CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / lib / coll.gi
Views: 418346
#############################################################################
##
#W  coll.gi                     GAP library                  Martin Schönert
#W                                                            & Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for collections in general.
##


#############################################################################
##
#M  CollectionsFamily(<F>)  . . . . . . . . . . . . . . . . .  generic method
##
InstallMethod( CollectionsFamily,
    "for a family",
    [ IsFamily ], 90,
    function ( F )
    local   colls, coll_req, coll_imp, elms_flags, tmp;
    coll_req := IsCollection;
    coll_imp := IsObject;
    elms_flags := F!.IMP_FLAGS;
    for tmp  in CATEGORIES_COLLECTIONS  do
        if IS_SUBSET_FLAGS( elms_flags, FLAGS_FILTER( tmp[1] ) )  then
            coll_imp := coll_imp and tmp[2];
        fi;
    od;

    if    ( not HasElementsFamily( F ) )
       or not IsOddAdditiveNestingDepthFamily( F ) then
      colls := NewFamily( "CollectionsFamily(...)", coll_req,
                          coll_imp and IsOddAdditiveNestingDepthObject );
      SetFilterObj( colls, IsOddAdditiveNestingDepthFamily );
    else
      colls := NewFamily( "CollectionsFamily(...)", coll_req, coll_imp );
    fi;

    SetElementsFamily( colls, F );

    return colls;
end );

#
# Rather nasty cludge follows. We need StringFamily before we read
# this file, so we created it earlier and "force" it to be the CollectionsFamily of
# CharsFamily here.
#
    
SetElementsFamily( StringFamily, CharsFamily);
SetCollectionsFamily( CharsFamily, StringFamily);


#############################################################################
##
##  Iterators
##

#############################################################################
##
#V  IteratorsFamily
##
BIND_GLOBAL( "IteratorsFamily", NewFamily( "IteratorsFamily", IsIterator ) );


#############################################################################
##
#M  PrintObj( <iter> )  . . . . . . . . . . . . . . . . . . print an iterator
##
##  This method is also the default for `ViewObj'.
##
InstallMethod( PrintObj,
    "for an iterator",
    [ IsIterator ],
    function( iter )
    local msg;
    msg := "<iterator";
    if not IsMutable( iter ) then
      Append(msg, " (immutable)");
    fi;
    Append(msg,">");
    Print(msg);
    end );


#############################################################################
##
#M  IsEmpty(<C>)  . . . . . . . . . . . . . . . test if a collection is empty
##
InstallImmediateMethod( IsEmpty,
    IsCollection and HasSize, 0,
    C -> Size( C ) = 0 );

InstallMethod( IsEmpty,
    "for a collection",
    [ IsCollection ],
    C -> Size( C ) = 0 );

InstallMethod( IsEmpty,
    "for a list",
    [ IsList ],
    list -> Length( list ) = 0 );


#############################################################################
##
#M  IsTrivial(<C>)  . . . . . . . . . . . . . test if a collection is trivial
##
InstallImmediateMethod( IsTrivial,
    IsCollection and HasSize, 0,
    C -> Size( C ) = 1 );

InstallMethod( IsTrivial,
    "for a collection",
    [ IsCollection ],
    C -> Size( C ) = 1 );

InstallImmediateMethod( IsTrivial,
    IsCollection and HasIsNonTrivial, 0,
    C -> not IsNonTrivial( C ) );


#############################################################################
##
#M  IsNonTrivial( <C> ) . . . . . . . . .  test if a collection is nontrivial
##
InstallImmediateMethod( IsNonTrivial,
    IsCollection and HasIsTrivial, 0,
    C -> not IsTrivial( C ) );

InstallMethod( IsNonTrivial,
    "for a collection",
    [ IsCollection ],
    C -> Size( C ) <> 1 );


#############################################################################
##
#M  IsFinite(<C>) . . . . . . . . . . . . . .  test if a collection is finite
##
InstallImmediateMethod( IsFinite,
    IsCollection and HasSize, 0,
    C -> not IsIdenticalObj( Size( C ), infinity ) );

InstallMethod( IsFinite,
    "for a collection",
    [ IsCollection ],
    C -> Size( C ) < infinity );


#############################################################################
##
#M  IsWholeFamily( <C> )  . .  test if a collection contains the whole family
##
InstallMethod( IsWholeFamily,
    "default for a collection, print an error message",
    [ IsCollection ],
    function ( C )
    Error( "cannot test whether <C> contains the family of its elements" );
    end );


#############################################################################
##
#M  Size( <C> ) . . . . . . . . . . . . . . . . . . . .  size of a collection
##
InstallImmediateMethod( Size,
    IsCollection and HasIsFinite and IsAttributeStoringRep, 0,
    function ( C )
    if IsFinite( C ) then
        TryNextMethod();
    fi;
    return infinity;
    end );

InstallImmediateMethod( Size,
    IsCollection and HasAsList and IsAttributeStoringRep, 0,
    C -> Length( AsList( C ) ) );

InstallMethod( Size,
    "for a collection",
    [ IsCollection ],
    C -> Length( Enumerator( C ) ) ); 


#############################################################################
##
#M  Representative( <C> ) . . . . . . . . . . for a collection that is a list
##
InstallMethod( Representative,
    "for a collection that is a list",
    [ IsCollection and IsList ],
    function ( C )
    if IsEmpty( C ) then
      Error( "<C> must be nonempty to have a representative" );
    else
      return C[1];
    fi;
    end );

InstallImmediateMethod( RepresentativeSmallest,
    IsCollection and HasEnumeratorSorted and IsAttributeStoringRep, 1000,
    function( C )
    C:= EnumeratorSorted( C );
    if IsEmpty( C ) then
      TryNextMethod();
    else
      return C[1];
    fi;
    end );

InstallImmediateMethod( RepresentativeSmallest,
    IsCollection and HasAsSSortedList and IsAttributeStoringRep, 1000,
    function( C )
    C:= AsSSortedList( C );
    if IsEmpty( C ) then
      TryNextMethod();
    else
      return C[1];
    fi;
    end );

InstallMethod( RepresentativeSmallest,
    "for a collection",
    [ IsCollection ],
    function ( C )
    local   elm;
    for elm in EnumeratorSorted( C ) do
        return elm;
    od;
    Error( "<C> must be nonempty to have a representative" );
    end );


#############################################################################
##
#M  Random( <list> )  . . . . . . . . . . . . . . . . . . . . . .  for a list
#M  Random( <C> ) . . . . . . . . . . . . . . . . . . . . .  for a collection
##
##  The default function for random selection in a finite collection computes
##  an enumerator of <C> and selects a random element of this list using the
##  function `RandomList', which is a pseudo random number generator.
##
DeclareGlobalVariable( "GlobalMersenneTwister" );
InstallGlobalFunction( RandomList, function(list)
  return list[Random(GlobalMersenneTwister, 1, Length(list))];
end );
InstallMethod( Random, "for a (finite) collection",
    [ IsCollection and IsFinite ],
    C -> RandomList( Enumerator( C ) ) );

RedispatchOnCondition(Random,true,[IsCollection],[IsFinite],0);


#############################################################################
##
#M  PseudoRandom( <list> )  . . . . . . . . . . . . . .  for an internal list
##
InstallMethod( PseudoRandom,
    "for an internal list",
    [ IsList and IsInternalRep ], 100,
    RandomList );


#############################################################################
##
#M  PseudoRandom( <C> ) . . . . . . . . . . . . . .  for a list or collection
##
InstallMethod( PseudoRandom,
    "for a list or collection (delegate to `Random')",
    [ IsListOrCollection ], Random );

#############################################################################
##
#M  AsList( <coll> )
##
InstallMethod( AsList,
    "for a collection",
    [ IsCollection ],
    coll -> ConstantTimeAccessList( Enumerator( coll ) ) );

InstallMethod( AsList,
    "for collections that are constant time access lists",
    [ IsCollection and IsConstantTimeAccessList ],
    Immutable );


#############################################################################
##
#M  AsSSortedList( <coll> )
##
InstallMethod( AsSSortedList,
    "for a collection",
    [ IsCollection ],
    coll -> ConstantTimeAccessList( EnumeratorSorted( coll ) ) );

InstallOtherMethod( AsSSortedList,
    "for a collection that is a constant time access list",
    [ IsCollection and IsConstantTimeAccessList ],
    l->AsSSortedListList(AsPlist(l)) );

#############################################################################
##
#M  AsSSortedListNonstored( <C> )
##
InstallMethod(AsSSortedListNonstored,"if `AsSSortedList' is known",
  [IsListOrCollection and HasAsSSortedList],
  # besser geht nicht
  SUM_FLAGS,
  AsSSortedList);

InstallMethod(AsSSortedListNonstored,"if `AsList' is known:sort",
  [IsListOrCollection and HasAsList],
  # unless the construction constructs the elements already sorted, this
  # method is as good as it gets
  QuoInt(SUM_FLAGS,4),
function(l)
local a;
  a:=ShallowCopy(AsList(l));
  Sort(a);
  return a;
end);


#############################################################################
##
#M  Enumerator( <C> )
##
InstallImmediateMethod( Enumerator,
    IsCollection and HasAsList and IsAttributeStoringRep, 0,
    AsList );

InstallMethod( Enumerator,
    "for a collection with known `AsList' value",
    [ IsCollection and HasAsList ], 
    SUM_FLAGS, # we don't want to compute anything anew -- this is already a
               # known result as good as any.
    AsList );

InstallMethod( Enumerator,
    "for a collection with known `AsSSortedList' value",
    [ IsCollection and HasAsSSortedList ],
    SUM_FLAGS, # we don't want to compute anything anew -- this is already a
               # known result as good as any.
    AsSSortedList );

