-3 EuclideanQuotient256156.6-4 EuclideanRemainder256256.6-5 QuotientRemainder256356.7 [33X[0;0YGcd and Lcm[133X256456.7-1 [33X[0;0YGcd[133X256556.7-2 GcdOp256656.7-3 [33X[0;0YGcdRepresentation[133X256756.7-4 GcdRepresentationOp256856.7-5 ShowGcd256956.7-6 [33X[0;0YLcm[133X257056.7-7 LcmOp257156.7-8 QuotientMod257256.7-9 PowerMod257356.7-10 InterpolatedPolynomial257456.8 [33X[0;0YHomomorphisms of Rings[133X257556.8-1 RingGeneralMappingByImages257656.8-2 RingHomomorphismByImages257756.8-3 RingHomomorphismByImagesNC257856.8-4 NaturalHomomorphismByIdeal257956.9 [33X[0;0YSmall Rings[133X258056.9-1 SmallRing258156.9-2 NumberSmallRings258256.9-3 Subrings258356.9-4 Ideals258456.9-5 DirectSum258556.9-6 RingByStructureConstants258657 [33X[0;0YModules[133X258757.1 [33X[0;0YGenerating modules[133X258857.1-1 IsLeftOperatorAdditiveGroup258957.1-2 IsLeftModule259057.1-3 GeneratorsOfLeftOperatorAdditiveGroup259157.1-4 GeneratorsOfLeftModule259257.1-5 AsLeftModule259357.1-6 IsRightOperatorAdditiveGroup259457.1-7 IsRightModule259557.1-8 GeneratorsOfRightOperatorAdditiveGroup259657.1-9 GeneratorsOfRightModule259757.1-10 LeftModuleByGenerators259857.1-11 LeftActingDomain259957.2 [33X[0;0YSubmodules[133X260057.2-1 Submodule260157.2-2 SubmoduleNC260257.2-3 ClosureLeftModule260357.2-4 TrivialSubmodule260457.3 [33X[0;0YFree Modules[133X260557.3-1 IsFreeLeftModule260657.3-2 FreeLeftModule260757.3-3 Dimension260857.3-4 IsFiniteDimensional260957.3-5 UseBasis261057.3-6 IsRowModule261157.3-7 IsMatrixModule261257.3-8 IsFullRowModule261357.3-9 FullRowModule261457.3-10 IsFullMatrixModule261557.3-11 FullMatrixModule261658 [33X[0;0YFields and Division Rings[133X261758.1 [33X[0;0YGenerating Fields[133X261858.1-1 IsDivisionRing261958.1-2 IsField262058.1-3 Field262158.1-4 DefaultField262258.1-5 DefaultFieldByGenerators262358.1-6 GeneratorsOfDivisionRing262458.1-7 GeneratorsOfField262558.1-8 DivisionRingByGenerators262658.1-9 AsDivisionRing262758.2 [33X[0;0YSubfields of Fields[133X262858.2-1 Subfield262958.2-2 FieldOverItselfByGenerators263058.2-3 PrimitiveElement263158.2-4 PrimeField263258.2-5 IsPrimeField263358.2-6 DegreeOverPrimeField263458.2-7 DefiningPolynomial263558.2-8 RootOfDefiningPolynomial263658.2-9 FieldExtension263758.2-10 Subfields263858.3 [33X[0;0YGalois Action[133X263958.3-1 GaloisGroup264058.3-2 MinimalPolynomial264158.3-3 TracePolynomial264258.3-4 Norm264358.3-5 [33X[0;0YTraces of field elements and matrices[133X264458.3-6 Conjugates264558.3-7 NormalBase264659 [33X[0;0YFinite Fields[133X264759.1 [33X[0;0YFinite Field Elements[133X264859.1-1 IsFFE264959.1-2 Z265059.1-3 IsLexOrderedFFE265159.2 [33X[0;0YOperations for Finite Field Elements[133X265259.2-1 DegreeFFE265359.2-2 LogFFE265459.2-3 IntFFE265559.2-4 IntFFESymm265659.2-5 IntVecFFE265759.2-6 AsInternalFFE265859.3 [33X[0;0YCreating Finite Fields[133X265959.3-1 DefaultField266059.3-2 GaloisField266159.3-3 PrimitiveRoot266259.4 [33X[0;0YFrobenius Automorphisms[133X266359.4-1 FrobeniusAutomorphism266459.5 [33X[0;0YConway Polynomials[133X266559.5-1 ConwayPolynomial266659.5-2 IsCheapConwayPolynomial266759.5-3 RandomPrimitivePolynomial266859.6 [33X[0;0YPrinting, Viewing and Displaying Finite Field Elements[133X266959.6-1 ViewObj267060 [33X[0;0YAbelian Number Fields[133X267160.1 [33X[0;0YConstruction of Abelian Number Fields[133X267260.1-1 CyclotomicField267360.1-2 AbelianNumberField267460.1-3 GaussianRationals267560.2 [33X[0;0YOperations for Abelian Number Fields[133X267660.2-1 Factors267760.2-2 IsNumberField267860.2-3 IsAbelianNumberField267960.2-4 IsCyclotomicField268060.2-5 GaloisStabilizer268160.3 [33X[0;0YIntegral Bases of Abelian Number Fields[133X268260.3-1 ZumbroichBase268360.3-2 LenstraBase268460.4 [33X[0;0YGalois Groups of Abelian Number Fields[133X268560.4-1 GaloisGroup268660.4-2 ANFAutomorphism268760.5 [33X[0;0YGaussians[133X268860.5-1 GaussianIntegers268960.5-2 IsGaussianIntegers269061 [33X[0;0YVector Spaces[133X269161.1 [33X[0;0YIsLeftVectorSpace (Filter)[133X269261.1-1 IsLeftVectorSpace269361.2 [33X[0;0YConstructing Vector Spaces[133X269461.2-1 VectorSpace269561.2-2 Subspace269661.2-3 AsVectorSpace269761.2-4 AsSubspace269861.3 [33X[0;0YOperations and Attributes for Vector Spaces[133X269961.3-1 GeneratorsOfLeftVectorSpace270061.3-2 TrivialSubspace270161.4 [33X[0;0YDomains of Subspaces of Vector Spaces[133X270261.4-1 Subspaces270361.4-2 IsSubspacesVectorSpace270461.5 [33X[0;0YBases of Vector Spaces[133X270561.5-1 IsBasis270661.5-2 Basis270761.5-3 CanonicalBasis270861.5-4 RelativeBasis270961.6 [33X[0;0YOperations for Vector Space Bases[133X271061.6-1 BasisVectors271161.6-2 UnderlyingLeftModule271261.6-3 Coefficients271361.6-4 LinearCombination271461.6-5 EnumeratorByBasis271561.6-6 IteratorByBasis271661.7 [33X[0;0YOperations for Special Kinds of Bases[133X271761.7-1 IsCanonicalBasis271861.7-2 IsIntegralBasis271961.7-3 IsNormalBasis272061.8 [33X[0;0YMutable Bases[133X272161.8-1 IsMutableBasis272261.8-2 MutableBasis272361.8-3 NrBasisVectors272461.8-4 ImmutableBasis272561.8-5 IsContainedInSpan272661.8-6 CloseMutableBasis272761.9 [33X[0;0YRow and Matrix Spaces[133X272861.9-1 IsRowSpace272961.9-2 IsMatrixSpace273061.9-3 IsGaussianSpace273161.9-4 FullRowSpace273261.9-5 