Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W perf10.grp GAP Groups Library Volkmar Felsch ## Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany ## ## This file contains the perfect groups of sizes 352440-518400 ## All data is based on Holt/Plesken: Perfect Groups, OUP 1989 ## PERFGRP[202]:=[# 352440.1 [[1,"abc", function(a,b,c) return [[c^44,c*b^9*c^-1*b^-1,b^89,a^2,c*a*c*a^-1, (b*a)^3,c^-1*b^3*c*b^3*a*b^3*a*c*b^3*a], [[b,c]]]; end, [90]], "L2(89)",22,-1, 44,90] ]; PERFGRP[203]:=[# 357840.1 [[1,"abc", function(a,b,c) return [[c^35*a^2,c*b^(-1*22)*c^-1*b^-1,b^71,a^4,a^2 *b^-1*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [144],[0,3,5,3]], "L2(71) 2^1 = SL(2,71)",22,-2, 37,144] ]; PERFGRP[204]:=[# 360000.1 [[2,120,1,3000,1], "( A5 x A5 ) 2^2 # 5^2",[30,2,1],2, [1,1],[24,25]] ]; PERFGRP[205]:=[# 362880.1 [[1,"abd", function(a,b,d) return [[a^2*d^-1,b^4,(a*b)^9,(a^-1*b^-1*a*b)^4 *d^-1,(a*b^(-1*2)*a*b^-1*a*b*a*b^2)^3, (a*b^-1*a*b^-1*a*b^2*a*b^2*a*b*a*b)^2 *d^-1,(a*b*a*b*b*a*b*a*b*a*b^-1)^3, (a*b*a*b*a*b^2)^6,d^2,a^-1*d*a*d^-1, b^-1*d*b*d^-1], [[(a*b*a*b*a*b^2)^2,(a*b*a*b*a*b*a*b^2)^3*d]]]; end, [240],[[1,2]]], "A9 2^1",28,-2, 38,240], # 362880.2 [[2,168,1,2160,1], "( L3(2) x A6 3^1 ) 2^1 [1]",[37,1,1],6, [2,3],[7,18,80]], # 362880.3 [[2,336,1,1080,1], "( L3(2) x A6 3^1 ) 2^1 [2]",[37,1,2],6, [2,3],[16,18]], # 362880.4 [[3,336,1,2160,1,"d1","d2"], "( L3(2) x A6 3^1 ) 2^1 [3]",[37,1,3],6, [2,3],[144,640]], # 362880.5 [[2,720,1,504,1], "A6 2^1 x L2(8)",40,2, [3,4],[80,9]], # 362880.6 [[2,60,1,6048,1], "A5 x U3(3)",40,1, [1,12],[5,28]] ]; PERFGRP[206]:=[# 363000.1 [[4,3000,2,14520,2,120,1,1], "A5 2^1 # 5^2 11^2",6,1, 1,[25,121]] ]; PERFGRP[207]:=[# 364320.1 [[2,60,1,6072,1], "A5 x L2(23)",40,1, [1,13],[5,24]] ]; PERFGRP[208]:=[# 366912.1 [[2,168,1,2184,1], "( L3(2) x L2(13) ) 2^1 [1]",40,2, [2,6],[7,56]], # 366912.2 [[2,336,1,1092,1], "( L3(2) x L2(13) ) 2^1 [2]",40,2, [2,6],[16,14]], # 366912.3 [[3,336,1,2184,1,"d1","a2","a2"], "( L3(2) x L2(13) ) 2^1 [3]",40,2, [2,6],448] ]; PERFGRP[209]:=[# 367416.1 [[1,"abuvwxyzd", function(a,b,u,v,w,x,y,z,d) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,d^3,a^-1 *d*a*d^-1,b^-1*d*b*d^-1, u^-1*d*u*d^-1,v^-1*d*v*d^-1, w^-1*d*w*d^-1,x^-1*d*x*d^-1, y^-1*d*y*d^-1,z^-1*d*z*d^-1,u^3, v^3,w^3,x^3,y^3,z^3,u^-1*v^-1*u*v*d, u^-1*w^-1*u*w*d^-1, u^-1*x^-1*u*x*d^-1, u^-1*y^-1*u*y*d^-1,u^-1*z^-1*u *z,v^-1*w^-1*v*w*d^-1, v^-1*x^-1*v*x*d,v^-1*y^-1*v*y*d, v^-1*z^-1*v*z*d,w^-1*x^-1*w*x, w^-1*y^-1*w*y*d^-1, w^-1*z^-1*w*z*d^-1, x^-1*y^-1*x*y*d^-1, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*u*a*(x*y^-1*z^-1*d)^-1, a^-1*v*a*(w*x^-1*y^-1*d)^-1, a^-1*w*a*(u*w^-1*x*y^-1*z^-1)^-1 ,a^-1*x*a*(v*w*x*y^-1)^-1, a^-1*y*a*(u*v*w*z^-1*d)^-1, a^-1*z*a*(u*x*y^-1*z*d^-1)^-1, b^-1*u*b*(v*w^-1*x^-1)^-1, b^-1*v*b*(u*v^-1*w^-1*d^-1)^-1, b^-1*w*b*(u^-1*v*w^-1*x^-1*z^-1) ^-1,b^-1*x*b*(u*v*w^-1*y^-1*z*d) ^-1,b^-1*y*b*(u*x^-1*y*d)^-1, b^-1*z*b*(v*w^-1*x*z)^-1],[[a,b]]]; end, [2187]], "L3(2) 3^6 C 3^1",[9,7,1],3, 2,2187], # 367416.2 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^2,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4,t^3,u^3, v^3,w^3,x^3,y^3,z^3,t^-1*u^-1*t*u, t^-1*v^-1*t*v,t^-1*w^-1*t*w, t^-1*x^-1*t*x,t^-1*y^-1*t*y, t^-1*z^-1*t*z,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*t*a*t^-1,a^-1*u*a*w^-1, a^-1*v*a*v,a^-1*w*a*u^-1, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1,b^-1*t*b*u^-1, b^-1*u*b*v^-1,b^-1*v*b*t^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[a*b,t*u^-1]]]; end, [72]], "L3(2) 3^7",[9,7,2],1, 2,72], # 367416.3 [[1,"abtuvwxyz", function(a,b,t,u,v,w,x,y,z) return [[a^2,b^3*(t*u*v*z^-1)^-1,(a*b)^7,(a^-1*b ^-1*a*b)^4,t^3,u^3,v^3,w^3,x^3,y^3,z^3, t^-1*u^-1*t*u,t^-1*v^-1*t*v, t^-1*w^-1*t*w,t^-1*x^-1*t*x, t^-1*y^-1*t*y,t^-1*z^-1*t*z, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*t*a*t^-1, a^-1*u*a*w^-1,a^-1*v*a*v, a^-1*w*a*u^-1,a^-1*x*a*z^-1, a^-1*y*a*y,a^-1*z*a*x^-1, b^-1*t*b*u^-1,b^-1*u*b*v^-1, b^-1*v*b*t^-1,b^-1*w*b*x^-1, b^-1*x*b*y^-1,b^-1*y*b*w^-1, b^-1*z*b*z^-1],[[a*b,t*u^-1]]]; end, [72]], "L3(2) N 