CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
\begin{sequent}
2
\begin{align*}
3
&t, \alpha:\Mor\\
4
|~ &\IsZero\big( \PreCompose( t, \alpha ) \big)\\
5
\vdash &\PreCompose\big(\KernelLift( \alpha , t ), \KernelEmbedding( \alpha ) \big) =_{\Mor} t
6
\end{align*}
7
\end{sequent}
8
9
\begin{sequent}
10
\begin{align*}
11
&t, \alpha:\Mor\\
12
|~ &\IsZero\big(\PreCompose(\alpha, t)\big)\\
13
\vdash &\PreCompose\big(\CokernelProjection( \alpha ), \CokernelColift( \alpha, t )\big) =_{\Mor} t
14
\end{align*}
15
\end{sequent}
16
17
\begin{sequent}
18
\begin{align*}
19
&L:\ListObj, T:\ListMor, i:\Int\\
20
| ~& \forall j \in [ 1, \dots, \Length( L ) ]: \IsEqualForObjects\big(\Source( T[1] ), \Source( T[j] ) \big) \\
21
\vdash &\PreCompose\big(\UniversalMorphismIntoDirectProduct( L, T ), \\
22
&\ProjectionInFactorOfDirectProduct( L, i ) \big) =_{\Mor} T[i]
23
\end{align*}
24
\end{sequent}
25
26
\begin{sequent}
27
\begin{align*}
28
&L:\ListObj, T:\ListMor, i:\Int\\
29
|~ &()\\
30
\vdash &\PreCompose\big(\InjectionOfCofactorOfCoproduct( L, i ),\\
31
&\UniversalMorphismFromCoproduct( L, T ) \big) =_{\Mor} T[i]
32
\end{align*}
33
\end{sequent}
34
35
\begin{sequent}
36
\begin{align*}
37
&A, B:\Obj, \tau_A, \tau_B:\Mor \\
38
|~ &()\\
39
\vdash &\PreCompose\big(\InjectionOfCofactorOfCoproduct( [A, B], 2 ),\\
40
&\UniversalMorphismFromCoproduct( [A,B], [\tau_A, \tau_B] ) \big) =_{\Mor} \tau_B
41
\end{align*}
42
\end{sequent}
43
44
45
\begin{sequent}
46
\begin{align*}
47
&\alpha, \beta, \tau_A, \tau_B:\Mor \\
48
|~ &\IsEqualForMorphisms\big( \PreCompose( \tau_A, \alpha ), \PreCompose( \tau_B, \beta ) \big)\\
49
\vdash &\PreCompose\big( \UniversalMorphismIntoFiberProduct( [\alpha, \beta], [\tau_A, \tau_B] ), \\
50
&\ProjectionInFactorOfFiberProduct( [\alpha, \beta], 1 ) \big) =_{\Mor} \tau_A
51
\end{align*}
52
\end{sequent}
53
54
\begin{sequent}
55
\begin{align*}
56
&\alpha, \beta, \tau_A, \tau_B:\Mor \\
57
|~ &\IsEqualForMorphisms\big( \PreCompose( \tau_A, \alpha ), \PreCompose( \tau_B, \beta ) \big)\\
58
\vdash &\PreCompose\big( \UniversalMorphismIntoFiberProduct( [\alpha, \beta], [\tau_A, \tau_B] ), \\
59
&\ProjectionInFactorOfFiberProduct( [\alpha, \beta], 2 ) \big) =_{\Mor} \tau_B
60
\end{align*}
61
\end{sequent}
62
63
\begin{sequent}
64
\begin{align*}
65
&\alpha, \beta, \tau_A, \tau_B:\Mor \\
66
|~ &\IsEqualForMorphisms\big( \PreCompose( \alpha, \tau_A ), \PreCompose( \beta, \tau_B) \big)\\
67
\vdash &\PreCompose\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 1 ), \\
68
&\UniversalMorphismFromPushout( [\alpha, \beta], [\tau_A, \tau_B] )\big) =_{\Mor} \tau_A
69
\end{align*}
70
\end{sequent}
71
72
\begin{sequent}
73
\begin{align*}
74
&\alpha, \beta, \tau_A, \tau_B:\Mor \\
75
|~ &\IsEqualForMorphisms\big( \PreCompose( \alpha, \tau_A ), \PreCompose( \beta, \tau_B) \big)\\
76
\vdash &\PreCompose\big( \InjectionOfCofactorOfPushout( [\alpha, \beta], 2 ), \\
77
&\UniversalMorphismFromPushout( [\alpha, \beta], [\tau_A, \tau_B] )\big) =_{\Mor} \tau_B
78
\end{align*}
79
\end{sequent}
80
81