FullMatrixSpace273361.9-6 DimensionOfVectors273461.9-7 IsSemiEchelonized273561.9-8 SemiEchelonBasis273661.9-9 IsCanonicalBasisFullRowModule273761.9-10 IsCanonicalBasisFullMatrixModule273861.9-11 NormedRowVectors273961.9-12 SiftedVector274061.10 [33X[0;0YVector Space Homomorphisms[133X274161.10-1 LeftModuleGeneralMappingByImages274261.10-2 LeftModuleHomomorphismByImages274361.10-3 LeftModuleHomomorphismByMatrix274461.10-4 NaturalHomomorphismBySubspace274561.10-5 Hom274661.10-6 End274761.10-7 IsFullHomModule274861.10-8 IsPseudoCanonicalBasisFullHomModule274961.10-9 IsLinearMappingsModule275061.11 [33X[0;0YVector Spaces Handled By Nice Bases[133X275161.11-1 NiceFreeLeftModule275261.11-2 NiceVector275361.11-3 NiceFreeLeftModuleInfo275461.11-4 NiceBasis275561.11-5 IsBasisByNiceBasis275661.11-6 IsHandledByNiceBasis275761.12 [33X[0;0YHow to Implement New Kinds of Vector Spaces[133X275861.12-1 DeclareHandlingByNiceBasis275961.12-2 NiceBasisFiltersInfo276061.12-3 CheckForHandlingByNiceBasis276162 [33X[0;0YAlgebras[133X276262.1 [33X[0;0YInfoAlgebra (Info Class)[133X276362.1-1 InfoAlgebra276462.2 [33X[0;0YConstructing Algebras by Generators[133X276562.2-1 Algebra276662.2-2 AlgebraWithOne276762.3 [33X[0;0YConstructing Algebras as Free Algebras[133X276862.3-1 FreeAlgebra276962.3-2 FreeAlgebraWithOne277062.3-3 FreeAssociativeAlgebra277162.3-4 FreeAssociativeAlgebraWithOne277262.4 [33X[0;0YConstructing Algebras by Structure Constants[133X277362.4-1 AlgebraByStructureConstants277462.4-2 StructureConstantsTable277562.4-3 EmptySCTable277662.4-4 SetEntrySCTable277762.4-5 GapInputSCTable277862.4-6 TestJacobi277962.4-7 IdentityFromSCTable278062.4-8 QuotientFromSCTable278162.5 [33X[0;0YSome Special Algebras[133X278262.5-1 QuaternionAlgebra278362.5-2 ComplexificationQuat278462.5-3 OctaveAlgebra278562.5-4 FullMatrixAlgebra278662.5-5 NullAlgebra278762.6 [33X[0;0YSubalgebras[133X278862.6-1 Subalgebra278962.6-2 SubalgebraNC279062.6-3 SubalgebraWithOne279162.6-4 SubalgebraWithOneNC279262.6-5 TrivialSubalgebra279362.7 [33X[0;0YIdeals of Algebras[133X279462.8 [33X[0;0YCategories and Properties of Algebras[133X279562.8-1 IsFLMLOR279662.8-2 IsFLMLORWithOne279762.8-3 IsAlgebra279862.8-4 IsAlgebraWithOne279962.8-5 IsLieAlgebra280062.8-6 IsSimpleAlgebra280162.8-7 IsFiniteDimensional280262.8-8 IsQuaternion280362.9 [33X[0;0YAttributes and Operations for Algebras[133X280462.9-1 GeneratorsOfAlgebra280562.9-2 GeneratorsOfAlgebraWithOne280662.9-3 ProductSpace280762.9-4 PowerSubalgebraSeries280862.9-5 AdjointBasis280962.9-6 IndicesOfAdjointBasis281062.9-7 AsAlgebra281162.9-8 AsAlgebraWithOne281262.9-9 AsSubalgebra281362.9-10 AsSubalgebraWithOne281462.9-11 MutableBasisOfClosureUnderAction281562.9-12 MutableBasisOfNonassociativeAlgebra281662.9-13 MutableBasisOfIdealInNonassociativeAlgebra281762.9-14 DirectSumOfAlgebras281862.9-15 FullMatrixAlgebraCentralizer281962.9-16 RadicalOfAlgebra282062.9-17 CentralIdempotentsOfAlgebra282162.9-18 DirectSumDecomposition282262.9-19 LeviMalcevDecomposition282362.9-20 Grading282462.10 [33X[0;0YHomomorphisms of Algebras[133X282562.10-1 AlgebraGeneralMappingByImages282662.10-2 AlgebraHomomorphismByImages282762.10-3 AlgebraHomomorphismByImagesNC282862.10-4 AlgebraWithOneGeneralMappingByImages282962.10-5 AlgebraWithOneHomomorphismByImages283062.10-6 AlgebraWithOneHomomorphismByImagesNC283162.10-7 NaturalHomomorphismByIdeal283262.10-8 OperationAlgebraHomomorphism283362.10-9 NiceAlgebraMonomorphism283462.10-10 IsomorphismFpAlgebra283562.10-11 IsomorphismMatrixAlgebra283662.10-12 IsomorphismSCAlgebra283762.10-13 RepresentativeLinearOperation283862.11 [33X[0;0YRepresentations of Algebras[133X283962.11-1 LeftAlgebraModuleByGenerators284062.11-2 RightAlgebraModuleByGenerators284162.11-3 BiAlgebraModuleByGenerators284262.11-4 LeftAlgebraModule284362.11-5 RightAlgebraModule284462.11-6 BiAlgebraModule284562.11-7 GeneratorsOfAlgebraModule284662.11-8 IsAlgebraModuleElement284762.11-9 IsLeftAlgebraModuleElement284862.11-10 IsRightAlgebraModuleElement284962.11-11 LeftActingAlgebra285062.11-12 RightActingAlgebra285162.11-13 ActingAlgebra285262.11-14 IsBasisOfAlgebraModuleElementSpace285362.11-15 MatrixOfAction285462.11-16 SubAlgebraModule285562.11-17 LeftModuleByHomomorphismToMatAlg285662.11-18 RightModuleByHomomorphismToMatAlg285762.11-19 AdjointModule285862.11-20 FaithfulModule285962.11-21 ModuleByRestriction286062.11-22 NaturalHomomorphismBySubAlgebraModule286162.11-23 DirectSumOfAlgebraModules286262.11-24 TranslatorSubalgebra286363 [33X[0;0YFinitely Presented Algebras[133X286464 [33X[0;0YLie Algebras[133X286564.1 [33X[0;0YLie Objects[133X286664.1-1 LieObject286764.1-2 IsLieObject286864.1-3 LieFamily286964.1-4 UnderlyingFamily287064.1-5 UnderlyingRingElement287164.2 [33X[0;0YConstructing Lie algebras[133X287264.2-1 LieAlgebraByStructureConstants287364.2-2 RestrictedLieAlgebraByStructureConstants287464.2-3 LieAlgebra287564.2-4 FreeLieAlgebra287664.2-5 FullMatrixLieAlgebra287764.2-6 RightDerivations287864.2-7 SimpleLieAlgebra287964.3 [33X[0;0YDistinguished Subalgebras[133X288064.3-1 LieCentre288164.3-2 LieCentralizer288264.3-3 LieNormalizer288364.3-4 LieDerivedSubalgebra288464.3-5 LieNilRadical288564.3-6 LieSolvableRadical288664.3-7 