InstallMethod( Enumerator,
    "for a collection that is a list",
    [ IsCollection and IsList ],
    Immutable );


#############################################################################
##
#M  EnumeratorSorted( <C> )
##
##  If a collection known already its `AsSSortedList' value then
##  `EnumeratorSorted' may fetch this value.
##
InstallImmediateMethod( EnumeratorSorted,
    IsCollection and HasAsSSortedList and IsAttributeStoringRep, 0,
    AsSSortedList );

InstallMethod( EnumeratorSorted,
    "for a collection with known `AsSSortedList' value",
    [ IsCollection and HasAsSSortedList ],
    SUM_FLAGS, # we don't want to compute anything anew -- this is already a
               # known result as good as any.
    AsSSortedList );


#############################################################################
##
#M  PrintObj( <enum> )  . . . . . . . . . . . . . . . . . print an enumerator
##
##  This is also the default method for `ViewObj'.
##
InstallMethod( PrintObj,
    "for an enumerator",
    [ IsList and IsAttributeStoringRep ],
    function( enum )
    Print( "<enumerator>" );
    end );


#############################################################################
##
#F  EnumeratorByFunctions( <D>, <record> )
#F  EnumeratorByFunctions( <Fam>, <record> )
##
DeclareRepresentation( "IsEnumeratorByFunctionsRep", IsComponentObjectRep,
    [ "ElementNumber", "NumberElement", "Length", "IsBound\\[\\]",
      "Membership", "AsList", "ViewObj", "PrintObj" ] );

DeclareSynonym( "IsEnumeratorByFunctions",
    IsEnumeratorByFunctionsRep and IsDenseList and IsDuplicateFreeList );

InstallGlobalFunction( EnumeratorByFunctions, function( D, record )
    local filter, Fam, enum;

    if not ( IsRecord( record ) and IsBound( record.ElementNumber )
                                and IsBound( record.NumberElement ) ) then
      Error( "<record> must be a record with components `ElementNumber'\n",
             "and `NumberElement'" );
    fi;
    filter:= IsEnumeratorByFunctions and IsAttributeStoringRep;
    if IsDomain( D ) then
      Fam:= FamilyObj( D );
    elif IsFamily( D ) then
      if not IsBound( record.Length ) then
        Error( "<record> must have the component `Length'" );
      fi;
      Fam:= D;
    else
      Error( "<D> must be a record or a family" );
    fi;

    enum:= Objectify( NewType( Fam, filter ), record );

    if IsDomain( D ) then
      SetUnderlyingCollection( enum, D );
      if HasIsFinite( D ) then
        SetIsFinite( enum, IsFinite( D ) );
      fi;
    fi;

    return enum;
    end );


InstallOtherMethod( \[\],
    "for enumerator by functions",
    [ IsEnumeratorByFunctions, IsPosInt ],
    function( enum, nr )
    return enum!.ElementNumber( enum, nr );
    end );

InstallOtherMethod( Position,
    "for enumerator by functions",
    [ IsEnumeratorByFunctions, IsObject, IsZeroCyc ],
    RankFilter( IsSmallList ), # override the generic method for those lists
    function( enum, elm, zero )
    return enum!.NumberElement( enum, elm );
    end );

InstallOtherMethod( PositionCanonical,
    "for enumerator by functions",
    [ IsEnumeratorByFunctions, IsObject ],
    function( enum, elm )
    if IsBound( enum!.PositionCanonical ) then
      return enum!.PositionCanonical( enum, elm );
    else
      return enum!.NumberElement( enum, elm );
    fi;
    end );
# (was defined for EnumeratorByBasis, IsExternalOrbitByStabilizerEnumerator,
# IsRationalClassGroupEnumerator!)
# I am still convinced that `PositionCanonical' is not a well-defined concept!

InstallMethod( Length,
    "for an enumerator that perhaps has its own `Length' function",
    [ IsEnumeratorByFunctions ],
    function( enum )
    if IsBound( enum!.Length ) then
      return enum!.Length( enum );
    elif HasUnderlyingCollection( enum ) then
      return Size( UnderlyingCollection( enum ) );
    else
      Error( "neither `Length' function nor `UnderlyingCollection' found ",
             "in <enum>" );
    fi;
    end );

InstallMethod( IsBound\[\],
    "for an enumerator that perhaps has its own `IsBound' function",
    [ IsEnumeratorByFunctions, IsPosInt ],
    function( enum, n )
    if IsBound( enum!.IsBound\[\] ) then
      return enum!.IsBound\[\]( enum, n );
    else
      return n <= Length( enum );
    fi;
    end );

InstallOtherMethod( \in,
    "for an enumerator that perhaps has its own membership test function",
    [ IsObject, IsEnumeratorByFunctions ],
    function( elm, enum )
    if IsBound( enum!.Membership ) then
      return enum!.Membership( elm, enum );
    else
      return enum!.NumberElement( enum, elm ) <> fail;
    fi;
    end );

InstallMethod( AsList,
    "for an enumerator that perhaps has its own `AsList' function",
    [ IsEnumeratorByFunctions ],
    function( enum )
    if IsBound( enum!.AsList ) then
      return enum!.AsList( enum );
    else
      return ConstantTimeAccessList( enum );
    fi;
    end );

InstallMethod( ViewObj,
    "for an enumerator that perhaps has its own `ViewObj' function",
    [ IsEnumeratorByFunctions ], 20,
    # override, e.g., the method for finite lists
    # in the case of an enumerator of GF(q)^n
    function( enum )
    if   IsBound( enum!.ViewObj ) then
      enum!.ViewObj( enum );
    elif IsBound( enum!.PrintObj ) then
      enum!.PrintObj( enum );
    elif HasUnderlyingCollection( enum ) then
      Print( "<enumerator of " );
      View( UnderlyingCollection( enum ) );
      Print( ">" );
    else
      Print( "<enumerator>" );
    fi;
    end );

InstallMethod( PrintObj,
    "for an enumerator that perhaps has its own `PrintObj' function",
    [ IsEnumeratorByFunctions ],
    function( enum )
    if IsBound( enum!.PrintObj ) then
      enum!.PrintObj( enum );
    elif HasUnderlyingCollection( enum ) then
      Print( "<enumerator of ", UnderlyingCollection( enum ), ">" );
    else
      Print( "<enumerator>" );
    fi;
    end );


# #############################################################################
# ##
# #F  TestConsistencyOfEnumeratorByFunctions( <enum> )
# ##
# ##  This (currently undocumented) function is thought for checking newly
# ##  implemented enumerators in `IsEnumeratorByFunctions'.
# ##  Whenever a test fails then a message about this is printed, and `false'
# ##  is returned in the end.
# ##  If no obvious errors are found then `true' is returned.
# ##  (Note that for enumerators of length up to 1000, also access to too large
# ##  positions is checked.)
# ##
# BindGlobal( "TestConsistencyOfEnumeratorByFunctions", function( enum )
#     local bound, filter, result, origlevel, elm, len, list;
# 
#     bound:= 1000;
#     filter:= IsEnumeratorByFunctions;
#     if not filter( enum ) then
#       Print( "#E  enumerator is not in `IsEnumeratorByFunctions'\n" );
#       return false;
#     fi;
#     result:= true;
# 
#     # Switch off warnings.
#     origlevel:= InfoLevel( InfoWarning );
#     SetInfoLevel( InfoWarning, 0 );
# 
#     # Check that the right methods are used.
#     elm:= enum[1];
#     if not IsIdenticalObj( ApplicableMethod( Position, [ enum, elm, 0 ] ),
#                ApplicableMethodTypes( Position, [ filter, IsObject,
#                    IsZeroCyc ] ) ) then
#       Print( "#E  wrong `Position' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( \[\], [ enum, 1 ] ),
#                ApplicableMethodTypes( \[\], [ filter, IsPosInt ] ) ) then
#       Print( "#E  wrong `\\[\\]' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( IsBound\[\], [ enum, 1 ] ),
#                ApplicableMethodTypes( IsBound\[\], [ filter, IsPosInt ] ) )
#        then
#       Print( "#E  wrong `IsBound\\[\\]' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( Length, [ enum ] ),
#                ApplicableMethodTypes( Length, [ filter ] ) ) and
#        not HasLength( enum ) then
#       Print( "#E  wrong `Length' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( \in, [ elm, enum ] ),
#                ApplicableMethodTypes( \in, [ IsObject, filter ] ) ) then
#       Print( "#E  wrong `\\in' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( ViewObj, [ enum ] ),
#                ApplicableMethodTypes( ViewObj, [ filter ] ) ) then
#       Print( "#E  wrong `ViewObj' method\n" );
#       result:= false;
#     fi;
#     if not IsIdenticalObj( ApplicableMethod( PrintObj, [ enum ] ),
#                ApplicableMethodTypes( PrintObj, [ filter ] ) ) then
#       Print( "#E  wrong `PrintObj' method\n" );
#       result:= false;
#     fi;
# 
#     # Check that the results computed by the methods are reasonable.
#     len:= bound;
#     if Length( enum ) < len then
#       len:= Length( enum );
#     fi;
#     list:= List( [ 1 .. len ], i -> enum[i] );
#     if List( list, x -> Position( enum, x ) ) <> [ 1 .. len ] then
#       Print( "#E  `\\[\\]' and `Position' of <enum> do not fit together\n" );
#       result:= false;
#     fi;
#     if not ForAll( list, x -> x in enum ) then
#       Print( "#E  `\\[\\]' and `\\in' of <enum> do not fit together\n" );
#       result:= false;
#     fi;
# 
#     if ForAny( list, IsMutable ) then
#       Print( "#E  the elements of <enum> must be immutable\n" );
#       result:= false;
#     fi;
#     if HasIsSSortedList( enum ) and IsSSortedList( enum ) then
#       if not IsSSortedList( list ) then
#         Print( "#E  <enum> is not sorted\n" );
#         result:= false;
#       fi;
#     fi;
# 
#     # Reset the info level.
#     SetInfoLevel( InfoWarning, origlevel );
#     return result;
# end );


