Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #A imf15.grp GAP group library Volkmar Felsch ## ## #Y Copyright (C) 1995, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains, for each Q-class representative of the irreducible ## maximal finite integral matrix groups of dimension 15, ## ## [1] a quadratic form (as lower triangle of the Gram matrix), ## [2] a list of matrix generators. ## ############################################################################# ## ## Quadratic form and matrix generators for the Q-class representatives of ## the irreducible maximal finite integral matrix groups of dimension 15. ## IMFList[15].matrices := [ [ # Q-class [15][01] [[1], [0,1], [0,0,1], [0,0,0,1], [0,0,0,0,1], [0,0,0,0,0,1], [0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [15][02] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [1,1,1,1,1,2], [1,1,1,1,1,1,2], [1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,2], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0], [-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]], [[-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,1,0], [0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0], [0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0], [0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0], [0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0], [0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0], [0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0]]]], [ # Q-class [15][03] [[3], [-1,3], [1,-1,3], [1,1,-1,3], [1,1,-1,1,3], [-1,-1,0,-1,-1,3], [1,0,-1,1,1,-1,3], [1,-1,1,-1,0,1,-1,3], [1,-1,1,0,-1,1,-1,1,3], [0,1,1,0,0,-1,-1,0,0,3], [1,-1,0,1,0,-1,1,-1,0,-1,3], [-1,1,-1,0,1,1,0,0,-1,-1,-1,3], [1,0,1,1,0,0,-1,1,1,0,0,0,3], [1,0,1,0,1,0,-1,1,1,0,0,0,1,3], [0,-1,0,-1,-1,1,0,1,1,0,-1,0,-1,-1,3]], [[[-1,-1,0,0,0,-1,1,0,1,1,0,1,0,0,0], [1,1,1,0,1,1,-1,-1,-1,-1,0,-1,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,0,0,-1,0,0,0,0,0,1,1], [-1,0,1,0,1,0,1,0,1,0,0,0,0,0,0], [-1,0,0,0,0,0,0,1,0,0,1,0,0,0,0], [0,0,0,0,0,-1,0,0,1,0,0,1,0,0,0], [-1,0,0,0,0,0,1,1,0,1,1,0,0,0,0], [-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,1,0,-1,-1,0,0,-1,1,0,1], [0,-1,0,1,-1,-1,0,0,1,0,-1,1,-1,0,-1], [1,1,0,-1,0,1,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0], [-1,0,1,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,-1,-1,0,0,0,0,0,1,1,0,1,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0], [-1,-1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,1,1,0,0,1,1,0,0,0,0,0,0,0], [1,0,0,-1,0,0,0,-1,0,0,0,0,0,0,0], [-1,-1,0,0,1,-1,0,0,1,0,0,0,0,0,0], [1,1,-1,-1,0,1,0,0,0,1,1,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0], [1,0,-1,-1,0,0,0,-1,0,0,0,0,1,0,0], [1,0,0,0,0,-1,-1,0,1,-1,-1,0,-1,-1,-1], [-1,0,1,0,1,0,0,0,0,0,1,0,0,0,1]]]], [ # Q-class [15][04] [[3], [1,3], [0,-1,3], [0,1,-1,3], [0,-1,0,0,3], [0,0,0,-1,-1,3], [-1,-1,1,0,1,1,3], [0,0,-1,0,0,0,-1,3], [-1,-1,0,-1,0,1,1,-1,3], [0,1,0,0,0,1,1,-1,1,3], [0,-1,0,-1,0,1,1,1,1,0,3], [1,1,0,0,-1,0,-1,1,0,0,1,3], [0,0,-1,1,1,0,1,0,0,1,0,-1,3], [0,1,1,0,0,-1,0,0,-1,1,0,1,0,3], [0,0,0,-1,1,0,1,-1,1,1,1,0,1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,-1,0,0,0,1,-1,0,0,0], [0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0], [0,-1,-1,-1,0,0,1,0,-1,0,-1,1,0,0,0], [0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0], [-1,1,1,-1,0,-1,0,0,-1,1,0,1,1,-2,0], [0,-1,0,1,0,1,0,1,0,0,-1,0,-1,0,1], [0,0,0,0,0,1,0,0,0,-1,0,0,0,1,0], [0,0,1,0,0,0,0,1,0,0,-1,0,0,-1,1], [-1,0,1,0,0,0,-1,0,-1,1,0,0,0,-1,1], [0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0], [0,1,1,0,0,0,-1,0,0,0,1,-1,0,0,0], [1,0,0,1,0,1,0,1,1,-1,-1,-1,-1,1,1]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,0,0,0,-1,-1,1,1,1,0,0,-1,0,0,0], [-1,1,1,0,1,0,-1,0,-1,1,1,0,0,-1,0], [0,-1,0,1,0,0,0,0,-1,1,0,0,-1,-1,1], [0,0,-1,-1,0,0,1,-1,0,-1,0,1,1,1,-1], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,-1,0,1,0,1,-1,0,0,0,0,0,0,1,0], [0,0,-1,-1,0,0,1,-1,0,-1,0,0,0,1,-1], [0,1,0,0,0,0,1,0,0,-1,0,0,0,0,0], [1,-1,-1,0,0,1,1,0,1,-1,-1,0,0,2,-1], [1,0,-1,0,0,1,0,0,1,-1,0,-1,0,2,-1], [-1,0,1,0,0,0,0,0,-2,1,0,1,0,-2,1], [1,0,0,1,-1,0,1,2,1,0,-1,-1,-1,0,1], [1,-1,-1,0,-1,0,2,1,0,0,-2,0,-1,0,1]]]], [ # Q-class [15][05] [[2], [1,2], [1,1,2], [1,1,1,2], [1,1,1,1,2], [0,0,0,0,0,2], [0,0,0,0,0,1,2], [0,0,0,0,0,1,1,2], [0,0,0,0,0,1,1,1,2], [0,0,0,0,0,1,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,2], [0,0,0,0,0,0,0,0,0,0,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,2], [0,0,0,0,0,0,0,0,0,0,1,1,1,1,2]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0], [0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0], [0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0]], [[-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0], [0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]], [[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]]], [ # Q-class [15][06] [[3], [1,3], [1,1,3], [1,1,1,3], [1,1,1,1,3], [-1,1,0,0,0,3], [-1,0,1,0,0,1,3], [-1,0,0,1,0,1,1,3], [-1,0,0,0,1,1,1,1,3], [0,-1,1,0,0,-1,1,0,0,3], [0,-1,0,1,0,-1,0,1,0,1,3], [0,-1,0,0,1,-1,0,0,1,1,1,3], [0,0,-1,1,0,0,-1,1,0,-1,1,0,3], [0,0,-1,0,1,0,-1,0,1,-1,0,1,1,3], [0,0,0,-1,1,0,0,-1,1,0,-1,1,-1,1,3]], [[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,-1,1,-1], [0,0,0,0,0,0,0,-1,1,0,0,0,0,0,-1], [0,0,0,0,0,0,0,0,0,0,-1,1,0,0,-1], [0,0,0,-1,1,0,0,0,0,0,0,0,0,0,-1], [0,0,0,0,0,0,-1,0,1,0,0,0,0,-1,0], [0,0,0,0,0,0,0,0,0,-1,0,1,0,-1,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0], [0,0,0,0,0,1,0,0,-1,0,0,1,0,0,0], [-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [-1,1,0,0,0,-1,0,0,0,0,0,0,0,0,0], [-1,0,1,0,0,0,-1,0,0,0,0,0,0,0,0], [-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0], [-1,0,0,1,0,0,0,-1,0,0,0,0,0,0,0], [0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0], [0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0], [0,-1,0,1,0,0,0,0,0,0,-1,0,0,0,0], [0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,0], [0,0,-1,1,0,0,0,0,0,0,0,0,-1,0,0], [0,0,0,1,-1,0,0,0,0,0,0,0,0,0,1]]]] ]; MakeImmutable( IMFList[15].matrices );