Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## #W algfld.gd GAP Library Alexander Hulpke ## ## #Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany #Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland #Y Copyright (C) 2002 The GAP Group ## ## This file contains the categories, attributes, properties and operations ## for algebraic extensions of fields and their elements ############################################################################# ## #C IsAlgebraicElement(<obj>) ## ## <#GAPDoc Label="IsAlgebraicElement"> ## <ManSection> ## <Filt Name="IsAlgebraicElement" Arg='obj' Type='Category'/> ## ## <Description> ## is the category for elements of an algebraic extension. ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareCategory( "IsAlgebraicElement", IsScalar and IsZDFRE and IsAssociativeElement and IsAdditivelyCommutativeElement and IsCommutativeElement); DeclareCategoryCollections( "IsAlgebraicElement"); DeclareCategoryCollections( "IsAlgebraicElementCollection"); DeclareCategoryCollections( "IsAlgebraicElementCollColl"); ############################################################################# ## #C IsAlgebraicElementFamily Category for Families of Algebraic Elements ## ## <ManSection> ## <Filt Name="IsAlgebraicElementFamily" Arg='obj' Type='Category'/> ## ## <Description> ## </Description> ## </ManSection> ## DeclareCategoryFamily( "IsAlgebraicElement" ); ############################################################################# ## #C IsAlgebraicExtension(<obj>) ## ## <#GAPDoc Label="IsAlgebraicExtension"> ## <ManSection> ## <Filt Name="IsAlgebraicExtension" Arg='obj' Type='Category'/> ## ## <Description> ## is the category of algebraic extensions of fields. ## <Example><![CDATA[ ## gap> IsAlgebraicExtension(e); ## true ## gap> IsAlgebraicExtension(Rationals); ## false ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareCategory( "IsAlgebraicExtension", IsField ); ############################################################################# ## #A AlgebraicElementsFamilies List of AlgElm. families to one poly over ## ## <ManSection> ## <Attr Name="AlgebraicElementsFamilies" Arg='obj'/> ## ## <Description> ## </Description> ## </ManSection> ## DeclareAttribute( "AlgebraicElementsFamilies", IsUnivariatePolynomial, "mutable" ); ############################################################################# ## #O AlgebraicElementsFamily Create Family of alg elms ## ## <ManSection> ## <Oper Name="AlgebraicElementsFamily" Arg='obj'/> ## ## <Description> ## </Description> ## </ManSection> ## DeclareOperation( "AlgebraicElementsFamily", [IsField,IsUnivariatePolynomial]); ############################################################################# ## #O AlgebraicExtension(<K>,<f>) ## ## <#GAPDoc Label="AlgebraicExtension"> ## <ManSection> ## <Oper Name="AlgebraicExtension" Arg='K,f'/> ## ## <Description> ## constructs an extension <A>L</A> of the field <A>K</A> by one root of the ## irreducible polynomial <A>f</A>, using Kronecker's construction. ## <A>L</A> is a field whose <Ref Attr="LeftActingDomain"/> value is ## <A>K</A>. ## The polynomial <A>f</A> is the <Ref Attr="DefiningPolynomial"/> value ## of <A>L</A> and the attribute ## <Ref Func="RootOfDefiningPolynomial"/> ## of <A>L</A> holds a root of <A>f</A> in <A>L</A>. ## <Example><![CDATA[ ## gap> x:=Indeterminate(Rationals,"x");; ## gap> p:=x^4+3*x^2+1;; ## gap> e:=AlgebraicExtension(Rationals,p); ## <algebraic extension over the Rationals of degree 4> ## gap> IsField(e); ## true ## gap> a:=RootOfDefiningPolynomial(e); ## a ## ]]></Example> ## </Description> ## </ManSection> ## <#/GAPDoc> ## DeclareOperation( "AlgebraicExtension", [IsField,IsUnivariatePolynomial]); ############################################################################# ## #F MaxNumeratorCoeffAlgElm(<a>) ## ## <ManSection> ## <Func Name="MaxNumeratorCoeffAlgElm" Arg='a'/> ## ## <Description> ## maximal (absolute value, in numerator) ## coefficient in the representation of algebraic elm. <A>a</A> ## </Description> ## </ManSection> ## DeclareOperation("MaxNumeratorCoeffAlgElm",[IsScalar]); ############################################################################# ## #F DefectApproximation( <K> ) . . . . . . . approximation for defect K, i.e. #F denominators of integer elements in K ## ## <ManSection> ## <Func Name="DefectApproximation" Arg='K'/> ## ## <Description> ## </Description> ## </ManSection> ## DeclareAttribute("DefectApproximation",IsAlgebraicExtension); ############################################################################# ## #F AlgExtEmbeddedPol(<ext>,<pol>) ## ## <ManSection> ## <Func Name="AlgExtEmbeddedPol" Arg='ext,pol'/> ## ## <Description> ## </Description> ## </ManSection> ## DeclareGlobalFunction("AlgExtEmbeddedPol"); DeclareGlobalFunction("AlgExtSquareHensel");