3^7",[9,7,3],1, 2,72] ]; PERFGRP[210]:=[fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail, fail]; PERFGRP[211]:=[# 369096.1 [[1,"abcyz", function(a,b,c,y,z) return [[a^4,b^13,(a*b)^3,c^6*a^2,(a*c)^2*a^2,a^2*b^-1 *a^2*b,c^-1*b*c*b^(-1*4), b^6*a*b^-1*a*b*a*b^7*a*c^-1,y^13,z^13, y^-1*z^-1*y*z,a^-1*y*a*z, a^-1*z*a*y^-1,b^-1*y*b*y^-1, b^-1*z*b*(y*z)^-1,c^-1*y*c*y^(-1*2), c^-1*z*c*z^(-1*7)],[[a,b]]]; end, [169]], "L2(13) 2^1 13^2",[20,2,1],1, 6,169] ]; PERFGRP[212]:=[# 372000.1 [[1,"ab", function(a,b) return [[a^2,b^3,(a*b)^31,(a^-1*b^-1*a*b)^4,(a*b*a*b*a *b*a*b*a*b^-1)^4, (a*b^-1*a*b^-1*a*b^-1*a*b^-1*a *b^-1*a*b*a*b*a*b*a*b*a*b)^3], [[a,(b^-1*a)^3*b*(a*b*a*b^-1)^2]]]; end, [31]], "L3(5)",28,-1, 45,31] ]; PERFGRP[213]:=[# 375000.1 [[1,"abvwxyz", function(a,b,v,w,x,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,v^5,w^5,x^5,y^5, z^5,v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*v*a*z^-1,a^-1*w*a*y, a^-1*x*a*x^-1,a^-1*y*a*w, a^-1*z*a*v^-1,b^-1*v*b*z^-1, b^-1*w*b*(y^-1*z)^-1, b^-1*x*b*(x*y^(-1*2)*z)^-1, b^-1*y*b*(w^-1*x^(-1*2)*y^2*z)^-1, b^-1*z*b*(v*w*x*y*z)^-1], [[a*b,v],[a*b,b*a*b*a*b^-1*a*b^-1,w]]]; end, [24,30]], "A5 2^1 x 5^5",[3,5,1],2, 1,[24,30]], # 375000.2 [[1,"abwxyzd", function(a,b,w,x,y,z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,w^5,x^5,y^5,z^5, d^5,d^-1*a*d*a^-1,d^-1*b*d*b^-1, d^-1*w*d*w^-1,d^-1*x*d*x^-1, d^-1*y*d*y^-1,d^-1*z*d*z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y *d^(-1*2),x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*y,a^-1*y*a*(x*d)^-1, a^-1*z*a*w,b^-1*w*b*z, b^-1*x*b*(y*z^-1*d^-1)^-1, b^-1*y*b*(x^-1*y^2*z^-1*d)^-1, b^-1*z*b*(w*x^2*y^(-1*2)*z^-1*d^(-1*2)) ^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y*d^2]]]; end, [750]], "A5 2^1 5^4 C 5^1",[3,5,2],5, 1,750], # 375000.3 [[1,"abyzXYZ", function(a,b,y,z,X,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,X^5,Y^5, Z^5,y^-1*z^-1*y*z,y^-1*X^-1*y*X, y^-1*Y^-1*y*Y,y^-1*Z^-1*y*Z, z^-1*X^-1*z*X,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*z^-1,a^-1*z*a*y, a^-1*X*a*Z^-1,a^-1*Y*a*Y, a^-1*Z*a*X^-1,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1, b^-1*X*b*Z^-1, b^-1*Y*b*(Y^-1*Z)^-1, b^-1*Z*b*(X*Y^(-1*2)*Z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,Y,y],[a,b,X]]]; end, [30,25]], "A5 2^1 5^2 x 5^3",[3,5,3],1, 1,[30,25]], # 375000.4 [[1,"abyzXYZ", function(a,b,y,z,X,Y,Z) return [[a^4,b^3,(a*b)^5*Z^-1,a^2*b^-1*a^2*b,y^5,z^5, X^5,Y^5,Z^5,y^-1*z^-1*y*z, y^-1*X^-1*y*X,y^-1*Y^-1*y*Y, y^-1*Z^-1*y*Z,z^-1*X^-1*z*X, z^-1*Y^-1*z*Y,z^-1*Z^-1*z*Z, X^-1*Y^-1*X*Y,X^-1*Z^-1*X*Z, Y^-1*Z^-1*Y*Z,a^-1*y*a*z^-1, a^-1*z*a*y,a^-1*X*a*Z^-1, a^-1*Y*a*Y,a^-1*Z*a*X^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*X*b*Z^-1, b^-1*Y*b*(Y^-1*Z)^-1, b^-1*Z*b*(X*Y^(-1*2)*Z)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,Y,y],[a,b,X]]]; end, [30,25]], "A5 2^1 5^2 x N 5^3",[3,5,4],1, 1,[30,25]], # 375000.5 [[1,"abyzYZf", function(a,b,y,z,Y,Z,f) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,Y^5,Z^5, f^5,y^-1*f^-1*y*f,Y^-1*f^-1*Y*f, y^-1*z^-1*y*z,y^-1*Y^-1*y*Y, y^-1*Z^-1*y*Z*f^-1, z^-1*Y^-1*z*Y*f,z^-1*Z^-1*z*Z, Y^-1*Z^-1*Y*Z,a^-1*y*a*z^-1, a^-1*z*a*y,a^-1*Y*a*Z^-1, a^-1*Z*a*Y,a^-1*f*a*f^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*f*b*f^-1],[[a,b,y]]]; end, [125]], "A5 2^1 ( 5^2 x 5^2 ) C 5^1",[3,5,5],5, 1,125], # 375000.6 [[1,"abyzYZd", function(a,b,y,z,Y,Z,d) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,Y^5,Z^5, d^5,y^-1*d^-1*y*d,Y^-1*d^-1*Y*d, y^-1*z^-1*y*z*d^-1,y^-1*Y^-1*y *Y,y^-1*Z^-1*y*Z,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z *d^(-1*2),a^-1*y*a*(z*d^2)^-1, a^-1*z*a*y,a^-1*Y*a*(Z*d^-1)^-1, a^-1*Z*a*Y,a^-1*d*a*d^-1, b^-1*y*b*z,b^-1*z*b*(y*z^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*d*b*d^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,z*d,Z*d^2]]]; end, [750]], "A5 2^1 ( 5^2 C x 5^2 C ) 5^1",[3,5,6],5, 1,750], # 375000.7 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,Y^5,Z^5,Y^-1 *Z^-1*Y*Z,y^-1*Y*y*Y^-1, y^-1*Z*y*Z^-1,z^-1*Y*z*Y^-1, z^-1*Z*z*Z^-1,d^-1*Y*d*Y^-1, d^-1*Z*d*Z^-1,y^5,z^5,d^5, y^-1*d^-1*y*d,z^-1*d^-1*z*d, y^-1*z^-1*y*z*d^-1, a^-1*y*a*z^-1*d^(-1*2),a^-1*z*a*y, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y,b^-1*y*b*z, b^-1*z*b*(y*z^-1)^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1, b^-1*d*b*d^-1],[[a,b,y],[a,b,Y]]]; end, [25,125]], "A5 2^1 ( 5^2 C 5^1 ) x 5^2",[3,5,7],5, 1,[25,125]], # 375000.8 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,d^5,Y^5, Z^5,y^-1*d^-1*y*d*Y^-1, z^-1*d^-1*z*d*Z^-1, y^-1*z^-1*y*z*(d*Y*Z)^-1, y^-1*Y^-1*y*Y,z^-1*Y^-1*z*Y, d^-1*Y^-1*d*Y,y^-1*Z^-1*y*Z, z^-1*Z^-1*z*Z,d^-1*Z^-1*d*Z, a^-1*y*a*(z*d^2*Z^-1)^-1, a^-1*z*a*y,a^-1*d*a*d^-1, a^-1*Y*a*Z^-1,a^-1*Z*a*Y, b^-1*y*b*(z^-1*Z)^-1, b^-1*z*b*(y*z^-1*Y)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,d,z*Y^-1]]]; end, [150]], "A5 2^1 5^2 C 5^1 C 5^2",[3,5,8],1, 1,150], # 375000.9 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^5,z^5,d^5,Y^5, Z^5,y^-1*d^-1*y*d*Y^-1, z^-1*d^-1*z*d*Z^-1, y^-1*z^-1*y*z*(d*Y*Z)^-1, y^-1*Y^-1*y*Y,z^-1*Y^-1*z*Y, d^-1*Y^-1*d*Y,y^-1*Z^-1*y*Z, z^-1*Z^-1*z*Z,d^-1*Z^-1*d*Z, a^-1*y*a*(z*d^2*Y^-1*Z^-1)^-1, a^-1*z*a*(y^-1*Z)^-1, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y, b^-1*y*b*(z^-1*Y^-1*Z^2)^-1, b^-1*z*b*(y*z^-1*Y*Z)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[b*a*b*a*b^-1*a*b^-1,d,z*Y]]]; end, [750]], "A5 2^1 5^2 C 5^1 C E 5^2",[3,5,9],1, 1,750], # 375000.10 [[1,"abyzdYZ", function(a,b,y,z,d,Y,Z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,d^5,y^5,z^5,Y^5, Z^5,d^-1*y^-1*d*y,d^-1*z^-1*d*z, d^-1*Y^-1*d*Y,d^-1*Z^-1*d*Z, y^-1*z^-1*y*z*d^-1,y^-1*Y^-1*y *Y,y^-1*Z^-1*y*Z,z^-1*Y^-1*z*Y, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*(z*d^2*Y^-1)^-1, a^-1*z*a*(y^-1*Z)^-1, a^-1*d*a*d^-1,a^-1*Y*a*Z^-1, a^-1*Z*a*Y, b^-1*y*b*(z^-1*Y^-1*Z)^-1, b^-1*z*b*(y*z^-1*Z)^-1, b^-1*d*b*d^-1,b^-1*Y*b*Z, b^-1*Z*b*(Y*Z^-1)^-1], [[a,b,Y],[b,a*b*a*b^-1*a,y*Y^-1*Z^-1]]]; end, [125,125]], "A5 2^1 5^2 ( C 5^1 x E 5^2 )",[3,5,10],5, 1,[125,125]], # 375000.11 [[1,"abyzYZe", function(a,b,y,z,Y,Z,e) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,e^5,y^-1*e*y *e^-1,z^-1*e*z*e^-1, Y^-1*e*Y*e^-1,Z^-1*e*Z*e^-1,y^5, z^5,Y^5,Z^5,y^-1*z^-1*y*z, y^-1*Y^-1*y*Y,y^-1*Z^-1*y*Z *e^-1,z^-1*Y^-1*z*Y*e, z^-1*Z^-1*z*Z,Y^-1*Z^-1*Y*Z, a^-1*y*a*(z*Y^-1*e^-1)^-1, a^-1*z*a*(y^-1*Z*e^(-1*2))^-1, a^-1*Y*a*Z^-1,a^-1*Z*a*Y, a^-1*e*a*e^-1, b^-1*y*b*(z^-1*Y^-1*Z*e^(-1*2))^-1, b^-1*z*b*(y*z^-1*Z*e^-1)^-1, b^-1*Y*b*Z,b^-1*Z*b*(Y*Z^-1)^-1, b^-1*e*b*e^-1],[[a,b,Y]]]; end, [125]], "A5 2^1 ( 5^2 E 5^2 ) C 5^1",[3,5,11],5, 1,125] ]; PERFGRP[214]:=[# 378000.1 [[1,"abd", function(a,b,d) return [[a^2,b^4,(a*b)^10*d^-1,(a*b*a*b^2)^7,a*b^-1*a *b^-1*a*b*a *b^(-1*2)*a*b*a*b^-1 *a*b^-1*a*b*a*b*a *b^-1*a*b*b*a*b^-1*a*b*a*b, (a*b^-1*a*b^-1*a*b*a*b*a*b)^2*b*a *b^-1*a*b^-1*a*b*a*b*a*b^-1 ,d^3,a^-1*d*a*d^-1,b^-1*d*b*d^-1], [[b*a*b^2*a*b*a*b^-1*a*b^2*a*b^-1, a*b*a*b*a*b^2*d^-1]]]; end, [378],[[1,2]]], "U3(5) 3^1",28,-3, 34,378] ]; PERFGRP[215]:=[# 384000.1 [[4,15360,2,3000,2,120,2,1], "A5 # 2^8 5^2",6,8, 1,[24,12,64,25]] ]; PERFGRP[216]:=[# 387072.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2))^3,(a*b*a*b ^(-1*2))^3*a*b*(a*b^-1)^2,u^2,v^2,w^2, x^2,y^2,z^2,u^-1*v^-1*u*v, u^-1*w^-1*u*w,u^-1*x^-1*u*x, u^-1*y^-1*u*y,u^-1*z^-1*u*z, v^-1*w^-1*v*w,v^-1*x^-1*v*x, v^-1*y^-1*v*y,v^-1*z^-1*v*z, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*u*a*(u*z)^-1, a^-1*v*a*(u*v*x*z)^-1, a^-1*w*a*(u*w*x*z)^-1, a^-1*x*a*(x*z)^-1, a^-1*y*a*(u*x*y)^-1,a^-1*z*a*z^-1, b^-1*u*b*(u*w*x*y*z)^-1, b^-1*v*b*(u*x*z)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z)^-1, b^-1*y*b*(v*y*z)^-1, b^-1*z*b*(u*v*w*x*y*z)^-1],[[a,b]]]; end, [64]], "U3(3) 2^6",[25,6,1],1, 12,64], # 387072.2 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^2*(u*x*z)^-1,b^6,(a*b)^7,(a*b^2)^3*(a*b^(-1*2)) ^3*(w*y*z)^-1, (a*b*a*b^(-1*2))^3*a*b*(a*b^-1)^2 *(w*x*y)^-1,u^2,v^2,w^2,x^2,y^2,z^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*(u*z)^-1, a^-1*v*a*(u*v*x*z)^-1, a^-1*w*a*(u*w*x*z)^-1, a^-1*x*a*(x*z)^-1, a^-1*y*a*(u*x*y)^-1,a^-1*z*a*z^-1, b^-1*u*b*(u*w*x*y*z)^-1, b^-1*v*b*(u*x*z)^-1, b^-1*w*b*(u*w*z)^-1, b^-1*x*b*(u*v*w*x*z)^-1, b^-1*y*b*(v*y*z)^-1, b^-1*z*b*(u*v*w*x*y*z)^-1], [[b^3,a*b^3*a*y, (b*a)^2*(b^-1*a)^2*b^3*(a*b)^2*(a*b^-1) ^2*y]]]; end, [504],[0]], "U3(3) N 2^6",[25,6,2],1, 12,504] ]; PERFGRP[217]:=[# 388800.1 [[2,360,1,1080,1], "( A6 x A6 ) 3^1 [1]",40,3, [3,3],[6,18]], # 388800.2 [[3,1080,1,1080,1,"a1","a1","a2","a2"], "( A6 x A6 ) 3^1 [2]",40,3, [3,3],108] ]; PERFGRP[218]:=[# 388944.1 [[1,"abc", function(a,b,c) return [[c^36*a^2,c*b^25*c^-1*b^-1,b^73,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3, c^(-1*10)*b^2*c*b*c*a*b*c^2*b*a*b^2*c*b*a], [[b,c^8]]]; end, [592],[0,3,6,3]], "L2(73) 2^1 = SL(2,73)",22,-2, 39,592] ]; PERFGRP[219]:=[# 393120.1 [[2,360,1,1092,1], "A6 x L2(13)",40,1, [3,6],[6,14]] ]; PERFGRP[220]:=[# 393660.1 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3,(a*b)^5,w^3,x^3,y^3,z^3,W^3,X^3,Y^3,Z^3,W ^-1*X^-1*W*X,W^-1*Y^-1*W*Y, W^-1*Z^-1*W*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, w^-1*W*w*W^-1,w^-1*X*w*X^-1, w^-1*Y*w*Y^-1,w^-1*Z*w*Z^-1, x^-1*W*x*W^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*W*y*W^-1,y^-1*X*y*X^-1, y^-1*Y*y*Y^-1,y^-1*Z*y*Z^-1, z^-1*W*z*W^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, a^-1*W*a*Z^-1,a^-1*X*a*X^-1, a^-1*Y*a*(W^2*X^2*Y^2*Z^2)^-1, a^-1*Z*a*W^-1,b^-1*W*b*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*W^-1, b^-1*Z*b*Z^-1], [[b,a*b*a*b^-1*a,w*x^-1,W], [b,a*b*a*b^-1*a,W*X^-1,w]]]; end, [15,15]], "A5 3^4' x 3^4'",[2,8,1],1, 1,[15,15]], # 393660.2 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3,(a*b)^5,w^9,x^9,y^9,z^9,w^-1*x^-1*w *x,w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*w*a*z^-1, a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,a*b*a*b^-1*a,w*x^-1]]]; end, [45]], "A5 3^4' A 3^4'",[2,8,2],1, 1,45], # 393660.3 [[1,"abwxyzWXYZ", function(a,b,w,x,y,z,W,X,Y,Z) return [[a^2,b^3*Z^-1,(a*b)^5,w^3,x^3,y^3,z^3,W^3,X^3, Y^3,Z^3,W^-1*X^-1*W*X,W^-1*Y^-1*W*Y ,W^-1*Z^-1*W*Z,X^-1*Y^-1*X*Y, X^-1*Z^-1*X*Z,Y^-1*Z^-1*Y*Z, w^-1*W*w*W^-1,w^-1*X*w*X^-1, w^-1*Y*w*Y^-1,w^-1*Z*w*Z^-1, x^-1*W*x*W^-1,x^-1*X*x*X^-1, x^-1*Y*x*Y^-1,x^-1*Z*x*Z^-1, y^-1*W*y*W^-1,y^-1*X*y*X^-1, y^-1*Y*y*Y^-1,y^-1*Z*y*Z^-1, z^-1*W*z*W^-1,z^-1*X*z*X^-1, z^-1*Y*z*Y^-1,z^-1*Z*z*Z^-1, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, a^-1*W*a*Z^-1,a^-1*X*a*X^-1, a^-1*Y*a*(W^2*X^2*Y^2*Z^2)^-1, a^-1*Z*a*W^-1,b^-1*W*b*X^-1, b^-1*X*b*Y^-1,b^-1*Y*b*W^-1, b^-1*Z*b*Z^-1], [[b,a*b*a*b^-1*a,w*x^-1,W],[b,z,W*X^-1,w] ]]; end, [15,60]], "A5 3^4' x N 3^4'",[2,8,3],1, 1,[15,60]], # 393660.4 [[1,"abwxyz", function(a,b,w,x,y,z) return [[a^2,b^3*z^-1,(a*b)^5,w^9,x^9,y^9,z^9,w^-1*x ^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w^-1*x^-1*y^-1*z^-1) ^-1,a^-1*z*a*w^-1, b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1], [[b,w*x^-1]]]; end, [180]], "A5 N 3^4' A 3^4'",[2,8,4],1, 1,180] ]; PERFGRP[221]:=[# 410400.1 [[2,60,1,6840,1], "( A5 x L2(19) ) 2^1 [1]",40,2, [1,9],[5,40]], # 410400.2 [[2,120,1,3420,1], "( A5 x L2(19) ) 2^1 [2]",40,2, [1,9],[24,20]], # 410400.3 [[3,120,1,6840,1,"d1","a2","a2"], "( A5 x L2(19) ) 2^1 [3]",40,2, [1,9],480] ]; PERFGRP[222]:=[# 411264.1 [[2,168,1,2448,1], "L3(2) x L2(17)",40,1, [2,7],[7,18]] ]; PERFGRP[223]:=[# 411540.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^2,b^3,(a*b)^5,x^19,y^19,z^19,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1, b^-1*x*b*(x^(-1*2)*y^(-1*6)*z^5)^-1, b^-1*y*b*(x^(-1*8)*y^(-1*4)*z^(-1*7))^-1, b^-1*z*b*(x^6*y^7*z^6)^-1], [[a*b,b*a*b*a*b^-1*a*b^-1,y*z^(-1*2)]]]; end, [114],[0,0,2,2,2,3,3,3]], "A5 19^3",[5,3,1],1, 1,114] ]; PERFGRP[224]:=[# 417720.