#############################################################################
##
#F  EnumeratorOfSubset( <list>, <blist>[, <ishomog>] )
##
BIND_GLOBAL( "ElementNumber_Subset", function( senum, num )
    local pos;

    pos:= PositionNthTrueBlist( senum!.blist, num );
    if pos = fail then
      Error( "List Element: <list>[", num, "] must have an assigned value" );
    else
      return senum!.list[ pos ];
    fi;
    end );

BIND_GLOBAL( "NumberElement_Subset", function( senum, elm )
    local pos;
    
    pos:= Position( senum!.list, elm );
    if pos = fail or not senum!.blist[ pos ] then
      return fail;
    else
      return SIZE_BLIST( senum!.blist{ [ 1 .. pos ] } );
    fi;
    end );

BIND_GLOBAL( "PositionCanonical_Subset", function( senum, elm )
    local pos;
    
    pos:= PositionCanonical( senum!.list, elm );
    if pos = fail or not senum!.blist[ pos ] then
      return fail;
    else
      return SIZE_BLIST( senum!.blist{ [ 1 .. pos ] } );
    fi;
    end );

BIND_GLOBAL( "Length_Subset", senum -> SIZE_BLIST( senum!.blist ) );

BIND_GLOBAL( "AsList_Subset",
    senum -> senum!.list{ LIST_BLIST( [ 1 .. Length( senum!.list ) ],
                          senum!.blist ) } );

InstallGlobalFunction( EnumeratorOfSubset,
    function( arg )
    local list, blist, Fam;

    # Get and check the arguments.
    if Length( arg ) < 2 or 3 < Length( arg ) then
      Error( "usage: EnumeratorOfSubset( <list>, <blist>[, <ishomog>] )" );
    fi;
    list:= arg[1];
    blist:= arg[2];

    # Determine the family of the result.
    if IsHomogeneousList( list ) then
      Fam:= FamilyObj( list );
    elif Length( arg ) = 2 then
      Error( "missing third argument <ishomog> for inhomog. <list>" );
    elif arg[3] = true then
      Fam:= FamilyObj( list );
    else
      Fam:= ListsFamily;
    fi;

    # Construct the enumerator.
    return EnumeratorByFunctions( Fam, rec(
               ElementNumber     := ElementNumber_Subset,
               NumberElement     := NumberElement_Subset,
               PositionCanonical := NumberElement_Subset,
               Length            := Length_Subset,
               AsList            := AsList_Subset,

               list              := list,
               blist             := blist ) );
    end );


#############################################################################
##
#F  List( <coll> )
#F  List( <coll>, <func> )
##
InstallGlobalFunction( List,
    function( arg )
    local tnum, C, func, res, i, elm, l;
    l := Length(arg);
    if l = 0 then
      Error( "usage: List( <C>[, <func>] )" );
    fi;
    tnum:= TNUM_OBJ_INT( arg[1] );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      C:= arg[1];
      if l = 1 then
        return ShallowCopy( C );
      else
        func:= arg[2];
        res := EmptyPlist(Length(C));
        # hack to save type adjustments and conversions (e.g. to blist)
        if Length(C) > 0 then res[Length(C)] := 1; fi;
        if IsDenseList(C) then
          # save the IsBound tests from general case
          for i in [1..Length(C)] do
            res[i] := func( C[i] );
          od;
        else
          for i in [1..Length(C)] do
            if IsBound(C[i]) then
              res[i] := func( C[i] );
            fi;
          od;
        fi;
        return res;
      fi;
    else
      return CallFuncList( ListOp, arg );
    fi;
end );


#############################################################################
##
#M  ListOp( <coll> )
##
InstallMethod( ListOp,
    "for a collection",
    [ IsCollection ],
    C -> ShallowCopy( Enumerator( C ) ) );

InstallMethod( ListOp,
    "for a collection that is a list",
    [ IsCollection and IsList ],
    ShallowCopy );

InstallMethod( ListOp,
    "for a list",
    [ IsList ],
    ShallowCopy );


#############################################################################
##
#M  ListOp( <coll>, <func> )
##
InstallMethod( ListOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local   res, i, elm;
    res := [];
    i   := 0;
    for elm in C do
      i:= i+1;
      res[i]:= func( elm );
    od;
    return res;
    end );

InstallMethod( ListOp,
    "for a list, and a function",
    [ IsList, IsFunction ],
    function ( C, func )
    local   res, i, elm;
    res := [];
    i   := 0;
    for elm in [1..Length(C)] do
      if IsBound(C[elm]) then
          i:= i+1;
          res[i]:= func( C[elm] );
      fi;
    od;
    return res;
    end );

InstallMethod( ListOp,
    "for a dense list, and a function",
    [ IsDenseList, IsFunction ],
    function ( C, func )
    local   res, elm;
    res := EmptyPlist(Length(C));
    for elm in [1..Length(C)] do
      res[elm]:= func( C[elm] );
    od;
    return res;
    end );

#############################################################################
##
#M  SortedList( <C> )
##
InstallMethod( SortedList, "for a list or collection",
    true, [ IsListOrCollection ], 0,
function(C)
local l;
  if IsList(C) then
    l := Compacted(C);
  else
    l := List(C);
  fi;
  Sort(l);
  return l;
end);

InstallMethod( AsSortedList, "for a list or collection",
        true, [ IsListOrCollection ], 0, 
        function(l) 
    local s;
    s := SortedList(l);
    MakeImmutable(s);
    return s;
end);

#############################################################################
##
#M  SSortedList( <C> )
##
InstallMethod( SSortedList,
    "for a collection",
    true, [ IsCollection ], 0,
    C -> ShallowCopy( EnumeratorSorted( C ) ) );

InstallMethod( SSortedList,
    "for a collection that is a small list",
    true, [ IsCollection and IsList and IsSmallList ], 0,
    SSortedListList );

InstallMethod( SSortedList,
        "for a collection that is a list",
        true, [ IsCollection and IsList ], 0,
        function(list)
    if IsSmallList(list) then
       return SSortedListList(list);
    else
        Error("Sort for large lists not yet implemented");
    fi;
    end
        );


#############################################################################
##
#M  SSortedList( <C>, <func> )
##
InstallOtherMethod( SSortedList,
    "for a collection, and a function",
    true, [ IsCollection, IsFunction ], 0,
    function ( C, func )
    return SSortedListList( List( C, func ) );
    end );


#############################################################################
##
#M  Iterator(<C>)
##
InstallMethod( Iterator,
    "for a collection",
    [ IsCollection ],
    C -> IteratorList( Enumerator( C ) ) );

InstallMethod( Iterator,
    "for a collection that is a list",
    [ IsCollection and IsList ],
    C -> IteratorList( C ) );

InstallOtherMethod( Iterator,
    "for a mutable iterator",
    [ IsIterator and IsMutable ],
    IdFunc );
#T or change the for-loop to accept iterators?

#############################################################################
##
#M  List( <iter> ) . . . . . . return list of remaining objects in an iterator
##  
##  Does not change the iterator.
##  
InstallOtherMethod(ListOp, [IsIterator], function(it)
  local l, a;
  l := [];
  it := ShallowCopy(it);
  for a in it do 
    Add(l,a);
  od;
  return l;
end);

#############################################################################
##
#M  IteratorSorted(<C>)
##
InstallMethod( IteratorSorted,
    "for a collection",
    [ IsCollection ],
    C -> IteratorList( EnumeratorSorted( C ) ) );

InstallMethod( IteratorSorted,
    "for a collection that is a list",
    [ IsCollection and IsList ],
    C -> IteratorList( SSortedListList( C ) ) );


#############################################################################
##
#M  NextIterator( <iter> ) . . . . . . for immutable iterator (error message)
##
InstallOtherMethod( NextIterator,
    "for an immutable iterator (print a reasonable error message)",
    [ IsIterator ],
    function( iter )
    if IsMutable( iter ) then
      TryNextMethod();
    fi;
    Error( "no `NextIterator' method for immutable iterator <iter>" );
    end );


#############################################################################
##
#F  IteratorByFunctions( <record> )
##
DeclareRepresentation( "IsIteratorByFunctionsRep", IsComponentObjectRep,
    [ "NextIterator", "IsDoneIterator", "ShallowCopy",
    , "ViewObj", "PrintObj"] );

DeclareSynonym( "IsIteratorByFunctions",
    IsIteratorByFunctionsRep and IsIterator );

InstallGlobalFunction( IteratorByFunctions, function( record )
    local filter, Fam, enum;

    if not ( IsRecord( record ) and IsBound( record.NextIterator )
                                and IsBound( record.IsDoneIterator )
                                and IsBound( record.ShallowCopy ) ) then
      Error( "<record> must be a record with components `NextIterator',\n",
             "`IsDoneIterator', and `ShallowCopy'" );
    fi;
    filter:= IsIteratorByFunctions and IsStandardIterator and IsMutable;

    return Objectify( NewType( IteratorsFamily, filter ), record );
end );

InstallMethod( IsDoneIterator,
    "for `IsIteratorByFunctions'",
    [ IsIteratorByFunctions ],
    iter -> iter!.IsDoneIterator( iter ) );

InstallMethod( NextIterator,
    "for `IsIteratorByFunctions'",
    [ IsIteratorByFunctions and IsMutable ],
    iter -> iter!.NextIterator( iter ) );

