CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
/* Use mpz_kronecker_ui() to calculate an estimate for the quadratic
2
class number h(d), for a given negative fundamental discriminant, using
3
Dirichlet's analytic formula.
4
5
Copyright 1999-2002 Free Software Foundation, Inc.
6
7
This file is part of the GNU MP Library.
8
9
This program is free software; you can redistribute it and/or modify it
10
under the terms of the GNU General Public License as published by the Free
11
Software Foundation; either version 3 of the License, or (at your option)
12
any later version.
13
14
This program is distributed in the hope that it will be useful, but WITHOUT
15
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17
more details.
18
19
You should have received a copy of the GNU General Public License along with
20
this program. If not, see https://www.gnu.org/licenses/. */
21
22
23
/* Usage: qcn [-p limit] <discriminant>...
24
25
A fundamental discriminant means one of the form D or 4*D with D
26
square-free. Each argument is checked to see it's congruent to 0 or 1
27
mod 4 (as all discriminants must be), and that it's negative, but there's
28
no check on D being square-free.
29
30
This program is a bit of a toy, there are better methods for calculating
31
the class number and class group structure.
32
33
Reference:
34
35
Daniel Shanks, "Class Number, A Theory of Factorization, and Genera",
36
Proc. Symp. Pure Math., vol 20, 1970, pages 415-440.
37
38
*/
39
40
#include <math.h>
41
#include <stdio.h>
42
#include <stdlib.h>
43
#include <string.h>
44
45
#include "gmp.h"
46
47
#ifndef M_PI
48
#define M_PI 3.14159265358979323846
49
#endif
50
51
52
/* A simple but slow primality test. */
53
int
54
prime_p (unsigned long n)
55
{
56
unsigned long i, limit;
57
58
if (n == 2)
59
return 1;
60
if (n < 2 || !(n&1))
61
return 0;
62
63
limit = (unsigned long) floor (sqrt ((double) n));
64
for (i = 3; i <= limit; i+=2)
65
if ((n % i) == 0)
66
return 0;
67
68
return 1;
69
}
70
71
72
/* The formula is as follows, with d < 0.
73
74
w * sqrt(-d) inf p
75
h(d) = ------------ * product --------
76
2 * pi p=2 p - (d/p)
77
78
79
(d/p) is the Kronecker symbol and the product is over primes p. w is 6
80
when d=-3, 4 when d=-4, or 2 otherwise.
81
82
Calculating the product up to p=infinity would take a long time, so for
83
the estimate primes up to 132,000 are used. Shanks found this giving an
84
accuracy of about 1 part in 1000, in normal cases. */
85
86
unsigned long p_limit = 132000;
87
88
double
89
qcn_estimate (mpz_t d)
90
{
91
double h;
92
unsigned long p;
93
94
/* p=2 */
95
h = sqrt (-mpz_get_d (d)) / M_PI
96
* 2.0 / (2.0 - mpz_kronecker_ui (d, 2));
97
98
if (mpz_cmp_si (d, -3) == 0) h *= 3;
99
else if (mpz_cmp_si (d, -4) == 0) h *= 2;
100
101
for (p = 3; p <= p_limit; p += 2)
102
if (prime_p (p))
103
h *= (double) p / (double) (p - mpz_kronecker_ui (d, p));
104
105
return h;
106
}
107
108
109
void
110
qcn_str (char *num)
111
{
112
mpz_t z;
113
114
mpz_init_set_str (z, num, 0);
115
116
if (mpz_sgn (z) >= 0)
117
{
118
mpz_out_str (stdout, 0, z);
119
printf (" is not supported (negatives only)\n");
120
}
121
else if (mpz_fdiv_ui (z, 4) != 0 && mpz_fdiv_ui (z, 4) != 1)
122
{
123
mpz_out_str (stdout, 0, z);
124
printf (" is not a discriminant (must == 0 or 1 mod 4)\n");
125
}
126
else
127
{
128
printf ("h(");
129
mpz_out_str (stdout, 0, z);
130
printf (") approx %.1f\n", qcn_estimate (z));
131
}
132
mpz_clear (z);
133
}
134
135
136
int
137
main (int argc, char *argv[])
138
{
139
int i;
140
int saw_number = 0;
141
142
for (i = 1; i < argc; i++)
143
{
144
if (strcmp (argv[i], "-p") == 0)
145
{
146
i++;
147
if (i >= argc)
148
{
149
fprintf (stderr, "Missing argument to -p\n");
150
exit (1);
151
}
152
p_limit = atoi (argv[i]);
153
}
154
else
155
{
156
qcn_str (argv[i]);
157
saw_number = 1;
158
}
159
}
160
161
if (! saw_number)
162
{
163
/* some default output */
164
qcn_str ("-85702502803"); /* is 16259 */
165
qcn_str ("-328878692999"); /* is 1499699 */
166
qcn_str ("-928185925902146563"); /* is 52739552 */
167
qcn_str ("-84148631888752647283"); /* is 496652272 */
168
return 0;
169
}
170
171
return 0;
172
}
173
174