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^59,z^59,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^(-1*29)*z^21)^-1, b^-1*z*b*(y^(-1*5)*z^28)^-1],[[a,b]]]; end, [3481],[0,0,2,2,3,3,2]], "A5 2^1 59^2",[5,2,1],1, 1,3481] ]; PERFGRP[225]:=[# 423360.1 [[2,168,1,2520,1], "L3(2) x A7",40,1, [2,8],[7,7]] ]; PERFGRP[226]:=[# 432000.1 [[2,120,1,3600,1], "( A5 x A5 x A5 ) 2^1 [1]",40,2, [1,1,1],[24,5,5]], # 432000.2 [[2,60,1,7200,2], "( A5 x A5 x A5 ) 2^1 [2]",40,2, [1,1,1],[5,288]], # 432000.3 [[3,120,1,7200,2,"d1","a2","a2"], "( A5 x A5 x A5 ) 2^1 [3]",40,2, [1,1,1],3456] ]; PERFGRP[227]:=[# 435600.1 [[2,660,1,660,1], "L2(11) x L2(11)",40,1, [5,5],[11,11]] ]; PERFGRP[228]:=[# 443520.1 [[1,"ab", function(a,b) return [[a^2,b^4,(a*b)^11,(a*b*a*b^2)^7,(a*b*a*b^-1*a*b ^-1*a*b^2*a*b)^2*b*a*b^-1], [[b,a*b^-1*a*b*a]]]; end, [22]], "M22",28,-1, 46,22], # 443520.2 [[2,336,1,1320,1], "( L3(2) x L2(11) ) 2^2",[39,2,1],4, [2,5],[16,24]] ]; PERFGRP[229]:=[# 446520.1 [[1,"abyz", function(a,b,y,z) return [[a^4,b^3,(a*b)^5,a^2*b^-1*a^2*b,y^61,z^61,y^-1 *z^-1*y*z,a^-1*y*a*z^-1, a^-1*z*a*y,b^-1*y*b*(y^-1*z^27)^-1, b^-1*z*b*y^(-1*9)],[[a*b,a^2,y]]]; end, [732],[0,0,2,2]], "A5 2^1 61^2",[5,2,1],1, 1,732] ]; PERFGRP[230]:=[# 447216.1 [[1,"abxyz", function(a,b,x,y,z) return [[a^4,b^3,(a*b)^7,(a^-1*b^-1*a*b)^4*a^2,a^2*b *a^2*b^-1,x^11,y^11,z^11,x^-1*y^-1*x *y,x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*x*a*z^-1,a^-1*y*a*y, a^-1*z*a*x^-1, b^-1*x*b*(y^4*z^-1)^-1, b^-1*y*b*(x^5*y*z^(-1*5))^-1, b^-1*z*b*(x^(-1*5)*y^3*z^-1)^-1], [[a*b,b*a*b^-1*a*b^-1*a*b*a*b^-1,x], [b*a*b^-1,b^-1*a*b,a^2,z]]]; end, [16,231]], "L3(2) 2^1 x 11^3",[11,3,1],2, 2,[16,231]] ]; PERFGRP[231]:=[# 450000.1 [[2,60,1,7500,1], "A5 x A5 # 5^3 [1]",[30,3,1],1, [1,1],[5,30]], # 450000.2 [[2,60,1,7500,2], "A5 x A5 # 5^3 [2]",[30,3,2],1, [1,1],[5,30]], # 450000.3 [[1,"abcdxyzw", function(a,b,c,d,x,y,z,w) return [[ a^4, b^3, c^3, (a*b)^5, (b*c^-1)^5, a^2/d, (b*c)^4/d, Comm(d,b), Comm(d,c), c*(b*c*b)^2/(b*a*c), x^5, y^5, z^5, w^5, Comm(w,x), Comm(w,y), Comm(w,z), Comm(z,x), Comm(z,y), Comm(y,x), x^a/y, y^a*x, z^a*y*w, w^a/(x*z), x^b*y, y^b*y/x, z^b/(x^2*y^3*z^2*w^4), w^b*x*y/(z^2*w^2), x^c*z/(x*y*w), y^c/(x^2*y^3*z), Comm(z,c), Comm(w,c),], [[a,b,x,y]]]; end, [150]], "A6 2^1 # 5^4",[41,4,1],1, [3],[150]] ]; PERFGRP[232]:=[# 451584.1 [[2,168,1,2688,1], "( L3(2) x L3(2) ) # 2^4 [1]",[34,4,1],2, [2,2],[7,8,16]], # 451584.2 [[2,168,1,2688,2], "( L3(2) x L3(2) ) # 2^4 [2]",[34,4,2],2, [2,2],[7,16]], # 451584.3 [[2,168,1,2688,3], "( L3(2) x L3(2) ) # 2^4 [3]",[34,4,3],2, [2,2],[7,16,14]], # 451584.4 [[2,336,1,1344,1], "( L3(2) x L3(2) ) # 2^4 [4]",[34,4,4],2, [2,2],[16,8]], # 451584.5 [[2,336,1,1344,2], "( L3(2) x L3(2) ) # 2^4 [5]",[34,4,5],2, [2,2],[16,14]], # 451584.6 [[3,336,1,2688,1,"d1","d2"], "( L3(2) x L3(2) ) # 2^4 [6]",[34,4,6],2, [2,2],[64,128]], # 451584.7 [[3,336,1,2688,2,"d1","e2"], "( L3(2) x L3(2) ) # 2^4 [7]",[34,4,7],2, [2,2],128], # 451584.8 [[3,336,1,2688,3,"d1","d2"], "( L3(2) x L3(2) ) # 2^4 [8]",[34,4,8],2, [2,2],[128,112]] ]; PERFGRP[233]:=[# 453600.1 [[2,60,1,7560,1], "A5 x A7 3^1",40,3, [1,8],[5,45]] ]; PERFGRP[234]:=[# 456288.1 [[1,"abc", function(a,b,c) return [[c^48,c*b^25*c^-1*b^-1,b^97,a^2,c*a*c*a^-1 ,(b*a)^3,c^10*(b*c)^2*a*b*c^2*a*b*a*b^2*c*b*a ],[[b,c]]]; end, [98],[0,3,5,3]], "L2(97)",22,-1, 47,98] ]; PERFGRP[235]:=[# 460800.1 [[2,3840,1,120,1], "( A5 x A5 ) # 2^7 [1]",[29,7,1],8, [1,1],[64,24]], # 460800.2 [[2,3840,2,120,1], "( A5 x A5 ) # 2^7 [2]",[29,7,2],8, [1,1],[64,24]], # 460800.3 [[2,3840,3,120,1], "( A5 x A5 ) # 2^7 [3]",[29,7,3],8, [1,1],[24,24]], # 460800.4 [[2,3840,4,120,1], "( A5 x A5 ) # 2^7 [4]",[29,7,4],8, [1,1],[48,24]], # 460800.5 [[2,3840,5,120,1], "( A5 x A5 ) # 2^7 [5]",[29,7,5],8, [1,1],[24,12,24]], # 460800.6 [[2,3840,6,120,1], "( A5 x A5 ) # 2^7 [6]",[29,7,6],4, [1,1],[48,24]], # 460800.7 [[2,3840,7,120,1], "( A5 x A5 ) # 2^7 [7]",[29,7,7],8, [1,1],[32,24,24]], # 460800.8 [[2,7680,1,60,1], "( A5 x A5 ) # 2^7 [8]",[29,7,8],8, [1,1],[12,64,5]], # 460800.9 [[2,7680,2,60,1], "( A5 x A5 ) # 2^7 [9]",[29,7,9],8, [1,1],[24,64,5]], # 460800.10 [[2,7680,3,60,1], "( A5 x A5 ) # 2^7 [10]",[29,7,10],8, [1,1],[24,64,5]], # 460800.11 [[2,7680,4,60,1], "( A5 x A5 ) # 2^7 [11]",[29,7,11],8, [1,1],[24,64,5]], # 460800.12 [[2,7680,5,60,1], "( A5 x A5 ) # 2^7 [12]",[29,7,12],8, [1,1],[24,24,5]], # 