InstallMethod( ShallowCopy,
    "for `IsIteratorByFunctions'",
    [ IsIteratorByFunctions ],
    function( iter )
    local new;
    new:= iter!.ShallowCopy( iter );
    new.NextIterator   := iter!.NextIterator;
    new.IsDoneIterator := iter!.IsDoneIterator;
    new.ShallowCopy    := iter!.ShallowCopy;
    if IsBound(iter!.ViewObj) then
        new.ViewObj    := iter!.ViewObj;
    fi;
    if IsBound(iter!.PrintObj) then
        new.PrintObj   := iter!.PrintObj;
    fi;
    return IteratorByFunctions( new );
    end );

InstallMethod( ViewObj,
    "for an iterator that perhaps has its own `ViewObj' function",
    [ IsIteratorByFunctions ], 20,
function( iter )
    if IsBound( iter!.ViewObj ) then
        iter!.ViewObj( iter );
    elif IsBound( iter!.PrintObj ) then
        iter!.PrintObj( iter );
    elif HasUnderlyingCollection( iter ) then
        Print( "<iterator of " );
        View( UnderlyingCollection( iter ) );
        Print( ">" );
    else
        Print( "<iterator>" );
    fi;
end );

InstallMethod( PrintObj,
    "for an iterator that perhaps has its own `PrintObj' function",
    [ IsIteratorByFunctions ],
function( iter )
    if IsBound( iter!.PrintObj ) then
       iter!.PrintObj( iter );
    elif HasUnderlyingCollection( iter ) then
       Print( "<iterator of ", UnderlyingCollection( iter ), ">" );
    else
       Print( "<iterator>" );
    fi;
end );

#############################################################################
##
#F  ConcatenationIterators( <iters> ) . . . . . . . .combine list of iterators
##  to one iterator
##  
BIND_GLOBAL("NextIterator_Concatenation", function(it)
  local it1, res;
  it1 := it!.iters[it!.i];
  res := NextIterator(it1);
  if IsDoneIterator(it1) then 
    if it!.i = Length(it!.iters) then
      it!.done := true;
    else
      it!.i := it!.i+1;
    fi;
  fi;
  return res;
end);
BIND_GLOBAL("IsDoneIterator_Concatenation", function(it)
  return it!.done;
end);
BIND_GLOBAL("ShallowCopy_Concatenation", function(it)
  return rec(NextIterator := it!.NextIterator,
    IsDoneIterator := it!.IsDoneIterator,
    ShallowCopy := it!.ShallowCopy,
    done := it!.done,
    i := it!.i,
    iters := List(it!.iters, ShallowCopy)
    );
end);
BIND_GLOBAL("ConcatenationIterators", function(iters)
  local i;
  i := 1;
  while i <= Length(iters) and IsDoneIterator(iters[i]) do
    i := i+1;
  od;
  return IteratorByFunctions(rec(
    NextIterator := NextIterator_Concatenation,
    IsDoneIterator := IsDoneIterator_Concatenation,
    ShallowCopy := ShallowCopy_Concatenation,
    i := i,
    iters := iters,
    done := i > Length(iters)
            ));
end);  

#############################################################################
##
#F  TrivialIterator( <elm> )
##
BIND_GLOBAL( "IsDoneIterator_Trivial", iter -> iter!.isDone );

BIND_GLOBAL( "NextIterator_Trivial", function( iter )
    iter!.isDone:= true;
    return iter!.element;
    end );

BIND_GLOBAL( "ShallowCopy_Trivial",
    iter -> rec( element:= iter!.elm, isDone:= iter!.isDone ) );

InstallGlobalFunction( TrivialIterator, function( elm )
    return IteratorByFunctions( rec(
               IsDoneIterator := IsDoneIterator_Trivial,
               NextIterator   := NextIterator_Trivial,
               ShallowCopy    := ShallowCopy_Trivial,

               element := elm,
               isDone  := false ) );
end );

InstallMethod( Iterator,
    "for a trivial collection",
    [ IsCollection and IsTrivial ], SUM_FLAGS,
    D -> TrivialIterator( Enumerator( D )[1] ) );


#############################################################################
##
#F  Sum( <coll> )
#F  Sum( <coll>, <func> )
#F  Sum( <coll>, <init> )
#F  Sum( <coll>, <func>, <init> )
##
InstallGlobalFunction( Sum,
    function( arg )
    local tnum, C, func, sum, i, l;
    l := Length( arg );
    if l = 0 then
      Error( "usage: Sum( <C>[, <func>][, <init>] )" );
    fi;
    tnum:= TNUM_OBJ_INT( arg[1] );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      C:= arg[1];
      if l = 1 then
        if IsEmpty( C ) then
          sum:= 0;
        else
          sum:= C[1];
          for i in [ 2 .. Length( C ) ] do
            sum:= sum + C[i];
          od;
        fi;
      elif l = 2 and IsFunction( arg[2] ) then
        func:= arg[2];
        if IsEmpty( C ) then
          sum:= 0;
        else
          sum:= func( C[1] );
          for i in [ 2 .. Length( C ) ] do
            sum:= sum + func( C[i] );
          od;
        fi;
      elif l = 2 then
        sum:= arg[2];
        for i in C do
          sum:= sum + i;
        od;
      elif l = 3 and IsFunction( arg[2] ) then
        func:= arg[2];
        sum:= arg[3];
        for i in C do
          sum:= sum + func( i );
        od;
      else
        Error( "usage: Sum( <C>[, <func>][, <init>] )" );
      fi;
      return sum;
    else
      return CallFuncList( SumOp, arg );
    fi;
end );


#############################################################################
##
#M  SumOp( <C> )  . . . . . . . . . . . . . . . . . . . for a list/collection
##
InstallMethod( SumOp,
    "for a list/collection",
    [ IsListOrCollection ],
    function ( C )
    local   sum;
    C := Iterator( C );
    if not IsDoneIterator( C ) then
        sum := NextIterator( C );
        while not IsDoneIterator( C ) do
            sum := sum + NextIterator( C );
        od;
    else
        sum := 0;
    fi;
    return sum;
    end );


#############################################################################
##
#M  SumOp( <C>, <func> )  . . . . . . . for a list/collection, and a function
##
InstallOtherMethod( SumOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local   sum;
    C := Iterator( C );
    if not IsDoneIterator( C ) then
        sum := func( NextIterator( C ) );
        while not IsDoneIterator( C ) do
            sum := sum + func( NextIterator( C ) );
        od;
    else
        sum := 0;
    fi;
    return sum;
    end );


#############################################################################
##
#M  SumOp( <C>, <init> )  . . . . . .  for a list/collection, and init. value
##
InstallOtherMethod( SumOp,
    "for a list/collection, and init. value",
    [ IsListOrCollection, IsAdditiveElement ],
    function ( C, init )
    C := Iterator( C );
    while not IsDoneIterator( C ) do
      init := init + NextIterator( C );
    od;
    return init;
    end );


#############################################################################
##
#M  SumOp( <C>, <func>, <init> )  . for a list/coll., a func., and init. val.
##
InstallOtherMethod( SumOp,
    "for a list/collection, and a function, and an initial value",
    [ IsListOrCollection, IsFunction, IsAdditiveElement ],
    function ( C, func, init )
    C := Iterator( C );
    while not IsDoneIterator( C ) do
      init := init + func( NextIterator( C ) );
    od;
    return init;
    end );


#############################################################################
##
#F  Product( <coll> )
#F  Product( <coll>, <func> )
#F  Product( <coll>, <init> )
#F  Product( <coll>, <func>, <init> )
##
InstallGlobalFunction( Product,
    function( arg )
    local tnum, C, func, product, l, i;
    l := Length(arg);
    if l = 0 then
      Error( "usage: Product( <C>[, <func>][, <init>] )" );
    fi;
    tnum:= TNUM_OBJ_INT( arg[1] );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      C:= arg[1];
      if l = 1 then
        if IsEmpty( C ) then
          product:= 1;
        else
          product:= C[1];
          for i in [ 2 .. Length( C ) ] do
            product:= product * C[i];
          od;
        fi;
      elif l = 2 and IsFunction( arg[2] ) then
        func:= arg[2];
        if IsEmpty( C ) then
          product:= 1;
        else
          product:= func( C[1] );
          for i in [ 2 .. Length( C ) ] do
            product:= product * func( C[i] );
          od;
        fi;
      elif l = 2 then
        product:= arg[2];
        for i in C do
          product:= product * i;
        od;
      elif l = 3 and IsFunction( arg[2] ) then
        func:= arg[2];
        product:= arg[3];
        for i in C do
          product:= product * func( i );
        od;
      else
        Error( "usage: Product( <C>[, <func>][, <init>] )" );
      fi;
      return product;
    else
      return CallFuncList( ProductOp, arg );
    fi;
end );


#############################################################################
##
#M  ProductOp( <C> )  . . . . . . . . . . . . . . . . . for a list/collection
##
InstallMethod( ProductOp,
    "for a list/collection",
    [ IsListOrCollection ],
    function ( C )
    local   prod;
    C := Iterator( C );
    if not IsDoneIterator( C ) then
        prod := NextIterator( C );
        while not IsDoneIterator( C ) do
            prod := prod * NextIterator( C );
        od;
    else
        prod := 1;
    fi;
    return prod;
    end );


#############################################################################
##
#M  ProductOp( <C>, <func> )  . . . . . for a list/collection, and a function
##
InstallOtherMethod( ProductOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local   prod;
    C := Iterator( C );
    if not IsDoneIterator( C ) then
        prod := func( NextIterator( C ) );
        while not IsDoneIterator( C ) do
            prod := prod * func( NextIterator( C ) );
        od;
    else
        prod := 1;
    fi;
    return prod;
    end );


