Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346\begin{sequent}1\begin{align*}2A:\Obj ~|~ () \vdash \IsIdempotent( \IdentityMorphism( A ) )3\end{align*}4\end{sequent}56\begin{sequent}7\begin{align*}8A:\Obj ~|~ () \vdash \IsOne\big( \IdentityMorphism( A ) \big)9\end{align*}10\end{sequent}1112\begin{sequent}13\begin{align*}14A:\Obj ~|~ () \vdash \IsIdenticalToIdentityMorphism\big( \IdentityMorphism( A ) \big)15\end{align*}16\end{sequent}1718\begin{sequent}19\begin{align*}20~|~ () \vdash \IsZero\big( \ZeroObject() ) \big)21\end{align*}22\end{sequent}2324\begin{sequent}25\begin{align*}26\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \beta ) \\27&\vdash \IsMonomorphism\big( \ProjectionInFactorOfFiberProduct( [\alpha, \beta], 1 ) \big)28\end{align*}29\end{sequent}3031\begin{sequent}32\begin{align*}33\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \alpha ) \\34&\vdash \IsMonomorphism\big( \ProjectionInFactorOfFiberProduct( [\alpha, \beta], 2 ) \big)35\end{align*}36\end{sequent}3738\begin{sequent}39\begin{align*}40\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \alpha ) \\41&\vdash \IsEpimorphism\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 2 ) \big)42\end{align*}43\end{sequent}4445\begin{sequent}46\begin{align*}47\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \beta ) \\48&\vdash \IsEpimorphism\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 1 ) \big)49\end{align*}50\end{sequent}5152\begin{sequent}53\begin{align*}54\alpha:\Mor ~&|~ () \\55&\vdash \IsMonomorphism\big( \KernelEmbedding( \alpha ) \big)56\end{align*}57\end{sequent}5859\begin{sequent}60\begin{align*}61\alpha:\Mor ~&|~ () \\62&\vdash \IsEpimorphism\big( \CokernelProjection( \alpha ) \big)63\end{align*}64\end{sequent}6566\begin{sequent}67\begin{align*}68\alpha:\Mor, \beta:\Mor ~&|~ () \\69&\vdash \IsMonomorphism\big( \Equalizer( \alpha, \beta ) \big)70\end{align*}71\end{sequent}7273\begin{sequent}74\begin{align*}75\alpha:\Mor, \beta:\Mor ~&|~ () \\76&\vdash \IsEpimorphism\big( \Coequalizer( \alpha, \beta ) \big)77\end{align*}78\end{sequent}7980\begin{sequent}\label{sequent:no_proper_context_7}81\begin{align*}82\alpha:\Mor ~&|~ \IsTerminal\big( \Source( \alpha ) \big)\\83&\vdash \IsSplitMonomorphism( \alpha )84\end{align*}85\end{sequent}8687\begin{sequent}\label{sequent:no_proper_context_8}88\begin{align*}89\alpha:\Mor ~&|~ \IsInitial\big( \Range( \alpha ) \big)\\90&\vdash \IsSplitEpimorphism( \alpha )91\end{align*}92\end{sequent}9394\begin{sequent}95\begin{align*}96L: \ListObj ~|~ \big(\forall x \in L: \IsTerminal(x)\big) \vdash \IsTerminal\big( \DirectProduct( L ) \big)97\end{align*}98\end{sequent}99100\begin{sequent}101\begin{align*}102L: \ListObj ~|~ \big(\forall x \in L: \IsInitial(x)\big) \vdash \IsInitial\big( \Coproduct( L ) \big)103\end{align*}104\end{sequent}105106\begin{sequent}107\begin{align*}108\alpha:\Mor, \beta:\Mor ~&|~ \IsMonomorphism( \alpha ), \IsMonomorphism( \beta ) \\109&\vdash \IsMonomorphism\big( \PreCompose( \alpha, \beta ) \big)110\end{align*}111\end{sequent}112113\begin{sequent}114\begin{align*}115\alpha:\Mor, \beta:\Mor ~&|~ \IsEpimorphism( \alpha ), \IsEpimorphism( \beta ) \\116&\vdash \IsEpimorphism\big( \PreCompose( \alpha, \beta ) \big)117\end{align*}118\end{sequent}119120\begin{sequent}121\begin{align*}122\alpha:\Mor ~&|~ \IsIsomorphism( \alpha ) &\vdash \IsIsomorphism( \InverseImmutable( \alpha ) )123\end{align*}124\end{sequent}125126\begin{sequent}127\begin{align*}128\alpha:\Mor~|~ & () \\129\vdash &\IsMonomorphism\big( \ImageEmbedding( \alpha ) \big)130\end{align*}131\end{sequent}132133134