460800.13 [[3,7680,1,120,1,"f1","d2"], "( A5 x A5 ) # 2^7 [13]",[29,7,13],8, [1,1],[144,768]], # 460800.14 [[3,7680,1,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [14]",[29,7,14],8, [1,1],[144,768]], # 460800.15 [[3,7680,1,120,1,"f1","e1","e1","d2"], "( A5 x A5 ) # 2^7 [15]",[29,7,15],8, [1,1],[144,768]], # 460800.16 [[3,7680,2,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [16]",[29,7,16],8, [1,1],[288,768]], # 460800.17 [[3,7680,2,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [17]",[29,7,17],8, [1,1],[288,768]], # 460800.18 [[3,7680,3,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [18]",[29,7,18],8, [1,1],[288,768]], # 460800.19 [[3,7680,3,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [19]",[29,7,19],8, [1,1],[288,768]], # 460800.20 [[3,7680,4,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [20]",[29,7,20],8, [1,1],[288,768]], # 460800.21 [[3,7680,4,120,1,"e1","e1","d2"], "( A5 x A5 ) # 2^7 [21]",[29,7,21],8, [1,1],[288,768]], # 460800.22 [[3,7680,4,120,1,"d1","e1","e1","d2"], "( A5 x A5 ) # 2^7 [22]",[29,7,22],8, [1,1],[288,768]], # 460800.23 [[3,7680,5,120,1,"d1","d2"], "( A5 x A5 ) # 2^7 [23]",[29,7,23],8, [1,1],[288,288]], # 460800.24 [[3,7680,5,120,1,"e1","d2"], "( A5 x A5 ) # 2^7 [24]",[29,7,24],8, [1,1],[288,288]], # 460800.25 [[3,7680,5,120,1,"d1","e1","d2"], "( A5 x A5 ) # 2^7 [25]",[29,7,25],8, [1,1],[288,288]] ]; PERFGRP[236]:=[# 460992.1 [[4,1344,1,57624,1,168], "L3(2) # 2^3 7^3 [1]",12,1, 2,[8,56]], # 460992.2 [[4,1344,2,57624,1,168], "L3(2) # 2^3 7^3 [2]",12,1, 2,[14,56]], # 460992.3 [[4,1344,1,57624,2,168], "L3(2) # 2^3 7^3 [3]",12,1, 2,[8,56]], # 460992.4 [[4,1344,2,57624,2,168], "L3(2) # 2^3 7^3 [4]",12,1, 2,[14,56]] ]; PERFGRP[237]:=[# 464640.1 [[4,3840,5,14520,2,120,5,1], "A5 # 2^6 11^2 [1]",6,2, 1,[24,12,121]], # 464640.2 [[4,3840,6,14520,2,120,6,1], "A5 # 2^6 11^2 [2]",6,2, 1,[48,121]], # 464640.3 [[4,3840,7,14520,2,120,7,1], "A5 # 2^6 11^2 [3]",6,2, 1,[32,24,121]] ]; PERFGRP[238]:=[# 466560.1 [[1,"abdwxyzstuve", function(a,b,d,w,x,y,z,s,t,u,v,e) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,w^2,x^2,y^2,z^2,(w*x)^2*d, (w*y)^2*d,(w*z)^2*d,(x*y)^2*d,(x*z)^2*d,(y*z)^2*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1, d^-1*w^-1*d*w,d^-1*x^-1*d*x, d^-1*y^-1*d*y,d^-1*z^-1*d*z,s^3, t^3,u^3,v^3,e^3,s^-1*t^-1*s*t*e^-1, s^-1*u^-1*s*u*e,s^-1*v^-1*s*v, t^-1*u^-1*t*u*e,t^-1*v^-1*t*v*e, u^-1*v^-1*u*v*e,s^-1*e*s*e^-1, t^-1*e*t*e^-1,u^-1*e*u*e^-1, v^-1*e*v*e^-1, a^-1*s*a*(s*t*u*v*e)^-1, a^-1*t*a*(s^-1*t*u*v^-1*e^-1)^-1 ,a^-1*u*a*(s^-1*u^-1*v)^-1, a^-1*v*a*(t*u^-1*v^-1*e)^-1, a^-1*e*a*e^-1, b^-1*s*b*(s^-1*t^-1*u*v^-1)^-1, b^-1*t*b*(s^-1*v^-1*e)^-1, b^-1*u*b*(s*t^-1*u^-1*v^-1)^-1, b^-1*v*b*(t^-1*u^-1*e)^-1, b^-1*e*b*e^-1,d^-1*s*d*s, d^-1*t*d*(t^-1*e)^-1, d^-1*u*d*(u^-1*e^-1)^-1, d^-1*v*d*(v^-1*e)^-1, d^-1*e*d*e^-1,w^-1*s*w*s^-1, w^-1*t*w*(s^-1*t*v*e^-1)^-1, w^-1*u*w*(s*t*u^-1*v^-1*e^-1)^-1 ,w^-1*v*w*(s^-1*v^-1*e)^-1, w^-1*e*w*e^-1, x^-1*s*x*(s*t*u*v^-1)^-1, x^-1*t*x*t^-1, x^-1*u*x*(s^-1*v^-1)^-1, x^-1*v*x*(s^-1*t^-1*u*v*e)^-1, x^-1*e*x*e^-1, y^-1*s*y*(s*v^-1*e^-1)^-1, y^-1*t*y*(t*u*v^-1*e^-1)^-1, y^-1*u*y*(u^-1*e^-1)^-1, y^-1*v*y*(v^-1*e)^-1, y^-1*e*y*e^-1, z^-1*s*z*(s*t^-1*u^-1*v^-1*e^-1) ^-1,z^-1*t*z*(s*u*v)^-1, z^-1*u*z*(t*u^-1*v*e^-1)^-1, z^-1*v*z*(s^-1*t*u^-1)^-1, z^-1*e*z*e^-1],[[a,b,w]]]; end, [243]], "A5 2^4' C N 2^1 3^4 C 3^1",[7,5,1],3, 1,243], # 466560.2 [[1,"abwxyzrstuv", function(a,b,w,x,y,z,r,s,t,u,v) return [[a^4,b^3,(a*b)^5,a^2*b*a^2*b^-1,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x,w^-1*y^-1*w*y, w^-1*z^-1*w*z,x^-1*y^-1*x*y, x^-1*z^-1*x*z,y^-1*z^-1*y*z, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[a*b,w,r],[b,a*b*a*b^-1*a,w,r]]]; end, [24,15]], "A5 2^1 x 2^4' 3^5",[7,5,2],2, 1,[24,15]], # 466560.3 [[1,"abdwxyzrstuv", function(a,b,d,w,x,y,z,r,s,t,u,v) return [[a^2*d^-1,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d, b^-1*d^-1*b*d,w^-1*d^-1*w*d, x^-1*d^-1*x*d,y^-1*d^-1*y*d, z^-1*d^-1*z*d,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x*d,w^-1*y^-1*w*y*d, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y*d, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[b,a*b*a*b^-1*a^-1*w*x,u,v], [b,a*b*a*b^-1*a,w,r]]]; end, [80,15]], "A5 2^4' C N 2^1 3^5",[7,5,2],2, 1,[80,15]], # 466560.4 [[1,"abdwxyzrstuv", function(a,b,d,w,x,y,z,r,s,t,u,v) return [[a^2,b^3,(a*b)^5,d^2,a^-1*d^-1*a*d,b^-1 *d^-1*b*d,w^-1*d^-1*w*d, x^-1*d^-1*x*d,y^-1*d^-1*y*d, z^-1*d^-1*z*d,w^2,x^2,y^2,z^2, w^-1*x^-1*w*x*d,w^-1*y^-1*w*y*d, w^-1*z^-1*w*z*d,x^-1*y^-1*x*y*d, x^-1*z^-1*x*z*d,y^-1*z^-1*y*z*d, a^-1*w*a*z^-1,a^-1*x*a*x^-1, a^-1*y*a*(w*x*y*z)^-1,a^-1*z*a*w^-1 ,b^-1*w*b*x^-1,b^-1*x*b*y^-1, b^-1*y*b*w^-1,b^-1*z*b*z^-1,r^3, s^3,t^3,u^3,v^3,r^-1*s^-1*r*s, r^-1*t^-1*r*t,r^-1*u^-1*r*u, r^-1*v^-1*r*v,s^-1*t^-1*s*t, s^-1*u^-1*s*u,s^-1*v^-1*s*v, t^-1*u^-1*t*u,t^-1*v^-1*t*v, u^-1*v^-1*u*v,a^-1*r*a*u^-1, a^-1*s*a*s^-1,a^-1*t*a*v^-1, a^-1*u*a*r^-1,a^-1*v*a*t^-1, b^-1*r*b*s^-1,b^-1*s*b*t^-1, b^-1*t*b*r^-1,b^-1*u*b*u^-1, b^-1*v*b*v^-1,w^-1*r*w*r^-1, w^-1*s*w*s,w^-1*t*w*t,w^-1*u*w*u, w^-1*v*w*v,x^-1*r*x*r, x^-1*s*x*s^-1,x^-1*t*x*t, x^-1*u*x*u,x^-1*v*x*v,y^-1*r*y*r, y^-1*s*y*s,y^-1*t*y*t^-1, y^-1*u*y*u,y^-1*v*y*v,z^-1*r*z*r, z^-1*s*z*s,z^-1*t*z*t, z^-1*u*z*u^-1,z^-1*v*z*v], [[a,b,r],[b,a*b*a*b^-1*a,w,r]]]; end, [32,15]], "A5 2^4' C 2^1 3^5",[7,5,2],2, 1,[32,15]], # 466560.5 [[4,1920,1,14580,1,60], "A5 # 2^5 3^5 [1]",6,6, 1,[12,18]], # 466560.6 [[4,1920,2,14580,1,60], "A5 # 2^5 3^5 [2]",6,6, 1,[24,18]], # 466560.7 [[4,1920,3,14580,1,60], "A5 # 2^5 3^5 [3]",6,6, 1,[16,24,18]], # 466560.8 [[4,1920,4,14580,1,60], "A5 # 2^5 3^5 [4]",6,3, 1,[80,18]], # 466560.9 [[4,1920,5,14580,1,60], "A5 # 2^5 3^5 [5]",6,6, 1,[10,24,18]], # 466560.10 [[4,1920,6,14580,1,60], "A5 # 2^5 3^5 [6]",6,6, 1,[80,18]], # 466560.11 [[4,1920,7,14580,1,60], "A5 # 2^5 3^5 [7]",6,6, 1,[32,18]], # 466560.12 [[4,1920,3,29160,5,120,3,2], "A5 # 2^5 3^5 [8]",6,3, 1,[16,24,243]], # 466560.13 [[4,1920,4,29160,5,120,4,2], "A5 # 2^5 3^5 [9]",6,3, 1,[80,243]], # 466560.14 [[4,1920,5,29160,5,120,5,2], "A5 # 2^5 3^5 [10]",6,3, 1,[10,24,243]], # 466560.15 [[4,1920,3,29160,6,120,3,3], "A5 # 2^5 3^5 [11]",6,3, 1,[16,24,243]], # 466560.16 [[4,1920,4,29160,6,120,4,3], "A5 # 2^5 3^5 [12]",6,3, 1,[80,243]], # 466560.17 [[4,1920,5,29160,6,120,5,3], "A5 # 2^5 3^5 [13]",6,3, 1,[10,24,243]], # 466560.18 [[4,5760,1,29160,4,360,1,4], "A6 # 2^4 3^4",15,1, 3,[16,30]] ]; PERFGRP[239]:=[# 468000.1 [[2,60,1,7800,1], "A5 x L2(25)",40,1, [1,14],[5,26]] ]; PERFGRP[240]:=[# 475200.1 [[2,360,1,1320,1], "( A6 x L2(11) ) 2^1 [1]",40,2, [3,5],[6,24]], # 475200.2 [[2,720,1,660,1], "( A6 x L2(11) ) 2^1 [2]",40,2, [3,5],[80,11]], # 475200.3 [[3,720,1,1320,1,"d1","d2"], "( A6 x L2(11) ) 2^1 [3]",40,2, [3,5],960], # 475200.4 [[2,60,1,7920,1], "A5 x M11",40,1, [1,15],[5,11]] ]; PERFGRP[241]:=[# 480000.1 [[4,3840,1,7500,1,60], "A5 # 2^6 5^3 [1]",6,4, 1,[64,30]], # 480000.2 [[4,3840,2,7500,1,60], "A5 # 2^6 5^3 [2]",6,4, 1,[64,30]], # 480000.3 [[4,3840,3,7500,1,60], "A5 # 2^6 5^3 [3]",6,4, 1,[24,30]], # 480000.4 [[4,3840,4,7500,1,60], "A5 # 2^6 5^3 [4]",6,4, 1,[48,30]], # 480000.5 [[4,3840,5,7500,1,60], "A5 # 2^6 5^3 [5]",6,4, 1,[24,12,30]], # 480000.6 [[4,3840,6,7500,1,60], "A5 # 2^6 5^3 [6]",6,2, 1,[48,30]], # 480000.7 [[4,3840,7,7500,1,60], "A5 # 2^6 5^3 [7]",6,4, 1,[32,24,30]], # 480000.8 [[4,3840,1,7500,2,60], "A5 # 2^6 5^3 [8]",6,4, 1,[64,30]], # 480000.9 [[4,3840,2,7500,2,60], "A5 # 2^6 5^3 [9]",6,4, 1,[64,30]], # 480000.10 [[4,3840,3,7500,2,60], "A5 # 2^6 5^3 [10]",6,4, 1,[24,30]], # 480000.11 [[4,3840,4,7500,2,60], "A5 # 2^6 5^3 [11]",6,4, 1,[48,30]], # 480000.12 [[4,3840,5,7500,2,60], "A5 # 2^6 5^3 [12]",6,4, 1,[24,12,30]], # 480000.13 [[4,3840,6,7500,2,60], "A5 # 2^6 5^3 [13]",6,2, 1,[48,30]], # 480000.14 [[4,3840,7,7500,2,60], "A5 # 2^6 5^3 [14]",6,4, 1,[32,24,30]], # 480000.15 [[4,3840,5,15000,4,120,5,3], "A5 # 2^6 5^3 [15]",6,10, 1,[24,12,125]], # 480000.16 [[4,3840,6,15000,4,120,6,3], "A5 # 2^6 5^3 [16]",6,10, 1,[48,125]], # 480000.17 [[4,3840,7,15000,4,120,7,3], "A5 # 2^6 5^3 [17]",6,10, 1,[32,24,125]] ]; PERFGRP[242]:=[# 483840.1 [[1,"abuvwxyz", function(a,b,u,v,w,x,y,z) return [[a^6,b^4,(a*b)^7,(a*b)^2*a*b^2*(a*b*a*b^-1)^2 *(a*b)^2*(a*b^-1)^2*a*b*a*b^-1 *a^2,a^2*b*a^(-1*2)*b^-1,u^2,v^2,w^2,x^2, y^2,z^2,u^-1*v^-1*u*v,u^-1*w^-1*u*w ,u^-1*x^-1*u*x,u^-1*y^-1*u*y, u^-1*z^-1*u*z,v^-1*w^-1*v*w, v^-1*x^-1*v*x,v^-1*y^-1*v*y, v^-1*z^-1*v*z,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z, x^-1*y^-1*x*y,x^-1*z^-1*x*z, y^-1*z^-1*y*z,a^-1*u*a*u^-1, a^-1*v*a*v^-1,a^-1*w*a*y^-1, a^-1*x*a*x^-1,a^-1*y*a*w^-1, a^-1*z*a*(u*v*w*x*y*z)^-1, b^-1*u*b*w^-1,b^-1*v*b*z^-1, b^-1*w*b*v^-1,b^-1*x*b*y^-1, b^-1*y*b*x^-1,b^-1*z*b*u^-1], [[a^3,(b^-1*a)^2*(b*a)^2*b^2*a*b*a,u], [a,b^2*a*b^-1*(a*b*a*b*b)^2*(a*b)^2, b*(a*b^-1)^2*a*b^2*(a*b)^2,y*z]]]; end, [45,14],[[1,2],[1,-2]]], "A7 3^1 x 2^6",[23,6,1],3, 8,[45,14]], # 483840.2 [[1,"abdef", function(a,b,d,e,f) return [[a^2,b^4*f^(-1*2),(a*b)^7*d^-1*e,(a^-1*b^-1 *a*b)^5*f^(-1*2),(a*b^2)^5*(e*f)^-1, (a*b*a*b*a*b^3)^5*f, (a*b*a*b*a*b^2*a*b^-1)^5*d^(-1*2),d^3, a^-1*d*a*d^-1,b^-1*d*b*d^-1,e^2, f^4,e^-1*f^-1*e*f,a^-1*e*a*e^-1, a^-1*f*a*f^-1,b^-1*e*b*e^-1, b^-1*f*b*f^-1], [[a*b*a,b^2*a*b^-1*a*b*a*b^2*a*b*d], [a,b*a*b*a*b^-1*a*b^2*f^-1], [a*e^2,b^-1*a*b^-1*a*b*a*b^2]]]; end, [63,224,112],[[1,2]]], "L3(4) 3^1 x 2^1 x ( 2^1 A 2^1 )",[27,3,1],-24, 20,[63,224,112]], # 483840.3 [[2,960,1,504,1], "( A5 x L2(8) ) # 2^4 [1]",[35,4,1],1, [1,4],[16,9]], # 483840.4 [[2,960,2,504,1], "( A5 x L2(8) ) # 2^4 [2]",[35,4,2],1, [1,4],[10,9]], # 483840.5 [[2,1344,1,360,1], "( L3(2) x A6 ) # 2^3 [1]",[37,3,1],1, [2,3],[8,6]], # 483840.6 [[2,1344,2,360,1], "( L3(2) x A6 ) # 2^3 [2]",[37,3,2],1, [2,3],[14,6]] ]; PERFGRP[243]:=[# 489600.1 [[2,120,1,4080,1], "A5 2^1 x L2(16)",40,2, [1,10],[24,17]] ]; PERFGRP[244]:=fail; PERFGRP[245]:=[# 492960.1 [[1,"abc", function(a,b,c) return [[c^39*a^2,c*b^9*c^-1*b^-1,b^79,a^4,a^2*b^(-1 *1)*a^2*b,a^2*c^-1*a^2*c, c*a*c*a^-1,(b*a)^3],[[b,c^2]]]; end, [160],[0,3,3]], "L2(79) 2^1 = SL(2,79)",22,-2, 40,160] ]; PERFGRP[246]:=[# 504000.1 [[2,3000,1,168,1], "( A5 x L3(2) ) 2^1 # 5^2",[32,2,1],1, [1,2],[25,7]] ]; PERFGRP[247]:=[# 515100.1 [[1,"abc", function(a,b,c) return [[c^50,c*b^4*c^-1*b^-1,b^101,a^2,c*a*c*a^-1 ,(b*a)^3,c^(-1*3)*b^2*c*b*c*b^2*c*a*b^2*a*c *b^2*a],[[b,c]]]; end, [102]], "L2(101)",22,-1, 48,102] ]; PERFGRP[248]:=[# 516096.1 [[1,"abcuvwxyzdef", function(a,b,c,u,v,w,x,y,z,d,e,f) return [[a^2*(e*f^-1)^-1,b^3,(a*b)^7,b^-1*(a*b)^3 *c^-1, b^-1*c^-1*b*c^-1*a^-1*c*b^-1*c *b*a*(y*z*d*f^2)^-1,d^2,e^2,f^4,u^2, v^2*f^2,w^2,x^2*f^2,y^2,z^2*f^2, u^-1*v^-1*u*v,u^-1*w^-1*u*w, u^-1*x^-1*u*x*f^2,u^-1*y^-1*u*y *f^2,u^-1*z^-1*u*z,u^-1*d^-1*u*d, u^-1*e^-1*u*e,u^-1*f^-1*u*f, v^-1*w^-1*v*w,v^-1*x^-1*v*x*f^2, v^-1*y^-1*v*y,v^-1*z^-1*v*z, v^-1*d^-1*v*d,v^-1*e^-1*v*e, v^-1*f^-1*v*f,w^-1*x^-1*w*x, w^-1*y^-1*w*y,w^-1*z^-1*w*z*f^2, w^-1*d^-1*w*d,w^-1*e^-1*w*e, w^-1*f^-1*w*f,x^-1*y^-1*x*y, x^-1*z^-1*x*z,x^-1*d^-1*x*d, x^-1*e^-1*x*e,x^-1*f^-1*x*f, y^-1*z^-1*y*z,y^-1*d^-1*y*d, y^-1*e^-1*y*e,y^-1*f^-1*y*f, z^-1*d^-1*z*d,z^-1*e^-1*z*e, z^-1*f^-1*z*f,a^-1*u*a*(u*x)^-1, a^-1*v*a*(v*y*f^2)^-1, a^-1*w*a*(w*z)^-1, a^-1*x*a*(x*f^2)^-1,a^-1*y*a*y^-1, a^-1*z*a*(z*f^2)^-1,a^-1*d*a*d^-1, a^-1*e*a*e^-1,a^-1*f*a*f^-1, b^-1*u*b*(x*y*e*f^-1)^-1, b^-1*v*b*(y*z*e*f^2)^-1, b^-1*w*b*(x*y*z*d*e*f^2)^-1, b^-1*x*b*(v*w*x*e)^-1, b^-1*y*b*(u*v*w*y*d*e*f^2)^-1, b^-1*z*b*(u*w*z*f^-1)^-1, b^-1*d*b*d^-1,b^-1*e*b*e^-1, b^-1*f*b*f^-1, c^-1*u*c*(v*d*e*f^-1)^-1, c^-1*v*c*(w*d*f^-1)^-1, c^-1*w*c*(u*v*e*f)^-1, c^-1*x*c*(x*z*d*e*f)^-1, c^-1*y*c*(x*d*f)^-1, c^-1*z*c*(y*e*f^-1)^-1, c^-1*d*c*d^-1,c^-1*e*c*e^-1, c^-1*f*c*f^-1], [[c*c*a,y/b*a],[a^b,w*a]]]; #[[w*c*b,v^-1*c^-1*a]]]; corefree index 1152 end, [288,112],[[1,2],[12,12]]], "L2(8) N ( 2^6 E ( 2^1 x 2^1 x 2^1 A ) ) C 2^1",[16,10,1],16, 4,[288,112]] ]; PERFGRP[249]:=[# 518400.1 [[2,720,1,720,1], "( A6 x A6 ) 2^2",40,4, [3,3],[80,80]] ]; ############################################################################# ## #E perf10.grp . . . . . . . . . . . . . . . . . . . . . . . . . ends here ##