CartanSubalgebra288764.4 [33X[0;0YSeries of Ideals[133X288864.4-1 LieDerivedSeries288964.4-2 LieLowerCentralSeries289064.4-3 LieUpperCentralSeries289164.5 [33X[0;0YProperties of a Lie Algebra[133X289264.5-1 IsLieAbelian289364.5-2 IsLieNilpotent289464.5-3 IsLieSolvable289564.6 [33X[0;0YSemisimple Lie Algebras and Root Systems[133X289664.6-1 SemiSimpleType289764.6-2 ChevalleyBasis289864.6-3 IsRootSystem289964.6-4 IsRootSystemFromLieAlgebra290064.6-5 RootSystem290164.6-6 UnderlyingLieAlgebra290264.6-7 PositiveRoots290364.6-8 NegativeRoots290464.6-9 PositiveRootVectors290564.6-10 NegativeRootVectors290664.6-11 SimpleSystem290764.6-12 CartanMatrix290864.6-13 BilinearFormMat290964.6-14 CanonicalGenerators291064.7 [33X[0;0YSemisimple Lie Algebras and Weyl Groups of Root Systems[133X291164.7-1 IsWeylGroup291264.7-2 SparseCartanMatrix291364.7-3 WeylGroup291464.7-4 ApplySimpleReflection291564.7-5 LongestWeylWordPerm291664.7-6 ConjugateDominantWeight291764.7-7 WeylOrbitIterator291864.8 [33X[0;0YRestricted Lie algebras[133X291964.8-1 IsRestrictedLieAlgebra292064.8-2 PthPowerImages292164.8-3 PthPowerImage292264.8-4 JenningsLieAlgebra292364.8-5 PCentralLieAlgebra292464.8-6 NaturalHomomorphismOfLieAlgebraFromNilpotentGroup292564.9 [33X[0;0YThe Adjoint Representation[133X292664.9-1 AdjointMatrix292764.9-2 AdjointAssociativeAlgebra292864.9-3 KillingMatrix292964.9-4 KappaPerp293064.9-5 IsNilpotentElement293164.9-6 NonNilpotentElement293264.9-7 FindSl2293364.10 [33X[0;0YUniversal Enveloping Algebras[133X293464.10-1 UniversalEnvelopingAlgebra293564.11 [33X[0;0YFinitely Presented Lie Algebras[133X293664.11-1 FpLieAlgebraByCartanMatrix293764.11-2 NilpotentQuotientOfFpLieAlgebra293864.12 [33X[0;0YModules over Lie Algebras and Their Cohomology[133X293964.12-1 IsCochain294064.12-2 Cochain294164.12-3 CochainSpace294264.12-4 ValueCochain294364.12-5 LieCoboundaryOperator294464.12-6 Cocycles294564.12-7 Coboundaries294664.13 [33X[0;0YModules over Semisimple Lie Algebras[133X294764.13-1 DominantWeights294864.13-2 DominantCharacter294964.13-3 DecomposeTensorProduct295064.13-4 DimensionOfHighestWeightModule295164.14 [33X[0;0YAdmissible Lattices in UEA[133X295264.14-1 IsUEALatticeElement295364.14-2 LatticeGeneratorsInUEA295464.14-3 ObjByExtRep295564.14-4 IsWeightRepElement295664.14-5 HighestWeightModule295764.15 [33X[0;0YTensor Products and Exterior and Symmetric Powers[133X295864.15-1 TensorProductOfAlgebraModules295964.15-2 ExteriorPowerOfAlgebraModule296064.15-3 SymmetricPowerOfAlgebraModule296165 [33X[0;0YMagma Rings[133X296265.1 [33X[0;0YFree Magma Rings[133X296365.1-1 FreeMagmaRing296465.1-2 GroupRing296565.1-3 IsFreeMagmaRing296665.1-4 IsFreeMagmaRingWithOne296765.1-5 IsGroupRing296865.1-6 UnderlyingMagma296965.1-7 AugmentationIdeal297065.2 [33X[0;0YElements of Free Magma Rings[133X297165.2-1 IsMagmaRingObjDefaultRep297265.2-2 IsElementOfFreeMagmaRing297365.2-3 IsElementOfFreeMagmaRingFamily297465.2-4 CoefficientsAndMagmaElements297565.2-5 ZeroCoefficient297665.2-6 ElementOfMagmaRing297765.3 [33X[0;0YNatural Embeddings related to Magma Rings[133X297865.4 [33X[0;0YMagma Rings modulo Relations[133X297965.4-1 IsElementOfMagmaRingModuloRelations298065.4-2 IsElementOfMagmaRingModuloRelationsFamily298165.4-3 NormalizedElementOfMagmaRingModuloRelations298265.4-4 IsMagmaRingModuloRelations298365.5 [33X[0;0YMagma Rings modulo the Span of a Zero Element[133X298465.5-1 IsElementOfMagmaRingModuloSpanOfZeroFamily298565.5-2 IsMagmaRingModuloSpanOfZero298665.5-3 MagmaRingModuloSpanOfZero298765.6 [33X[0;0YTechnical Details about the Implementation of Magma Rings[133X298866 [33X[0;0YPolynomials and Rational Functions[133X298966.1 [33X[0;0YIndeterminates[133X299066.1-1 [33X[0;0YIndeterminate[133X299166.1-2 IndeterminateNumberOfUnivariateRationalFunction299266.1-3 IndeterminateOfUnivariateRationalFunction299366.1-4 IndeterminateName299466.1-5 CIUnivPols299566.2 [33X[0;0YOperations for Rational Functions[133X299666.3 [33X[0;0YComparison of Rational Functions[133X299766.4 [33X[0;0YProperties and Attributes of Rational Functions[133X299866.4-1 IsPolynomialFunction299966.4-2 NumeratorOfRationalFunction300066.4-3 DenominatorOfRationalFunction300166.4-4 IsPolynomial300266.4-5 AsPolynomial300366.4-6 IsUnivariateRationalFunction300466.4-7 CoefficientsOfUnivariateRationalFunction300566.4-8 IsUnivariatePolynomial300666.4-9 CoefficientsOfUnivariatePolynomial300766.4-10 IsLaurentPolynomial300866.4-11 IsConstantRationalFunction300966.4-12 IsPrimitivePolynomial301066.4-13 SplittingField301166.5 [33X[0;0YUnivariate Polynomials[133X301266.5-1 UnivariatePolynomial301366.5-2 UnivariatePolynomialByCoefficients301466.5-3 DegreeOfLaurentPolynomial301566.5-4 RootsOfPolynomial301666.5-5 RootsOfUPol301766.5-6 QuotRemLaurpols301866.5-7 UnivariatenessTestRationalFunction301966.5-8 InfoPoly302066.6 [33X[0;0YPolynomials as Univariate Polynomials in one Indeterminate[133X302166.6-1 DegreeIndeterminate302266.6-2 PolynomialCoefficientsOfPolynomial302366.6-3 LeadingCoefficient302466.6-4 LeadingMonomial302566.6-5 Derivative302666.6-6 Discriminant302766.6-7 Resultant302866.7 [33X[0;0YMultivariate Polynomials[133X302966.7-1 [33X[0;0YValue[133X303066.8 [33X[0;0YMinimal