CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
\begin{sequent}
2
\begin{align*}
3
A:\Obj ~|~ () \vdash \IsIdempotent( \IdentityMorphism( A ) )
4
\end{align*}
5
\end{sequent}
6
7
\begin{sequent}
8
\begin{align*}
9
A:\Obj ~|~ () \vdash \IsOne\big( \IdentityMorphism( A ) \big)
10
\end{align*}
11
\end{sequent}
12
13
\begin{sequent}
14
\begin{align*}
15
A:\Obj ~|~ () \vdash \IsIdenticalToIdentityMorphism\big( \IdentityMorphism( A ) \big)
16
\end{align*}
17
\end{sequent}
18
19
\begin{sequent}
20
\begin{align*}
21
~|~ () \vdash \IsZero\big( \ZeroObject() ) \big)
22
\end{align*}
23
\end{sequent}
24
25
\begin{sequent}
26
\begin{align*}
27
\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \beta ) \\
28
&\vdash \IsMonomorphism\big( \ProjectionInFactorOfFiberProduct( [\alpha, \beta], 1 ) \big)
29
\end{align*}
30
\end{sequent}
31
32
\begin{sequent}
33
\begin{align*}
34
\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \alpha ) \\
35
&\vdash \IsMonomorphism\big( \ProjectionInFactorOfFiberProduct( [\alpha, \beta], 2 ) \big)
36
\end{align*}
37
\end{sequent}
38
39
\begin{sequent}
40
\begin{align*}
41
\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \alpha ) \\
42
&\vdash \IsEpimorphism\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 2 ) \big)
43
\end{align*}
44
\end{sequent}
45
46
\begin{sequent}
47
\begin{align*}
48
\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \beta ) \\
49
&\vdash \IsEpimorphism\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 1 ) \big)
50
\end{align*}
51
\end{sequent}
52
53
\begin{sequent}
54
\begin{align*}
55
\alpha:\Mor ~&|~ () \\
56
&\vdash \IsMonomorphism\big( \KernelEmbedding( \alpha ) \big)
57
\end{align*}
58
\end{sequent}
59
60
\begin{sequent}
61
\begin{align*}
62
\alpha:\Mor ~&|~ () \\
63
&\vdash \IsEpimorphism\big( \CokernelProjection( \alpha ) \big)
64
\end{align*}
65
\end{sequent}
66
67
\begin{sequent}
68
\begin{align*}
69
\alpha:\Mor, \beta:\Mor ~&|~ () \\
70
&\vdash \IsMonomorphism\big( \Equalizer( \alpha, \beta ) \big)
71
\end{align*}
72
\end{sequent}
73
74
\begin{sequent}
75
\begin{align*}
76
\alpha:\Mor, \beta:\Mor ~&|~ () \\
77
&\vdash \IsEpimorphism\big( \Coequalizer( \alpha, \beta ) \big)
78
\end{align*}
79
\end{sequent}
80
81
\begin{sequent}\label{sequent:no_proper_context_7}
82
\begin{align*}
83
\alpha:\Mor ~&|~ \IsTerminal\big( \Source( \alpha ) \big)\\
84
&\vdash \IsSplitMonomorphism( \alpha )
85
\end{align*}
86
\end{sequent}
87
88
\begin{sequent}\label{sequent:no_proper_context_8}
89
\begin{align*}
90
\alpha:\Mor ~&|~ \IsInitial\big( \Range( \alpha ) \big)\\
91
&\vdash \IsSplitEpimorphism( \alpha )
92
\end{align*}
93
\end{sequent}
94
95
\begin{sequent}
96
\begin{align*}
97
L: \ListObj ~|~ \big(\forall x \in L: \IsTerminal(x)\big) \vdash \IsTerminal\big( \DirectProduct( L ) \big)
98
\end{align*}
99
\end{sequent}
100
101
\begin{sequent}
102
\begin{align*}
103
L: \ListObj ~|~ \big(\forall x \in L: \IsInitial(x)\big) \vdash \IsInitial\big( \Coproduct( L ) \big)
104
\end{align*}
105
\end{sequent}
106
107
\begin{sequent}
108
\begin{align*}
109
\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \alpha ), \IsMonomorphism( \beta ) \\
110
&\vdash \IsMonomorphism\big( \PreCompose( \alpha, \beta ) \big)
111
\end{align*}
112
\end{sequent}
113
114
\begin{sequent}
115
\begin{align*}
116
\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \alpha ), \IsEpimorphism( \beta ) \\
117
&\vdash \IsEpimorphism\big( \PreCompose( \alpha, \beta ) \big)
118
\end{align*}
119
\end{sequent}
120
121
\begin{sequent}
122
\begin{align*}
123
\alpha:\Mor ~&|~ \IsIsomorphism( \alpha ) &\vdash \IsIsomorphism( \InverseImmutable( \alpha ) )
124
\end{align*}
125
\end{sequent}
126
127
\begin{sequent}
128
\begin{align*}
129
\alpha:\Mor~|~ & () \\
130
\vdash &\IsMonomorphism\big( \ImageEmbedding( \alpha ) \big)
131
\end{align*}
132
\end{sequent}
133
134