#############################################################################
##
#M  ProductOp( <C>, <init> )  . . . .  for a list/collection, and init. value
##
InstallOtherMethod( ProductOp,
    "for a list/collection, and initial value",
    [ IsListOrCollection, IsMultiplicativeElement ],
    function ( C, init )
    C := Iterator( C );
    while not IsDoneIterator( C ) do
      init := init * NextIterator( C );
    od;
    return init;
    end );


#############################################################################
##
#M  ProductOp( <C>, <func>, <init> )  . . . for list/coll., func., init. val.
##
InstallOtherMethod( ProductOp,
    "for a list/collection, a function, and an initial value",
    [ IsListOrCollection, IsFunction, IsMultiplicativeElement ],
    function ( C, func, init )
    C := Iterator( C );
    while not IsDoneIterator( C ) do
      init := init * func( NextIterator( C ) );
    od;
    return init;
    end );


#############################################################################
##
#F  ProductMod(<l>,<m>) . . . . . . . . . . . . . . . . . .  Product(l) mod m
##
ProductMod := function(l,m)
local i,p;
  if l=[] then
    p:=1;
  else
    p:=l[1]^0;
  fi;
  for i in l do
    p:=p*i mod m;
  od;
  return p;
end;


#############################################################################
##
#F  Filtered( <coll>, <func> )
##
InstallGlobalFunction( Filtered,
    function( C, func )
    local tnum, res, i, elm;
    tnum:= TNUM_OBJ_INT( C );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      # start with empty list of same representation
      res := C{[]};
      i   := 0;
      for elm in C do
        if func( elm ) then
          i:= i+1;
          res[i]:= elm;
        fi;
      od;
      return res;
    else
      return FilteredOp( C, func );
    fi;
end );


#############################################################################
##
#M  FilteredOp( <C>, <func> ) . . . . . extract elements that have a property
##
InstallMethod( FilteredOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local res, elm;
    res := [];
    for elm in C do
        if func( elm ) then
            Add( res, elm );
        fi;
    od;
    return res;
    end );
InstallMethod( FilteredOp,
    "for a list, and a function",
    [ IsList, IsFunction ],
    function ( C, func )
    local res, elm, ob;
    res := [];
    for elm in [1..Length(C)] do
        if IsBound(C[elm]) then
            ob := C[elm];
            if func( ob ) then
                Add( res, ob );
            fi;
        fi;
    od;
    return res;
    end );
InstallMethod( FilteredOp,
    "for a dense list, and a function",
    [ IsDenseList, IsFunction ],
    function ( C, func )
    local res, elm, ob;
    res := [];
    for elm in [1..Length(C)] do
        ob := C[elm];
        if func( ob ) then
            Add( res, ob );
        fi;
    od;
    return res;
    end );

#T Is this useful compared to the previous method? (FL)
InstallMethod( FilteredOp,
    "for an empty list/collection, and a function",
    [ IsEmpty, IsFunction ], 
    SUM_FLAGS, # there is nothing to do
    function( list, func )
    return [];
    end );


#############################################################################
##
#F  Number( <coll> )
#F  Number( <coll>, <func> )
##
InstallGlobalFunction( Number,
    function( arg )
    local tnum, C, func, nr, elm,l;
    l := Length( arg );
    if l = 0 then
      Error( "usage: Number( <C>[, <func>] )" );
    fi;
    tnum:= TNUM_OBJ_INT( arg[1] );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      C:= arg[1];
      if l = 1 then
        nr := 0;
        for elm in C do
            nr := nr + 1;
        od;
        return nr;
      else
        func:= arg[2];
        nr := 0;
        for elm in C do
            if func( elm ) then
                nr:= nr + 1;
            fi;
        od;
        return nr;
      fi;
    else
      return CallFuncList( NumberOp, arg );
    fi;
end );


#############################################################################
##
#M  NumberOp( <C>, <func> ) . . . . . . . count elements that have a property
##
InstallMethod( NumberOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local nr, elm;
    nr := 0;
    for elm in C do
        if func( elm ) then
            nr:= nr + 1;
        fi;
    od;
    return nr;
    end );
InstallMethod( NumberOp,
    "for a list, and a function",
    [ IsList, IsFunction ],
    function ( C, func )
    local nr, elm;
    nr := 0;
    for elm in [1..Length(C)] do
        if IsBound(C[elm]) then
            if func( C[elm] ) then
                nr:= nr + 1;
            fi;
        fi;
    od;
    return nr;
    end );
InstallMethod( NumberOp,
    "for a dense list, and a function",
    [ IsDenseList, IsFunction ],
    function ( C, func )
    local nr, elm;
    nr := 0;
    for elm in [1..Length(C)] do
        if func( C[elm] ) then
            nr:= nr + 1;
        fi;
    od;
    return nr;
    end );


#############################################################################
##
#M  NumberOp( <C> ) . . . . . . . . . . . count elements that have a property
##
InstallOtherMethod( NumberOp,
    "for a list/collection",
    [ IsListOrCollection ],
    function ( C )
    local nr, elm;
    nr := 0;
    for elm in C do
        nr := nr + 1;
    od;
    return nr;
    end );
InstallOtherMethod( NumberOp,
    "for a list",
    [ IsList ],
    function ( C )
    local nr, elm;
    nr := 0;
    for elm in [1..Length(C)] do
        if IsBound(C[elm]) then
            nr := nr + 1;
        fi;
    od;
    return nr;
    end );
InstallOtherMethod( NumberOp,
    "for a dense list",
    [ IsDenseList ], Length );


#############################################################################
##
#F  ForAll( <coll>, <func> )
##
InstallGlobalFunction( ForAll,
    function( C, func )
    local tnum, elm;
    tnum:= TNUM_OBJ_INT( C );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      for elm in C do
          if not func( elm ) then
              return false;
          fi;
      od;
      return true;
    else
      return ForAllOp( C, func );
    fi;
end );


#############################################################################
##
#M  ForAllOp( <C>, <func> ) . . .  test a property for all elements of a list
##
InstallMethod( ForAllOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local elm;
    for elm in C do
        if not func( elm ) then
            return false;
        fi;
    od;
    return true;
    end );
InstallMethod( ForAllOp,
    "for a list, and a function",
    [ IsList and IsFinite, IsFunction ],
    function ( C, func )
    local elm;
    for elm in [1..Length(C)] do
        if IsBound(C[elm]) then
            if not func( C[elm] ) then
                return false;
            fi;
        fi;
    od;
    return true;
    end );
InstallMethod( ForAllOp,
    "for a dense list, and a function",
    [ IsDenseList and IsFinite, IsFunction ],
    function ( C, func )
    local elm;
    for elm in [1..Length(C)] do
        if not func( C[elm] ) then
            return false;
        fi;
    od;
    return true;
    end );

InstallOtherMethod( ForAllOp,
    "for an empty list/collection, and a function",
    [ IsEmpty, IsFunction ], 
    SUM_FLAGS, # there is nothing to do
    ReturnTrue );


#############################################################################
##
#F  ForAny( <coll>, <func> )
##
InstallGlobalFunction( ForAny,
    function( C, func )
    local tnum, elm;
    tnum:= TNUM_OBJ_INT( C );
    if FIRST_LIST_TNUM <= tnum and tnum <= LAST_LIST_TNUM then
      for elm in C do
          if func( elm ) then
              return true;
          fi;
      od;
      return false;
    else
      return ForAnyOp( C, func );
    fi;
end );


#############################################################################
##
#M  ForAnyOp( <C>, <func> ) . . . . test a property for any element of a list
##
InstallMethod( ForAnyOp,
    "for a list/collection, and a function",
    [ IsListOrCollection, IsFunction ],
    function ( C, func )
    local elm;
    for elm in C do
        if func( elm ) then
            return true;
        fi;
    od;
    return false;
end );

InstallMethod( ForAnyOp,
    "for a list, and a function",
    [ IsList and IsFinite, IsFunction ],
    function ( C, func )
    local elm;
    for elm in [1..Length(C)] do
        if IsBound(C[elm]) then
            if func( C[elm] ) then
                return true;
            fi;
        fi;
    od;
    return false;
    end );
InstallMethod( ForAnyOp,
    "for a dense list, and a function",
    [ IsDenseList and IsFinite, IsFunction ],
    function ( C, func )
    local elm;
    for elm in [1..Length(C)] do
        if func( C[elm] ) then
            return true;
        fi;
    od;
    return false;
    end );

InstallOtherMethod( ForAnyOp,
    "for an empty list/collection, and a function",
    [ IsEmpty, IsFunction ],
    SUM_FLAGS, # there is nothing to do
    ReturnFalse );


#############################################################################
##
#M  ListX(<obj>,...)
##
ListXHelp := function ( result, gens, i, vals, l )
    local   gen, val;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := CallFuncList( gen, vals );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val  in gen  do
                vals[l+1] := val;
                ListXHelp( result, gens, i+1, vals, l+1 );
            od;
            Unbind( vals[l+1] );
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    Add( result, CallFuncList( gens[i+1], vals ) );
end;
MAKE_READ_ONLY_GLOBAL( "ListXHelp" );

BIND_GLOBAL( "ListXHelp2", function ( result, gens, i, val1, val2 )
    local   gen, vals, val3;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1, val2 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            vals := [ val1, val2 ];
            for val3  in gen  do
                vals[3] := val3;
                ListXHelp( result, gens, i+1, vals, 3 );
            od;
            Unbind( vals[3] );
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    Add( result, gens[i+1]( val1, val2 ) );
end );

BIND_GLOBAL( "ListXHelp1", function ( result, gens, i, val1 )
    local   gen, val2;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val2  in gen  do
                ListXHelp2( result, gens, i+1, val1, val2 );
            od;
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    Add( result, gens[i+1]( val1 ) );
end );