Polynomials[133X303166.8-1 MinimalPolynomial303266.9 [33X[0;0YCyclotomic Polynomials[133X303366.9-1 CyclotomicPolynomial303466.10 [33X[0;0YPolynomial Factorization[133X303566.10-1 Factors303666.10-2 FactorsSquarefree303766.11 [33X[0;0YPolynomials over the Rationals[133X303866.11-1 PrimitivePolynomial303966.11-2 PolynomialModP304066.11-3 GaloisType304166.11-4 ProbabilityShapes304266.12 [33X[0;0YFactorization of Polynomials over the Rationals[133X304366.12-1 BombieriNorm304466.12-2 MinimizedBombieriNorm304566.12-3 HenselBound304666.12-4 OneFactorBound304766.13 [33X[0;0YLaurent Polynomials[133X304866.13-1 LaurentPolynomialByCoefficients304966.13-2 CoefficientsOfLaurentPolynomial305066.13-3 IndeterminateNumberOfLaurentPolynomial305166.14 [33X[0;0YUnivariate Rational Functions[133X305266.14-1 UnivariateRationalFunctionByCoefficients305366.15 [33X[0;0YPolynomial Rings and Function Fields[133X305466.15-1 [33X[0;0YPolynomialRing[133X305566.15-2 IndeterminatesOfPolynomialRing305666.15-3 CoefficientsRing305766.15-4 IsPolynomialRing305866.15-5 IsFiniteFieldPolynomialRing305966.15-6 IsAbelianNumberFieldPolynomialRing306066.15-7 IsRationalsPolynomialRing306166.15-8 [33X[0;0YFunctionField[133X306266.15-9 IsFunctionField306366.16 [33X[0;0YUnivariate Polynomial Rings[133X306466.16-1 [33X[0;0YUnivariatePolynomialRing[133X306566.16-2 IsUnivariatePolynomialRing306666.17 [33X[0;0YMonomial Orderings[133X306766.17-1 IsMonomialOrdering306866.17-2 LeadingMonomialOfPolynomial306966.17-3 LeadingTermOfPolynomial307066.17-4 LeadingCoefficientOfPolynomial307166.17-5 MonomialComparisonFunction307266.17-6 MonomialExtrepComparisonFun307366.17-7 MonomialLexOrdering307466.17-8 MonomialGrlexOrdering307566.17-9 MonomialGrevlexOrdering307666.17-10 EliminationOrdering307766.17-11 PolynomialReduction307866.17-12 PolynomialReducedRemainder307966.17-13 PolynomialDivisionAlgorithm308066.17-14 MonomialExtGrlexLess308166.18 [33X[0;0YGroebner Bases[133X308266.18-1 [33X[0;0YGroebnerBasis[133X308366.18-2 [33X[0;0YReducedGroebnerBasis[133X308466.18-3 StoredGroebnerBasis308566.18-4 InfoGroebner308666.19 [33X[0;0YRational Function Families[133X308766.19-1 RationalFunctionsFamily308866.19-2 IsPolynomialFunctionsFamily308966.19-3 CoefficientsFamily309066.20 [33X[0;0YThe Representations of Rational Functions[133X309166.21 [33X[0;0YThe Defining Attributes of Rational Functions[133X309266.21-1 IsRationalFunctionDefaultRep309366.21-2 ExtRepNumeratorRatFun309466.21-3 ExtRepDenominatorRatFun309566.21-4 ZeroCoefficientRatFun309666.21-5 IsPolynomialDefaultRep309766.21-6 ExtRepPolynomialRatFun309866.21-7 IsLaurentPolynomialDefaultRep309966.22 [33X[0;0YCreation of Rational Functions[133X310066.22-1 RationalFunctionByExtRep310166.22-2 PolynomialByExtRep310266.22-3 LaurentPolynomialByExtRep310366.23 [33X[0;0YArithmetic for External Representations of Polynomials[133X310466.23-1 ZippedSum310566.23-2 ZippedProduct310666.23-3 QuotientPolynomialsExtRep310766.24 [33X[0;0YCancellation Tests for Rational Functions[133X310866.24-1 RationalFunctionByExtRepWithCancellation310966.24-2 TryGcdCancelExtRepPolynomials311066.24-3 HeuristicCancelPolynomialsExtRep311167 [33X[0;0YAlgebraic extensions of fields[133X311267.1 [33X[0;0YCreation of Algebraic Extensions[133X311367.1-1 AlgebraicExtension311467.1-2 IsAlgebraicExtension311567.2 [33X[0;0YElements in Algebraic Extensions[133X311667.2-1 IsAlgebraicElement311768 [33X[0;0Yp-adic Numbers (preliminary)[133X311868.1 [33X[0;0YPure p-adic Numbers[133X311968.1-1 PurePadicNumberFamily312068.1-2 PadicNumber312168.1-3 Valuation312268.1-4 ShiftedPadicNumber312368.1-5 IsPurePadicNumber312468.1-6 IsPurePadicNumberFamily312568.2 [33X[0;0YExtensions of the p-adic Numbers[133X312668.2-1 PadicExtensionNumberFamily312768.2-2 PadicNumber312868.2-3 IsPadicExtensionNumber312968.2-4 IsPadicExtensionNumberFamily313069 [33X[0;0YThe MeatAxe[133X313169.1 [33X[0;0YMeatAxe Modules[133X313269.1-1 [33X[0;0YGModuleByMats[133X313369.2 [33X[0;0YModule Constructions[133X313469.2-1 PermutationGModule313569.2-2 TensorProductGModule313669.2-3 WedgeGModule313769.3 [33X[0;0YSelecting a Different MeatAxe[133X313869.3-1 MTX313969.4 [33X[0;0YAccessing a Module[133X314069.4-1 MTX.Generators314169.4-2 MTX.Dimension314269.4-3 MTX.Field314369.5 [33X[0;0YIrreducibility Tests[133X314469.5-1 MTX.IsIrreducible314569.5-2 MTX.IsAbsolutelyIrreducible314669.5-3 MTX.DegreeSplittingField314769.6 [33X[0;0YDecomposition of modules[133X314869.6-1 MTX.IsIndecomposable314969.6-2 MTX.Indecomposition315069.6-3 MTX.HomogeneousComponents315169.7 [33X[0;0YFinding Submodules[133X315269.7-1 MTX.SubmoduleGModule315369.7-2 MTX.ProperSubmoduleBasis315469.7-3 MTX.BasesSubmodules315569.7-4 MTX.BasesMinimalSubmodules315669.7-5 MTX.BasesMaximalSubmodules315769.7-6 MTX.BasisRadical315869.7-7 MTX.BasisSocle315969.7-8 MTX.BasesMinimalSupermodules316069.7-9 MTX.BasesCompositionSeries316169.7-10 MTX.CompositionFactors316269.7-11 MTX.CollectedFactors316369.8 [33X[0;0YInduced Actions[133X316469.8-1 MTX.NormedBasisAndBaseChange316569.8-2 MTX.InducedActionSubmodule316669.8-3 MTX.InducedActionFactorModule316769.8-4 MTX.InducedActionMatrix316869.8-5 MTX.InducedAction316969.9 [33X[0;0YModule Homomorphisms[133X317069.9-1 