Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346\begin{sequent}1\begin{align*}2&t, \alpha:\Mor\\3|~ &\IsZero\big( \PreCompose( t, \alpha ) \big)\\4\vdash &\PreCompose\big(\KernelLift( \alpha , t ), \KernelEmbedding( \alpha ) \big) =_{\Mor} t5\end{align*}6\end{sequent}78\begin{sequent}9\begin{align*}10&t, \alpha:\Mor\\11|~ &\IsZero\big(\PreCompose(\alpha, t)\big)\\12\vdash &\PreCompose\big(\CokernelProjection( \alpha ), \CokernelColift( \alpha, t )\big) =_{\Mor} t13\end{align*}14\end{sequent}1516\begin{sequent}17\begin{align*}18&L:\ListObj, T:\ListMor, i:\Int\\19| ~& \forall j \in [ 1, \dots, \Length( L ) ]: \IsEqualForObjects\big(\Source( T[1] ), \Source( T[j] ) \big) \\20\vdash &\PreCompose\big(\UniversalMorphismIntoDirectProduct( L, T ), \\21&\ProjectionInFactorOfDirectProduct( L, i ) \big) =_{\Mor} T[i]22\end{align*}23\end{sequent}2425\begin{sequent}26\begin{align*}27&L:\ListObj, T:\ListMor, i:\Int\\28|~ &()\\29\vdash &\PreCompose\big(\InjectionOfCofactorOfCoproduct( L, i ),\\30&\UniversalMorphismFromCoproduct( L, T ) \big) =_{\Mor} T[i]31\end{align*}32\end{sequent}3334\begin{sequent}35\begin{align*}36&A, B:\Obj, \tau_A, \tau_B:\Mor \\37|~ &()\\38\vdash &\PreCompose\big(\InjectionOfCofactorOfCoproduct( [A, B], 2 ),\\39&\UniversalMorphismFromCoproduct( [A,B], [\tau_A, \tau_B] ) \big) =_{\Mor} \tau_B40\end{align*}41\end{sequent}424344\begin{sequent}45\begin{align*}46&\alpha, \beta, \tau_A, \tau_B:\Mor \\47|~ &\IsEqualForMorphisms\big( \PreCompose( \tau_A, \alpha ), \PreCompose( \tau_B, \beta ) \big)\\48\vdash &\PreCompose\big( \UniversalMorphismIntoFiberProduct( [\alpha, \beta], [\tau_A, \tau_B] ), \\49&\ProjectionInFactorOfFiberProduct( [\alpha, \beta], 1 ) \big) =_{\Mor} \tau_A50\end{align*}51\end{sequent}5253\begin{sequent}54\begin{align*}55&\alpha, \beta, \tau_A, \tau_B:\Mor \\56|~ &\IsEqualForMorphisms\big( \PreCompose( \tau_A, \alpha ), \PreCompose( \tau_B, \beta ) \big)\\57\vdash &\PreCompose\big( \UniversalMorphismIntoFiberProduct( [\alpha, \beta], [\tau_A, \tau_B] ), \\58&\ProjectionInFactorOfFiberProduct( [\alpha, \beta], 2 ) \big) =_{\Mor} \tau_B59\end{align*}60\end{sequent}6162\begin{sequent}63\begin{align*}64&\alpha, \beta, \tau_A, \tau_B:\Mor \\65|~ &\IsEqualForMorphisms\big( \PreCompose( \alpha, \tau_A ), \PreCompose( \beta, \tau_B) \big)\\66\vdash &\PreCompose\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 1 ), \\67&\UniversalMorphismFromPushout( [\alpha, \beta], [\tau_A, \tau_B] )\big) =_{\Mor} \tau_A68\end{align*}69\end{sequent}7071\begin{sequent}72\begin{align*}73&\alpha, \beta, \tau_A, \tau_B:\Mor \\74|~ &\IsEqualForMorphisms\big( \PreCompose( \alpha, \tau_A ), \PreCompose( \beta, \tau_B) \big)\\75\vdash &\PreCompose\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 2 ), \\76&\UniversalMorphismFromPushout( [\alpha, \beta], [\tau_A, \tau_B] )\big) =_{\Mor} \tau_B77\end{align*}78\end{sequent}798081