BIND_GLOBAL( "ListXHelp0", function ( result, gens, i )
    local   gen, val1;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen();
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val1  in gen  do
                ListXHelp1( result, gens, i+1, val1 );
            od;
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    Add( result, gens[i+1]() );
end );

InstallGlobalFunction( ListX, function ( arg )
    local   result;
    result := [];
    ListXHelp0( result, arg, 0 );
    return result;
end );


#############################################################################
##
#M  SetX(<obj>,...)
##
SetXHelp := function ( result, gens, i, vals, l )
    local   gen, val;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := CallFuncList( gen, vals );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val  in gen  do
                vals[l+1] := val;
                SetXHelp( result, gens, i+1, vals, l+1 );
            od;
            Unbind( vals[l+1] );
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    AddSet( result, CallFuncList( gens[i+1], vals ) );
end;
MAKE_READ_ONLY_GLOBAL( "SetXHelp" );

BIND_GLOBAL( "SetXHelp2", function ( result, gens, i, val1, val2 )
    local   gen, vals, val3;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1, val2 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            vals := [ val1, val2 ];
            for val3  in gen  do
                vals[3] := val3;
                SetXHelp( result, gens, i+1, vals, 3 );
            od;
            Unbind( vals[3] );
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    AddSet( result, gens[i+1]( val1, val2 ) );
end );

BIND_GLOBAL( "SetXHelp1", function ( result, gens, i, val1 )
    local   gen, val2;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val2  in gen  do
                SetXHelp2( result, gens, i+1, val1, val2 );
            od;
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    AddSet( result, gens[i+1]( val1 ) );
end );

BIND_GLOBAL( "SetXHelp0", function ( result, gens, i )
    local   gen, val1;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen();
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return;
        elif IsCollection( gen )  then
            for val1  in gen  do
                SetXHelp1( result, gens, i+1, val1 );
            od;
            return;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    AddSet( result, gens[i+1]() );
end );

InstallGlobalFunction( SetX, function ( arg )
    local   result;
    result := [];
    SetXHelp0( result, arg, 0 );
    return result;
end );


#############################################################################
##
#M  SumX(<obj>,...)
##
SumXHelp := function ( result, gens, i, vals, l )
    local   gen, val;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := CallFuncList( gen, vals );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val  in gen  do
                vals[l+1] := val;
                result := SumXHelp( result, gens, i+1, vals, l+1 );
            od;
            Unbind( vals[l+1] );
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := CallFuncList( gens[i+1], vals );
    else
        result := result + CallFuncList( gens[i+1], vals );
    fi;
    return result;
end;
MAKE_READ_ONLY_GLOBAL( "SumXHelp" );

BIND_GLOBAL( "SumXHelp2", function ( result, gens, i, val1, val2 )
    local   gen, vals, val3;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1, val2 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            vals := [ val1, val2 ];
            for val3  in gen  do
                vals[3] := val3;
                result := SumXHelp( result, gens, i+1, vals, 3 );
            od;
            Unbind( vals[3] );
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]( val1, val2 );
    else
        result := result + gens[i+1]( val1, val2 );
    fi;
    return result;
end );

BIND_GLOBAL( "SumXHelp1", function ( result, gens, i, val1 )
    local   gen, val2;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val2  in gen  do
                result := SumXHelp2( result, gens, i+1, val1, val2 );
            od;
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]( val1 );
    else
        result := result + gens[i+1]( val1 );
    fi;
    return result;
end );

BIND_GLOBAL( "SumXHelp0", function ( result, gens, i )
    local   gen, val1;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen();
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val1  in gen  do
                result := SumXHelp1( result, gens, i+1, val1 );
            od;
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]();
    else
        result := result + gens[i+1]();
    fi;
    return result;
end );

InstallGlobalFunction( SumX, function ( arg )
    local   result;
    result := fail;
    result := SumXHelp0( result, arg, 0 );
    return result;
end );


#############################################################################
##
#M  ProductX(<obj>,...)
##
ProductXHelp := function ( result, gens, i, vals, l )
    local   gen, val;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := CallFuncList( gen, vals );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val  in gen  do
                vals[l+1] := val;
                result := ProductXHelp( result, gens, i+1, vals, l+1 );
            od;
            Unbind( vals[l+1] );
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := CallFuncList( gens[i+1], vals );
    else
        result := result * CallFuncList( gens[i+1], vals );
    fi;
    return result;
end;
MAKE_READ_ONLY_GLOBAL( "ProductXHelp" );

BIND_GLOBAL( "ProductXHelp2", function ( result, gens, i, val1, val2 )
    local   gen, vals, val3;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1, val2 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            vals := [ val1, val2 ];
            for val3  in gen  do
                vals[3] := val3;
                result := ProductXHelp( result, gens, i+1, vals, 3 );
            od;
            Unbind( vals[3] );
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]( val1, val2 );
    else
        result := result * gens[i+1]( val1, val2 );
    fi;
    return result;
end );

BIND_GLOBAL( "ProductXHelp1", function ( result, gens, i, val1 )
    local   gen, val2;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen( val1 );
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val2  in gen  do
                result := ProductXHelp2( result, gens, i+1, val1, val2 );
            od;
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]( val1 );
    else
        result := result * gens[i+1]( val1 );
    fi;
    return result;
end );

BIND_GLOBAL( "ProductXHelp0", function ( result, gens, i )
    local   gen, val1;
    while i+1 < Length(gens)  do
        gen := gens[i+1];
        if IsFunction( gen )  then
            gen := gen();
        fi;
        if gen = true  then
            i := i + 1;
        elif gen = false  then
            return result;
        elif IsCollection( gen )  then
            for val1  in gen  do
                result := ProductXHelp1( result, gens, i+1, val1 );
            od;
            return result;
        else
            Error( "gens[",i+1,"] must be a collection, a boolean, ",
                   "or a function" );
        fi;
    od;
    if result = fail then
        result := gens[i+1]();
    else
        result := result * gens[i+1]();
    fi;
    return result;
end );

InstallGlobalFunction( ProductX, function ( arg )
    local   result;
    result := fail;
    result := ProductXHelp0( result, arg, 0 );
    return result;
end );

#############################################################################
##
#F  Perform( <list>, <func> )
##
InstallGlobalFunction( Perform, function(l, f)
    local x;
    for x in l do
        f(x);
    od;
end);
      

#############################################################################
##
#M  IsSubset( <C1>, <C2> )
##
InstallMethod( IsSubset,
    "for two collections in different families",
    IsNotIdenticalObj,
    [ IsCollection,
      IsCollection ],
    ReturnFalse );

InstallMethod( IsSubset,
    "for empty list and collection",
    [ IsList and IsEmpty,
      IsCollection ],
    function( empty, coll )
    return IsEmpty( coll );
    end );

InstallMethod( IsSubset,
    "for collection and empty list",
    [ IsCollection,
      IsList and IsEmpty ],
    ReturnTrue );

InstallMethod( IsSubset,
    "for two collections, the first containing the whole family",
    IsIdenticalObj,
    [ IsCollection and IsWholeFamily,
      IsCollection ],
    SUM_FLAGS+2, # better than everything else, however we must override the
                 # follwoing two which are already ranked high.
    ReturnTrue );


InstallMethod( IsSubset,
    "for two collections, check for identity",
    IsIdenticalObj,
    [ IsCollection,
      IsCollection ],
    SUM_FLAGS+1, # better than the following method

function ( D, E )
    if not IsIdenticalObj( D, E ) then
        TryNextMethod();
    fi;
    return true;
end );


InstallMethod( IsSubset,
    "for two collections with known sizes, check sizes",
    IsIdenticalObj,
    [ IsCollection and HasSize,
      IsCollection and HasSize ],
    SUM_FLAGS, # do this before everything else

function ( D, E )
    if Size( E ) <= Size( D ) then
        TryNextMethod();
    fi;
    return false;
end );


InstallMethod( IsSubset,
    "for two internal lists",
    [ IsList and IsInternalRep,
      IsList and IsInternalRep ],
    IsSubsetSet );


InstallMethod( IsSubset,
    "for two collections that are internal lists",
    IsIdenticalObj,
    [ IsCollection and IsList and IsInternalRep,
      IsCollection and IsList and IsInternalRep ],
    IsSubsetSet );


InstallMethod( IsSubset,
    "for two collections with known `AsSSortedList'",
    IsIdenticalObj,
    [ IsCollection and HasAsSSortedList,
      IsCollection and HasAsSSortedList ],
function ( D, E )
    return IsSubsetSet( AsSSortedList( D ), AsSSortedList( E ) );
end );


InstallMethod( IsSubset,
    "for two collections (loop over the elements of the second)",
    IsIdenticalObj,
    [ IsCollection,
      IsCollection ],
function( D, E )
    return ForAll( E, e -> e in D );
end );


#############################################################################
##
#M  Intersection( <C>, ... )
##
BIND_GLOBAL( "IntersectionSet", function ( C1, C2 )
    local   I;
    if Length( C1 ) < Length( C2 ) then
        I := Set( C1 );
        IntersectSet( I, C2 );
    else
        I := Set( C2 );
        IntersectSet( I, C1 );
    fi;
    return I;
end );

InstallOtherMethod( Intersection2,
    "for two lists (not necessarily in the same family)",
    [ IsList, IsList ],
    IntersectionSet );

InstallOtherMethod( Intersection2,
    "for two lists or collections, the second being empty",
    [ IsListOrCollection, IsListOrCollection and IsEmpty ],
    function(C1, C2) return []; end);

InstallOtherMethod( Intersection2,
    "for two lists or collections, the first being empty",
    [ IsListOrCollection and IsEmpty, IsListOrCollection ],
    function(C1, C2) return []; end);