MTX.BasisModuleHomomorphisms317169.9-2 MTX.BasisModuleEndomorphisms317269.9-3 MTX.IsomorphismModules317369.9-4 MTX.ModuleAutomorphisms317469.10 [33X[0;0YModule Homomorphisms for irreducible modules[133X317569.10-1 MTX.IsEquivalent317669.10-2 MTX.IsomorphismIrred317769.10-3 MTX.Homomorphism317869.10-4 MTX.Homomorphisms317969.10-5 MTX.Distinguish318069.11 [33X[0;0YMeatAxe Functionality for Invariant Forms[133X318169.11-1 MTX.InvariantBilinearForm318269.11-2 MTX.InvariantSesquilinearForm318369.11-3 MTX.InvariantQuadraticForm318469.11-4 MTX.BasisInOrbit318569.11-5 MTX.OrthogonalSign318669.12 [33X[0;0YThe Smash MeatAxe[133X318769.12-1 SMTX.RandomIrreducibleSubGModule318869.12-2 SMTX.GoodElementGModule318969.12-3 SMTX.SortHomGModule319069.12-4 SMTX.MinimalSubGModules319169.12-5 SMTX.Setter319269.12-6 SMTX.Getter319369.12-7 SMTX.IrreducibilityTest319469.12-8 SMTX.AbsoluteIrreducibilityTest319569.12-9 SMTX.MinimalSubGModule319669.12-10 SMTX.MatrixSum319769.12-11 SMTX.CompleteBasis319869.13 [33X[0;0YSmash MeatAxe Flags[133X319969.13-1 SMTX.Subbasis320069.13-2 SMTX.AlgEl320169.13-3 SMTX.AlgElMat320269.13-4 SMTX.AlgElCharPol320369.13-5 SMTX.AlgElCharPolFac320469.13-6 SMTX.AlgElNullspaceVec320569.13-7 SMTX.AlgElNullspaceDimension320669.13-8 SMTX.CentMat320769.13-9 SMTX.CentMatMinPoly320870 [33X[0;0YTables of Marks[133X320970.1 [33X[0;0YMore about Tables of Marks[133X321070.2 [33X[0;0YTable of Marks Objects in GAP[133X321170.3 [33X[0;0YConstructing Tables of Marks[133X321270.3-1 TableOfMarks321370.3-2 TableOfMarksByLattice321470.3-3 LatticeSubgroupsByTom321570.4 [33X[0;0YPrinting Tables of Marks[133X321670.4-1 ViewObj321770.4-2 PrintObj321870.4-3 Display321970.5 [33X[0;0YSorting Tables of Marks[133X322070.5-1 SortedTom322170.5-2 PermutationTom322270.6 [33X[0;0YTechnical Details about Tables of Marks[133X322370.6-1 InfoTom322470.6-2 IsTableOfMarks322570.6-3 TableOfMarksFamily322670.6-4 TableOfMarksComponents322770.6-5 ConvertToTableOfMarks322870.7 [33X[0;0YAttributes of Tables of Marks[133X322970.7-1 MarksTom323070.7-2 NrSubsTom323170.7-3 LengthsTom323270.7-4 ClassTypesTom323370.7-5 ClassNamesTom323470.7-6 FusionsTom323570.7-7 UnderlyingGroup323670.7-8 IdempotentsTom323770.7-9 Identifier323870.7-10 MatTom323970.7-11 MoebiusTom324070.7-12 WeightsTom324170.8 [33X[0;0YProperties of Tables of Marks[133X324270.8-1 IsAbelianTom324370.9 [33X[0;0YOther Operations for Tables of Marks[133X324470.9-1 IsInternallyConsistent324570.9-2 DerivedSubgroupTom324670.9-3 DerivedSubgroupsTomPossible324770.9-4 NormalizerTom324870.9-5 ContainedTom324970.9-6 ContainingTom325070.9-7 CyclicExtensionsTom325170.9-8 DecomposedFixedPointVector325270.9-9 EulerianFunctionByTom325370.9-10 IntersectionsTom325470.9-11 FactorGroupTom325570.9-12 MaximalSubgroupsTom325670.9-13 MinimalSupergroupsTom325770.10 [33X[0;0YAccessing Subgroups via Tables of Marks[133X325870.10-1 GeneratorsSubgroupsTom325970.10-2 StraightLineProgramsTom326070.10-3 IsTableOfMarksWithGens326170.10-4 RepresentativeTom326270.11 [33X[0;0YThe Interface between Tables of Marks and Character Tables[133X326370.11-1 FusionCharTableTom326470.11-2 PermCharsTom326570.12 [33X[0;0YGeneric Construction of Tables of Marks[133X326670.12-1 TableOfMarksCyclic326770.12-2 TableOfMarksDihedral326870.12-3 TableOfMarksFrobenius326970.13 [33X[0;0YThe Library of Tables of Marks[133X327071 [33X[0;0YCharacter Tables[133X327171.1 [33X[0;0YSome Remarks about Character Theory in [5XGAP[105X[133X327271.2 [33X[0;0YHistory of Character Theory Stuff in GAP[133X327371.3 [33X[0;0YCreating Character Tables[133X327471.3-1 [33X[0;0YCharacterTable[133X327571.3-2 [33X[0;0YBrauerTable[133X327671.3-3 CharacterTableRegular327771.3-4 SupportedCharacterTableInfo327871.3-5 ConvertToCharacterTable327971.4 [33X[0;0YCharacter Table Categories[133X328071.4-1 IsNearlyCharacterTable328171.4-2 InfoCharacterTable328271.4-3 NearlyCharacterTablesFamily328371.5 [33X[0;0YConventions for Character Tables[133X328471.6 [33X[0;0YThe Interface between Character Tables and Groups[133X328571.6-1 UnderlyingGroup328671.6-2 ConjugacyClasses328771.6-3 IdentificationOfConjugacyClasses328871.6-4 CharacterTableWithStoredGroup328971.6-5 CompatibleConjugacyClasses329071.7 [33X[0;0YOperators for Character Tables[133X329171.8 [33X[0;0YAttributes and Properties for Groups and Character Tables[133X329271.8-1 [33X[0;0YCharacterDegrees[133X329371.8-2 [33X[0;0YIrr[133X329471.8-3 [33X[0;0YLinearCharacters[133X329571.8-4 [33X[0;0YOrdinaryCharacterTable[133X329671.8-5 [33X[0;0YGroup Operations Applicable to Character Tables[133X329771.9 [33X[0;0YAttributes and Properties only for Character Tables[133X329871.9-1 OrdersClassRepresentatives329971.9-2 SizesCentralizers330071.9-3 SizesConjugacyClasses330171.9-4 AutomorphismsOfTable330271.9-5 [33X[0;0YUnderlyingCharacteristic[133X330371.9-6 [33X[0;0YClass Names and Character Names[133X330471.9-7 [33X[0;0YClass Parameters and Character Parameters[133X330571.9-8 Identifier330671.9-9 InfoText330771.9-10 InverseClasses330871.9-11 RealClasses330971.9-12 ClassOrbit331071.9-13 ClassRoots331171.10 [33X[0;0YNormal Subgroups Represented by Lists of Class Positions[133X331271.10-1 ClassPositionsOfNormalSubgroups331371.10-2 ClassPositionsOfAgemo331471.10-3 ClassPositionsOfCentre331571.10-4 ClassPositionsOfDirectProductDecompositions331671.10-5 ClassPositionsOfDerivedSubgroup331771.10-6 ClassPositionsOfElementaryAbelianSeries331871.10-7 ClassPositionsOfFittingSubgroup331971.10-8 ClassPositionsOfLowerCentralSeries332071.10-9 ClassPositionsOfUpperCentralSeries332171.10-10 ClassPositionsOfSupersolvableResiduum332271.10-11 ClassPositionsOfPCore332371.10-12 ClassPositionsOfNormalClosure332471.11 [33X[0;0YOperations Concerning Blocks[133X332571.11-1 PrimeBlocks332671.11-2 SameBlock332771.11-3 BlocksInfo332871.11-4 DecompositionMatrix332971.11-5 LaTeXStringDecompositionMatrix333071.12 [33X[0;0YOther Operations for Character Tables[133X333171.12-1 Index333271.12-2 IsInternallyConsistent333371.12-3 IsPSolvableCharacterTable333471.12-4 IsClassFusionOfNormalSubgroup333571.12-5 Indicator333671.12-6 NrPolyhedralSubgroups333771.12-7 ClassMultiplicationCoefficient333871.12-8 ClassStructureCharTable333971.12-9 MatClassMultCoeffsCharTable334071.13 [33X[0;0YPrinting Character Tables[133X334171.13-1 ViewObj334271.13-2 PrintObj334371.13-3 Display334471.13-4 DisplayOptions334571.13-5 PrintCharacterTable334671.14 [33X[0;0YComputing the Irreducible Characters of a Group[133X334771.14-1 IrrDixonSchneider334871.14-2 IrrConlon334971.14-3 IrrBaumClausen335071.14-4 IrreducibleRepresentations335171.14-5 IrreducibleRepresentationsDixon335271.15 [33X[0;0YRepresentations Given by Modules[133X335371.15-1 IrreducibleModules335471.15-2 AbsolutelyIrreducibleModules335571.15-3 RegularModule335671.16 [33X[0;0YThe Dixon-Schneider Algorithm[133X335771.17 [33X[0;0YAdvanced Methods for Dixon-Schneider Calculations[133X335871.17-1 DixonRecord335971.17-2 DixonInit336071.17-3 DixontinI336171.17-4 DixonSplit336271.17-5 BestSplittingMatrix336371.17-6 DxIncludeIrreducibles336471.17-7 SplitCharacters336571.17-8 IsDxLargeGroup336671.18 [33X[0;0YComponents of a Dixon Record[133X336771.19 [33X[0;0YAn Example of Advanced Dixon-Schneider Calculations[133X336871.20 [33X[0;0YConstructing Character Tables from Others[133X336971.20-1 CharacterTableDirectProduct337071.20-2 FactorsOfDirectProduct337171.20-3 CharacterTableFactorGroup337271.20-4 CharacterTableIsoclinic337371.20-5 CharacterTableWreathSymmetric337471.21 [33X[0;0YSorted Character Tables[133X337571.21-1 CharacterTableWithSortedCharacters337671.21-2 SortedCharacters337771.21-3 CharacterTableWithSortedClasses337871.21-4 SortedCharacterTable337971.21-5 ClassPermutation338071.22 [33X[0;0YAutomorphisms and Equivalence of Character Tables[133X338171.22-1 MatrixAutomorphisms338271.22-2 TableAutomorphisms338371.22-3 TransformingPermutations338471.22-4 TransformingPermutationsCharacterTables338571.22-5 FamiliesOfRows338671.23 [33X[0;0YStoring Normal Subgroup Information[133X338771.23-1 NormalSubgroupClassesInfo338871.23-2 ClassPositionsOfNormalSubgroup338971.23-3 NormalSubgroupClasses339071.23-4 FactorGroupNormalSubgroupClasses339172 [33X[0;0YClass Functions[133X339272.1 [33X[0;0YWhy Class Functions?[133X339372.1-1 IsClassFunction339472.2 [33X[0;0YBasic Operations for Class Functions[133X339572.2-1 UnderlyingCharacterTable339672.2-2 ValuesOfClassFunction339772.3 [33X[0;0YComparison of Class Functions[133X339872.4 [33X[0;0YArithmetic Operations for Class Functions[133X339972.4-1 Characteristic340072.4-2 ComplexConjugate340172.4-3 Order340272.5 [33X[0;0YPrinting Class Functions[133X340372.5-1 ViewObj340472.5-2 PrintObj340572.5-3 Display340672.6 [33X[0;0YCreating Class Functions from Values Lists[133X340772.6-1 ClassFunction340872.6-2 VirtualCharacter340972.6-3 Character341072.6-4 ClassFunctionSameType341172.7 [33X[0;0YCreating Class Functions using Groups[133X341272.7-1 [33X[0;0YTrivialCharacter[133X341372.7-2 NaturalCharacter341472.7-3 [33X[0;0YPermutationCharacter[133X341572.8 [33X[0;0YOperations for Class Functions[133X341672.8-1 IsCharacter341772.8-2 IsVirtualCharacter341872.8-3 IsIrreducibleCharacter341972.8-4 DegreeOfCharacter342072.8-5 ScalarProduct342172.8-6 MatScalarProducts342272.8-7 Norm342372.8-8 ConstituentsOfCharacter342472.8-9 KernelOfCharacter342572.8-10 ClassPositionsOfKernel342672.8-11 CentreOfCharacter342772.8-12 ClassPositionsOfCentre342872.8-13 InertiaSubgroup342972.8-14 CycleStructureClass343072.8-15 IsTransitive343172.8-16 Transitivity343272.8-17 CentralCharacter343372.8-18 DeterminantOfCharacter343472.8-19 EigenvaluesChar343572.8-20 Tensored343672.9 [33X[0;0YRestricted and Induced Class Functions[133X343772.9-1 RestrictedClassFunction343872.9-2 RestrictedClassFunctions343972.9-3 [33X[0;0YInducedClassFunction[133X344072.9-4 InducedClassFunctions344172.9-5 InducedClassFunctionsByFusionMap344272.9-6 InducedCyclic344372.10 [33X[0;0YReducing Virtual Characters[133X344472.10-1 ReducedClassFunctions344572.10-2 ReducedCharacters344672.10-3 IrreducibleDifferences344772.10-4 LLL344872.10-5 Extract344972.10-6 OrthogonalEmbeddingsSpecialDimension345072.10-7 Decreased345172.10-8 DnLattice345272.10-9 DnLatticeIterative345372.11 [33X[0;0YSymmetrizations of Class Functions[133X345472.11-1 Symmetrizations345572.11-2 SymmetricParts345672.11-3 AntiSymmetricParts345772.11-4 OrthogonalComponents345872.11-5 SymplecticComponents345972.12 [33X[0;0YMolien Series[133X346072.12-1 MolienSeries346172.12-2 MolienSeriesInfo346272.12-3 ValueMolienSeries346372.12-4 MolienSeriesWithGivenDenominator346472.13 [33X[0;0YPossible Permutation Characters[133X346572.13-1 PermCharInfo346672.13-2 PermCharInfoRelative346772.14 [33X[0;0YComputing Possible Permutation Characters[133X346872.14-1 PermChars346972.14-2 [33X[0;0YTestPerm1, ..., TestPerm5[133X347072.14-3 PermBounds347172.14-4 PermComb347272.14-5 Inequalities347372.15 [33X[0;0YOperations for Brauer Characters[133X347472.15-1 FrobeniusCharacterValue347572.15-2 BrauerCharacterValue347672.15-3 SizeOfFieldOfDefinition347772.15-4 RealizableBrauerCharacters347872.16 [33X[0;0YDomains Generated by Class Functions[133X347973 [33X[0;0YMaps Concerning Character Tables[133X348073.1 [33X[0;0YPower Maps[133X348173.1-1 PowerMap348273.1-2 PossiblePowerMaps348373.1-3 ElementOrdersPowerMap348473.1-4 PowerMapByComposition348573.2 [33X[0;0YOrbits on Sets of Possible Power Maps[133X348673.2-1 OrbitPowerMaps348773.2-2 RepresentativesPowerMaps348873.3 [33X[0;0YClass Fusions between Character Tables[133X348973.3-1 [33X[0;0YFusionConjugacyClasses[133X349073.3-2 ComputedClassFusions349173.3-3 GetFusionMap349273.3-4 StoreFusion349373.3-5 NamesOfFusionSources349473.3-6 PossibleClassFusions349573.3-7 ConsiderStructureConstants349673.4 [33X[0;0YOrbits on Sets of Possible Class Fusions[133X349773.4-1 OrbitFusions349873.4-2 RepresentativesFusions349973.5 [33X[0;0YParametrized Maps[133X350073.5-1 CompositionMaps350173.5-2 InverseMap350273.5-3 ProjectionMap350373.5-4 Indirected350473.5-5 Parametrized350573.5-6 ContainedMaps350673.5-7 UpdateMap350773.5-8 MeetMaps350873.5-9 CommutativeDiagram350973.5-10 CheckFixedPoints351073.5-11 TransferDiagram351173.5-12 TestConsistencyMaps351273.5-13 Indeterminateness351373.5-14 PrintAmbiguity351473.5-15 ContainedSpecialVectors351573.5-16 CollapsedMat351673.5-17 ContainedDecomposables351773.6 [33X[0;0YSubroutines for the Construction of Power Maps[133X351873.6-1 InitPowerMap351973.6-2 Congruences352073.6-3 ConsiderKernels352173.6-4 ConsiderSmallerPowerMaps352273.6-5 MinusCharacter352373.6-6 PowerMapsAllowedBySymmetrizations352473.7 [33X[0;0YSubroutines for the Construction of Class Fusions[133X352573.7-1 InitFusion352673.7-2 CheckPermChar352773.7-3 ConsiderTableAutomorphisms352873.7-4 FusionsAllowedByRestrictions352974 [33X[0;0YUnknowns[133X353074.1 [33X[0;0YMore about Unknowns[133X353174.1-1 Unknown353274.1-2 LargestUnknown353374.1-3 IsUnknown353474.1-4 [33X[0;0YComparison of Unknowns[133X353574.1-5 [33X[0;0YArithmetical Operations for Unknowns[133X353675 [33X[0;0YMonomiality Questions[133X353775.1 [33X[0;0YInfoMonomial (Info Class)[133X353875.1-1 InfoMonomial353975.2 [33X[0;0YCharacter Degrees and Derived Length[133X354075.2-1 Alpha354175.2-2 Delta354275.2-3 [33X[0;0YIsBergerCondition[133X354375.3 [33X[0;0YPrimitivity of Characters[133X354475.3-1 TestHomogeneous354575.3-2 IsPrimitiveCharacter354675.3-3 TestQuasiPrimitive354775.3-4 TestInducedFromNormalSubgroup354875.4 [33X[0;0YTesting Monomiality[133X354975.4-1 [33X[0;0YTestMonomial[133X355075.4-2 TestMonomialUseLattice355175.4-3 IsMonomialNumber355275.4-4 [33X[0;0YTestMonomialQuick[133X355375.4-5 [33X[0;0YTestSubnormallyMonomial[133X355475.4-6 [33X[0;0YTestRelativelySM[133X355575.5 [33X[0;0YMinimal Nonmonomial Groups[133X355675.5-1 IsMinimalNonmonomial355775.5-2 MinimalNonmonomialGroup355876 [33X[0;0YUsing GAP Packages[133X355976.1 [33X[0;0YInstalling a GAP Package[133X356076.2 [33X[0;0YLoading a GAP Package[133X356176.2-1 LoadPackage356276.2-2 SetPackagePath356376.2-3 ExtendRootDirectories356476.2-4 DisplayPackageLoadingLog356576.3 [33X[0;0YFunctions for GAP Packages[133X356676.3-1 ReadPackage356776.3-2 TestPackageAvailability356876.3-3 TestPackage356976.3-4 InstalledPackageVersion357076.3-5 DirectoriesPackageLibrary357176.3-6 DirectoriesPackagePrograms357276.3-7 CompareVersionNumbers357376.3-8 IsPackageMarkedForLoading357476.3-9 DeclareAutoreadableVariables357576.3-10 [33X[0;0YKernel modules in [5XGAP[105X packages[133X357676.3-11 LoadDynamicModule357776.3-12 [33X[0;0YThe PackageInfo.g File[133X357876.3-13 ValidatePackageInfo357976.3-14 ShowPackageVariables358076.3-15 BibEntry358176.3-16 Cite358277 [33X[0;0YReplaced and Removed Command Names[133X358377.1 [33X[0;0YGroup Actions – Name Changes[133X358477.2 [33X[0;0YPackage Interface – Obsolete Functions and Name Changes[133X358577.3 [33X[0;0YNormal Forms of Integer Matrices – Name Changes[133X358677.4 [33X[0;0YMiscellaneous Name Changes or Removed Names[133X358777.4-1 InfoObsolete358877.5 [33X[0;0YThe former .gaprc file[133X358977.6 [33X[0;0YSemigroup properties[133X359077.6-1 IsSemilatticeAsSemigroup359178 [33X[0;0YMethod Selection[133X359278.1 [33X[0;0YOperations and Methods[133X359378.2 [33X[0;0YMethod Installation[133X359478.2-1 InstallMethod359578.2-2 InstallOtherMethod359678.3 [33X[0;0YApplicable Methods and Method Selection[133X359778.4 [33X[0;0YPartial Methods[133X359878.4-1 TryNextMethod359978.5 [33X[0;0YRedispatching[133X360078.5-1 RedispatchOnCondition360178.6 [33X[0;0YImmediate Methods[133X360278.6-1 InstallImmediateMethod360378.7 [33X[0;0YLogical Implications[133X360478.7-1 