InstallMethod( Intersection2,
    "for two collections in the same family, both lists",
    IsIdenticalObj,
    [ IsCollection and IsList, IsCollection and IsList ],
    IntersectionSet );

InstallMethod( Intersection2,
    "for two collections in different families",
    IsNotIdenticalObj,
    [ IsCollection, IsCollection ],
    function( C1, C2 ) return []; end );

InstallMethod( Intersection2,
    "for two collections in the same family, the second being a list",
    IsIdenticalObj,
    [ IsCollection, IsCollection and IsList ],
    function ( C1, C2 )
    local   I, elm;
    if ( HasIsFinite( C1 ) or CanComputeSize( C1 ) ) and IsFinite( C1 ) then
        I := ShallowCopy( AsSSortedList( C1 ) );
        IntersectSet( I, C2 );
    else
        I := [];
        for elm in C2 do
            if elm in C1 then
                AddSet( I, elm );
            fi;
        od;
    fi;
    return I;
    end );

InstallMethod( Intersection2,
    "for two collections in the same family, the first being a list",
    IsIdenticalObj,
    [ IsCollection and IsList, IsCollection ],
    function ( C1, C2 )
    local   I, elm;
    if ( HasIsFinite( C2 ) or CanComputeSize( C2 ) ) and IsFinite( C2 ) then
        I := ShallowCopy( AsSSortedList( C2 ) );
        IntersectSet( I, C1 );
    else
        I := [];
        for elm in C1 do
            if elm in C2 then
                AddSet( I, elm );
            fi;
        od;
    fi;
    return I;
    end );

InstallMethod( Intersection2,
    "for two collections in the same family",
    IsIdenticalObj,
    [ IsCollection, IsCollection ],
    function ( C1, C2 )
    local   I, elm;
    if IsFinite( C1 ) then
        if IsFinite( C2 ) then
            I := ShallowCopy( AsSSortedList( C1 ) );
            IntersectSet( I, AsSSortedList( C2 ) );
        else
            I := [];
            for elm in C1 do
                if elm in C2 then
                    AddSet( I, elm );
                fi;
            od;
        fi;
    elif IsFinite( C2 ) then
        I := [];
        for elm in C2 do
            if elm in C1 then
                AddSet( I, elm );
            fi;
        od;
    else
        TryNextMethod();
    fi;
    return I;
    end );

InstallGlobalFunction( Intersection, function ( arg )
    local   I,          # intersection, result
            D,          # domain or list, running over the arguments
            copied,     # true if I is a list not identical to anything else
            i;          # loop variable

    # unravel the argument list if necessary
    if Length(arg) = 1  then
        arg := arg[1];
    fi;

    # start with the first domain or list
    I := arg[1];
    copied := false;

    # loop over the other domains or lists
    for i  in [2..Length(arg)]  do
        D := arg[i];
        if IsList( I ) and IsList( D )  then
            if not copied then I := Set( I ); fi;
            IntersectSet( I, D );
            copied := true;
        else
            I := Intersection2( I, D );
            copied := false;
        fi;
    od;

    # return the intersection
    if IsSSortedList( I ) then
      if not copied  then
        I:= ShallowCopy( I );
      fi;
    elif IsList( I ) then
      I:= Set( I );
    fi;
    return I;
end );


#############################################################################
##
#M  Union2( <C1>, <C2> )
##
BIND_GLOBAL( "UnionSet", function ( C1, C2 )
    local   I;
    if Length( C1 ) < Length( C2 ) then
        I := Set( C2 );
        UniteSet( I, C1 );
    else
        I := Set( C1 );
        UniteSet( I, C2 );
    fi;
    return I;
end );

InstallMethod( Union2,
    "for two collections that are lists",
    IsIdenticalObj,
    [ IsCollection and IsList, IsCollection and IsList ],
    UnionSet );

InstallOtherMethod( Union2,
    "for two lists",
    [ IsList, IsList ],
    UnionSet );

InstallMethod( Union2,
    "for two collections, the second being a list",
    IsIdenticalObj, [ IsCollection, IsCollection and IsList ],
    function ( C1, C2 )
    local   I;
    if IsFinite( C1 ) then
        I := ShallowCopy( AsSSortedList( C1 ) );
        UniteSet( I, C2 );
    else
        Error("sorry, cannot unite <C2> with the infinite collection <C1>");
    fi;
    return I;
    end );

InstallMethod( Union2,
    "for two collections, the first being a list",
    IsIdenticalObj, [ IsCollection and IsList, IsCollection ],
    function ( C1, C2 )
    local   I;
    if IsFinite( C2 ) then
        I := ShallowCopy( AsSSortedList( C2 ) );
        UniteSet( I, C1 );
    else
        Error("sorry, cannot unite <C1> with the infinite collection <C2>");
    fi;
    return I;
    end );

InstallMethod( Union2,
    "for two collections",
    IsIdenticalObj, [ IsCollection, IsCollection ],
    function ( C1, C2 )
    local   I;
    if IsFinite( C1 ) then
        if IsFinite( C2 ) then
            I := ShallowCopy( AsSSortedList( C1 ) );
            UniteSet( I, AsSSortedList( C2 ) );
        else
            Error("sorry, cannot unite <C1> with the infinite collection <C2>");
        fi;
    elif IsFinite( C2 ) then
        Error("sorry, cannot unite <C2> with the infinite collection <C1>");
    else
        TryNextMethod();
    fi;
    return I;
    end );

AbsInt:="2b defined";

# join ranges
# [a0,a+da..a1] with [b0,db,b1]
InstallGlobalFunction(JoinRanges,function(a0,da,a1,b0,db,b1)
local x;

  # Make ranges run upwards
  if da < 0 then
    x:=a1;a1:=a0;a0:=x;da:=-da;
  fi;
  
  if db < 0 then
    x:=b1;b1:=b0;b0:=x;db:=-db;
  fi;
  
  
  # ensure a0<=b0
  if a0>b0 then
    x:=a0;a0:=b0;b0:=x;
    x:=a1;a1:=b1;b1:=x;
    x:=da;da:=db;db:=x;
  fi;

  # first deal with 1-point ranges
  if da=0 then
    if a0=b0 then
      return [b0,db,b1]; # point a is in b
    elif db=0 then
      return [a0,b0-a0,b0]; # new length 2 range from two points
    else
      # a is point at proper distance before proper range b
      if b0-a0=db then
        return [a0,db,b1];
      else
        return fail;
      fi;
    fi;
  elif db=0 then
    if (b0-a0) mod da=0 then
      if b0<=a1 then
        # b is point in a
        return [a0,da,a1];
      elif b0-a1=da then
	# b is point at proper distance after a
	return [a0,da,b0];
      else
        return fail;
      fi;
    else
      # b is point at different distance. The only way this can happen is if
      # a has length 2 and b splits it. (As a0<=b0 this case can not happen
      # for da=0)
      if a1-a0=da and 2*(b0-a0)=da then
        return [a0,b0-a0,a1];
      else
        return fail;
      fi;
    fi;
  fi;

  # now a and b are proper ranges.
  if da=db then
    if (b0-a0) mod da=0 then
      # at compatible pattern.
      if b0<=a1+da then
        # and b does not start too late. If subsets, or extends a
	return [a0,da,Maximum(a1,b1)];
      else
        #b starts too late -- there is a gap we cannot fill
        return fail;
      fi;
    else
      # b is on different pattern. This is only possible if b interleaves a,
      # at half distance, and the end points must be at most this half
      # distance away
      if AbsInt(b0-a0)*2=da and AbsInt(b1-a1)*2=da then
        return [Minimum(a0,b0),da/2,Maximum(a1,b1)];
      else
        # not half step, or leaving gaps at start or end -- will not work
	return fail;
      fi;
    fi;
  elif IsInt(db/da) then
    # a steps at distance that properly divides db.
    # We can join the ranges, if and only if b0 is from a0 on the da grid
    # and the last element of b is at most da away from a1
    if (b0-a0) mod da=0 and b1<=a1+da then
      return [a0,da,Maximum(b1,a1)];
    else
      return fail;
    fi;
  elif IsInt(da/db) then
    # b steps at distance that properly divides da
    # We can join the ranges, if and only if a0 is from b0 on the db grid
    # and the first element of a is at most db away from b0 and
    # due to ordering this was not possible in dual case)
    if (b0-a0) mod db=0 and a0>=b0-db and a1<=b1+db then
      return [Minimum(a0,b0),db,Maximum(a1,b1)];
    else
      return fail;
    fi;
  else
    # distances are incompatible and length is at least 2 for both, no range
    return fail;
  fi;
end);

Unbind(AbsInt);

# Test routine for joining random ranges.
# Test:=function()
# local a0,b0,da,db,a1,b1,ra,rb,r,u;
#   a0:=Random([1..50]);
#   da:=Random([0..6]);
#   a1:=a0+Random([1..5])*da;
#   if da=0 then
#     ra:=[a0];
#   else
#     ra:=[a0,a0+da..a1];
#   fi;
#   b0:=Random([1..50]);
#   db:=Random([0..6]);
#   b1:=b0+Random([1..5])*db;
#   if db=0 then
#     rb:=[b0];
#   else
#     rb:=[b0,b0+db..b1];
#   fi;
# 
#   u:=Union(ra,rb);
#   IsRange(u);
#   r:=JoinRanges(a0,da,a1,b0,db,b1);
#   if r=fail then
#     Print("Join ",ra," ",rb," to ",r,"\n");
#     if IsRangeRep(u) then
#       Error("did not recognize range");
#     fi;
#   elif r<>fail then
#     if r[2]=0 then
#       r:=[r[1]];
#     else
#       r:=[r[1],r[1]+r[2]..r[3]];
#     fi;
#     Print("Join ",ra," ",rb," to ",r,"\n");
#     if u<>r then
#       Error("wrong union");
#     fi;
#   fi;
# end;


#############################################################################
##
#F  Union( <list> )
#F  Union( <C>, ... )
##
InstallGlobalFunction( Union, function ( arg )
    local   lists,      # concatenation of arguments that are lists
	    ranges,     # those arguments that are proper ranges
            other,      # those arguments that are not lists
            D,          # domain or list, running over the arguments
            U,          # union, result
            start,      # start position in `other'
	    better,     # did pairwise join of ranges give improvement?
            i,j,        # loop variable
            passes,     # attempts to merge passes
            progress;   # inner loop finding matches

  # unravel the argument list if necessary
  if Length(arg) = 1  then
      arg := arg[1];
  fi;

  # empty case first
  if Length( arg ) = 0  then
      return [  ];
  fi;

  # Separate ranges, lists and domains.
  lists:= [];
  other:= [];
  ranges:=[];
  for D in arg do
    if (IsPlistRep(D) and Length(D)=1 and IsSmallIntRep(D[1])) then
      # detect lists that could be ranges
      Add(ranges,[D[1],0,D[1]]);
    elif IS_RANGE_REP(D) then
      Add(ranges,[D[1],D[2]-D[1],D[Length(D)]]);
    elif IsList( D ) then
      Append( lists, D );
    else
      Add( other, D );
    fi;
  od;

  # if lists is long processing would take long
  if Length(ranges)>0 and Length(lists)<50 and ForAll(lists,IsSmallIntRep) then
    # is lists also a range?
    lists:=Set(lists);
    if Length(lists)>0 and IS_RANGE(lists) then
      if Length(lists)=1 then
	Add(ranges,[lists[1],0,lists[1]]);
      else
	Add(ranges,[lists[1],lists[2]-lists[1],lists[Length(lists)]]);
      fi;
      lists:=[];
    fi;

    # try to merge smaller by considering all pairs of ranges
    better:=true; # in case of length 1
    passes:=3; # only going to try 3 passes
    while Length(ranges)>1 and passes > 0 do
      passes:=passes-1;
      ranges:=Set(ranges);
      better:=false;
      i:=1;
      while i<Length(ranges) do
        if IsBound(ranges[i]) then
	      j:=i+1;
          progress:=true;
	      while IsBound(ranges[j]) and j<=Length(ranges) and progress do
            progress:=false;
	        # now try range i with range j
	        U:=JoinRanges(ranges[i][1],ranges[i][2],ranges[i][3],
	  		              ranges[j][1],ranges[j][2],ranges[j][3]);
	        if U<>fail then
	          # worked, replace one and overwrite other
	          ranges[i]:=U;
	          Unbind(ranges[j]);
	          better:=true;
              progress:=true;
	        fi;
	        j:=j+1;
	      od;
        fi;
	    i:=i+1;
      od;

      if better=false then
	    # no join was possible -- need to go list way
	    for i in ranges do
	      if i[2]= 0 then
	        j:=[i[1]];
	      else
	        j:=[i[1],i[1]+i[2]..i[3]];
	      fi;
	      Append(lists,j);
	    od;
	    ranges:=[];
      fi;

    od;

    if better then
      # we were able to join to a single range
      ranges:=ranges[1];

      i:=1;
      better:=true;
      while i<=Length(lists) and better do
	    U:=JoinRanges(ranges[1],ranges[2],ranges[3],lists[i],0,lists[i]);
	    if U<>fail then
	      ranges:=U;
	    else
	      better:=false;
	    fi;
	    i:=i+1;
      od;

      if ranges[2]=0 then
	    ranges:=[ranges[1]];
      else
	    ranges:=[ranges[1],ranges[1]+ranges[2]..ranges[3]];
      fi;

      if better then
	    # all one range
	    lists:=ranges;
      else
	    Append(lists,ranges);
      fi;
      # now all ranges are merged in lists, but lists might be in range
      # rep.

    fi;

  else
    # joining nonintegers or a lot of lists -- forget the ranges.
    for i in ranges do
      if i[2]= 0 then
	    Add(lists,i[1]);
      else
	    Append(lists,[i[1],i[1]+i[2]..i[3]]);
      fi;
    od;

  fi;

  # Then unite the lists.
  # (This can be regarded as the most usual case.
  # For efficiency reasons, we use one `Set' call instead of
  # repeated `UniteSet' calls.)
#T However, this causes a lot of space loss
#T if many long and redundant lists occur;
#T using `UniteSet' would be much slower but ``conservative''.
  if Length( lists ) = 0 then
    if Length(other)=0 then
      return lists;
    fi;
    U:= other[1];
    start:= 2;
  else
    U:= Set( lists );
    start:= 1;
  fi;

  # Now loop over the domains.
  for i in [ start .. Length( other ) ] do
    U:= Union2( U, other[i] );
  od;

  # return the union
  if IsList( U ) and not IsSSortedList( U ) then
    U := Set( U );
  fi;
  return U;
end);


#############################################################################
##
#M  Difference( <C1>, <C2> )
##
InstallOtherMethod( Difference,
    "for empty list, and collection",
    [ IsList and IsEmpty, IsListOrCollection ],
    function ( C1, C2 )
    return [];
    end );

InstallOtherMethod( Difference,
    "for collection, and empty list",
    [ IsCollection, IsList and IsEmpty ],
    function ( C1, C2 )
    return Set( C1 );
    end );

InstallOtherMethod( Difference,
    "for two lists (assume one can produce a sorted result)",
    [ IsList, IsList ],
    function ( C1, C2 )
    C1 := Set( C1 );
    SubtractSet( C1, C2 );
    return C1;
    end );

InstallMethod( Difference,
    "for two collections that are lists",
    IsIdenticalObj, [ IsCollection and IsList, IsCollection and IsList ],
    function ( C1, C2 )
    C1 := Set( C1 );
    SubtractSet( C1, C2 );
    return C1;
    end );

InstallMethod( Difference,
    "for two collections",
    IsIdenticalObj, [ IsCollection, IsCollection ],
    function ( C1, C2 )
    local   D, elm;
    if IsFinite( C1 ) then
        if IsFinite( C2 ) then
            D := ShallowCopy( AsSSortedList( C1 ) );
            SubtractSet( D, AsSSortedList( C2 ) );
        else
            D := [];
            for elm in C1 do
                if not elm in C2 then
                    AddSet( D, elm );
                fi;
            od;
        fi;
    else
        Error("sorry, cannot subtract from the infinite domain <C1>");
    fi;
    return D;
    end );

InstallMethod( Difference,
    "for two collections, the first being a list",
    IsIdenticalObj, [ IsCollection and IsList, IsCollection ],
    function ( C1, C2 )
    local   D, elm;
    if IsFinite( C2 )  then
        D := Set( C1 );
        SubtractSet( D, AsSSortedList( C2 ) );
    else
        D := [];
        for elm in C1 do
            if not elm in C2 then
                AddSet( D, elm );
            fi;
        od;
    fi;
    return D;
    end );

InstallMethod( Difference,
    "for two collections, the second being a list",
    IsIdenticalObj, [ IsCollection, IsCollection and IsList ],
    function ( C1, C2 )
    local   D;
    if IsFinite( C1 ) then
        D := ShallowCopy( AsSSortedList( C1 ) );
        SubtractSet( D, C2 );
    else
        Error( "sorry, cannot subtract from the infinite domain <D>" );
    fi;
    return D;
    end );


#############################################################################
##
#M  CanEasilyCompareElements( <obj> )
##
InstallMethod(CanEasilyCompareElements,"generic: inherit `true' from family",
  [IsObject],
function(obj)
  if not IsFamily(obj) then
    return CanEasilyCompareElementsFamily(FamilyObj(obj));
  fi;
  return false;
end);

InstallGlobalFunction(CanEasilyCompareElementsFamily,function(fam)
  if HasCanEasilyCompareElements(fam) then
    return CanEasilyCompareElements(fam);
  else
    return false;
  fi;
end);

InstallMethod(CanEasilyCompareElements,"family: default false",
  [IsFamily],
function(obj)
  return false;
end);

InstallOtherMethod(SetCanEasilyCompareElements,"family setter",
  [IsFamily,IsObject],
function(fam,val)
  # if the value is `true' we want to store it and to imply it for elements
  if val=true then
    fam!.IMP_FLAGS:=WITH_IMPS_FLAGS(AND_FLAGS(fam!.IMP_FLAGS,
                                              CanEasilyCompareElements ) );
  fi;
  TryNextMethod();
end);

#############################################################################
##
#M  CanEasilySortElements( <obj> )
##
InstallMethod(CanEasilySortElements,"generic: inherit `true' from family",
  [IsObject],
function(obj)
  if not IsFamily(obj) then
    return CanEasilySortElementsFamily(FamilyObj(obj));
  fi;
  return false;
end);

InstallGlobalFunction(CanEasilySortElementsFamily,function(fam)
  if HasCanEasilySortElements(fam) then
    return CanEasilySortElements(fam);
  else
    return false;
  fi;
end);

InstallMethod(CanEasilySortElements,"family: default false",
  [IsFamily],ReturnFalse);

InstallOtherMethod(SetCanEasilySortElements,"family setter",
  [IsFamily,IsObject],
function(fam,val)
  # if the value is `true' we want to store it and to imply it for elements
  if val=true then
    fam!.IMP_FLAGS:=WITH_IMPS_FLAGS(AND_FLAGS(fam!.IMP_FLAGS,
                                              CanEasilySortElements ) );
  fi;
  TryNextMethod();
end);

InstallMethod( CanComputeIsSubset,"default: no, unless identical",
  [IsObject,IsObject],IsIdenticalObj);

#############################################################################
##
#E