InstallTrueMethod360578.8 [33X[0;0YOperations and Mathematical Terms[133X360679 [33X[0;0YCreating New Objects[133X360779.1 [33X[0;0YCreating Categories[133X360879.1-1 NewCategory360979.1-2 CategoryFamily361079.2 [33X[0;0YCreating Representations[133X361179.2-1 NewRepresentation361279.3 [33X[0;0YCreating Attributes and Properties[133X361379.3-1 NewAttribute361479.3-2 NewProperty361579.4 [33X[0;0YCreating Other Filters[133X361679.4-1 NewFilter361779.4-2 SetFilterObj361879.4-3 ResetFilterObj361979.5 [33X[0;0YCreating Operations[133X362079.5-1 NewOperation362179.6 [33X[0;0YCreating Constructors[133X362279.6-1 NewConstructor362379.7 [33X[0;0YCreating Families[133X362479.7-1 NewFamily362579.8 [33X[0;0YCreating Types[133X362679.8-1 NewType362779.9 [33X[0;0YCreating Objects[133X362879.9-1 Objectify362979.9-2 ObjectifyWithAttributes363079.10 [33X[0;0YComponent Objects[133X363179.10-1 NamesOfComponents363279.11 [33X[0;0YPositional Objects[133X363379.12 [33X[0;0YImplementing New List Objects[133X363479.13 [33X[0;0YExample – Constructing Enumerators[133X363579.14 [33X[0;0YExample – Constructing Iterators[133X363679.15 [33X[0;0YArithmetic Issues in the Implementation of New Kinds of Lists[133X363779.16 [33X[0;0YExternal Representation[133X363879.16-1 ExtRepOfObj363979.17 [33X[0;0YMutability and Copying[133X364079.18 [33X[0;0YGlobal Variables in the Library[133X364179.18-1 DeclareCategory364279.18-2 DeclareRepresentation364379.18-3 DeclareAttribute364479.18-4 DeclareProperty364579.18-5 DeclareFilter364679.18-6 DeclareOperation364779.18-7 DeclareGlobalFunction364879.18-8 DeclareGlobalVariable364979.18-9 InstallValue365079.18-10 DeclareSynonym365179.18-11 FlushCaches365279.19 [33X[0;0YDeclaration and Implementation Part[133X365380 [33X[0;0YExamples of Extending the System[133X365480.1 [33X[0;0YAddition of a Method[133X365580.2 [33X[0;0YExtending the Range of Definition of an Existing Operation[133X365680.3 [33X[0;0YEnforcing Property Tests[133X365780.4 [33X[0;0YAdding a new Operation[133X365880.5 [33X[0;0YAdding a new Attribute[133X365980.6 [33X[0;0YAdding a new Representation[133X366080.7 [33X[0;0YComponents versus Attributes[133X366180.8 [33X[0;0YAdding new Concepts[133X366280.8-1 [33X[0;0YExample: M-groups[133X366380.8-2 [33X[0;0YExample: Groups with a word length[133X366480.8-3 [33X[0;0YExample: Groups with a decomposition as semidirect product[133X366580.9 [33X[0;0YCreating Own Arithmetic Objects[133X366680.9-1 ArithmeticElementCreator366780.9-2 [33X[0;0YExample: ArithmeticElementCreator[133X366881 [33X[0;0YAn Example – Residue Class Rings[133X366981.1 [33X[0;0YA First Attempt to Implement Elements of Residue Class Rings[133X367081.2 [33X[0;0YWhy Proceed in a Different Way?[133X367181.3 [33X[0;0YA Second Attempt to Implement Elements of Residue Class Rings[133X367281.4 [33X[0;0YCompatibility of Residue Class Rings with Prime Fields[133X367381.5 [33X[0;0YFurther Improvements in Implementing Residue Class Rings[133X367482 [33X[0;0YAn Example – Designing Arithmetic Operations[133X367582.1 [33X[0;0YNew Arithmetic Operations vs. New Objects[133X367682.2 [33X[0;0YDesigning new Multiplicative Objects[133X367783 [33X[0;0YLibrary Files[133X367883.1 [33X[0;0YFile Types[133X367983.2 [33X[0;0YFinding Implementations in the Library[133X368083.3 [33X[0;0YUndocumented Variables[133X368184 [33X[0;0YInterface to the GAP Help System[133X368284.1 [33X[0;0YInstalling and Removing a Help Book[133X368384.1-1 HELP_ADD_BOOK368484.1-2 HELP_REMOVE_BOOK368584.2 [33X[0;0YThe manual.six File[133X368684.3 [33X[0;0YThe Help Book Handler[133X368784.4 [33X[0;0YIntroducing new Viewer for the Online Help[133X368884.4-1 HELP_VIEWER_INFO368985 [33X[0;0YFunction-Operation-Attribute Triples[133X369085.1 [33X[0;0YKey Dependent Operations[133X369185.1-1 KeyDependentOperation369285.2 [33X[0;0YIn Parent Attributes[133X369385.2-1 InParentFOA369485.3 [33X[0;0YOperation Functions[133X369585.3-1 OrbitsishOperation369685.3-2 OrbitishFO369785.3-3 [33X[0;0YExample: Orbit and OrbitOp[133X369886 [33X[0;0YWeak Pointers[133X369986.1 [33X[0;0YWeak Pointer Objects[133X370086.1-1 WeakPointerObj370186.2 [33X[0;0YLow Level Access Functions for Weak Pointer Objects[133X370286.2-1 SetElmWPObj370386.3 [33X[0;0YAccessing Weak Pointer Objects as Lists[133X370486.4 [33X[0;0YCopying Weak Pointer Objects[133X370586.5 [33X[0;0YThe GASMAN Interface for Weak Pointer Objects[133X370687 [33X[0;0YMore about Stabilizer Chains[133X370787.1 [33X[0;0YGeneralized Conjugation Technique[133X370887.2 [33X[0;0YThe General Backtrack Algorithm with Ordered Partitions[133X370987.2-1 [33X[0;0YInternal representation of ordered partitions[133X371087.2-2 [33X[0;0YFunctions for setting up an R-base[133X371187.2-3 [33X[0;0YRefinement functions for the backtrack search[133X371287.2-4 [33X[0;0YFunctions for meeting ordered partitions[133X371387.2-5 [33X[0;0YAvoiding multiplication of permutations[133X371487.3 [33X[0;0YStabilizer Chains for Automorphisms Acting on Enumerators[133X371587.3-1 [33X[0;0YAn operation domain for automorphisms[133X371687.3-2 [33X[0;0YEnumerators for cosets of characteristic factors[133X371787.3-3 [33X[0;0YMaking automorphisms act on such enumerators[133X371837193720[32X372137223723