CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / pkg / Convex / doc / chap6.txt
Views: 418346
1
2
6 Polytope
3
4
5
6.1 Polytope: Category and Representations
6
7
6.1-1 IsPolytope
8
9
IsPolytope( M )  Category
10
Returns: true or false
11
12
The GAP category of a polytope. Every polytope is a convex object.
13
14
Remember: Every cone is a convex object.
15
16
17
6.2 Polytope: Properties
18
19
6.2-1 IsNotEmpty
20
21
IsNotEmpty( poly )  property
22
Returns: true or false
23
24
Checks if the polytope poly is not empty.
25
26
6.2-2 IsLatticePolytope
27
28
IsLatticePolytope( poly )  property
29
Returns: true or false
30
31
Checks if the polytope poly is a lattice polytope, i.e. all its vertices are
32
lattice points.
33
34
6.2-3 IsVeryAmple
35
36
IsVeryAmple( poly )  property
37
Returns: true or false
38
39
Checks if the polytope poly is very ample.
40
41
6.2-4 IsNormalPolytope
42
43
IsNormalPolytope( poly )  property
44
Returns: true or false
45
46
Checks if the polytope poly is normal.
47
48
6.2-5 IsSimplicial
49
50
IsSimplicial( poly )  property
51
Returns: true or false
52
53
Checks if the polytope poly is simplicial.
54
55
6.2-6 IsSimplePolytope
56
57
IsSimplePolytope( poly )  property
58
Returns: true or false
59
60
Checks if the polytope poly is simple.
61
62
63
6.3 Polytope: Attributes
64
65
6.3-1 Vertices
66
67
Vertices( poly )  attribute
68
Returns: a list
69
70
Returns the vertices of the polytope poly. For reasons, the corresponding
71
tester is HasVerticesOfPolytopes
72
73
6.3-2 LatticePoints
74
75
LatticePoints( poly )  attribute
76
Returns: a list
77
78
Returns the lattice points of the polytope poly.
79
80
6.3-3 FacetInequalities
81
82
FacetInequalities( poly )  attribute
83
Returns: a list
84
85
Returns the facet inequalities for the polytope poly.
86
87
6.3-4 VerticesInFacets
88
89
VerticesInFacets( poly )  attribute
90
Returns: a list
91
92
Returns the incidence matrix of vertices and facets of the polytope poly.
93
94
6.3-5 AffineCone
95
96
AffineCone( poly )  attribute
97
Returns: a cone
98
99
Returns the affine cone of the polytope poly.
100
101
6.3-6 NormalFan
102
103
NormalFan( poly )  attribute
104
Returns: a fan
105
106
Returns the normal fan of the polytope poly.
107
108
6.3-7 RelativeInteriorLatticePoints
109
110
RelativeInteriorLatticePoints( poly )  attribute
111
Returns: a list
112
113
Returns the lattice points in the relative interior of the polytope poly.
114
115
116
6.4 Polytope: Methods
117
118
6.4-1 *
119
120
*( polytope1, polytope2 )  operation
121
Returns: a polytope
122
123
Returns the Cartesian product of the polytopes polytope1 and polytope2.
124
125
6.4-2 #
126
127
#( polytope1, polytope2 )  operation
128
Returns: a polytope
129
130
Returns the Minkowski sum of the polytopes polytope1 and polytope2.
131
132
133
6.5 Polytope: Constructors
134
135
6.5-1 Polytope
136
137
Polytope( points )  operation
138
Returns: a polytope
139
140
Returns a polytope that is the convex hull of the points points.
141
142
6.5-2 PolytopeByInequalities
143
144
PolytopeByInequalities( ineqs )  operation
145
Returns: a polytope
146
147
Returns a polytope defined by the inequalities ineqs.
148
149
150
6.6 Polytope: Examples
151
152
153
6.6-1 Polytope example
154
155
 Example 
156
gap> P := Polytope( [ [ 2, 0 ], [ 0, 2 ], [ -1, -1 ] ] );
157
<A polytope in |R^2>
158
gap> IsVeryAmple( P );
159
true
160
gap> LatticePoints( P );
161
[ [ -1, -1 ], [ 0, 0 ], [ 0, 1 ], 
162
[ 0, 2 ], [ 1, 0 ], [ 1, 1 ], [ 2, 0 ] ]
163
gap> NFP := NormalFan( P );
164
<A complete fan in |R^2>
165
gap> C1 := MaximalCones( NFP )[ 1 ];
166
<A cone in |R^2>
167
gap> RayGenerators( C1 );
168
[ [ -1, -1 ], [ -1, 3 ] ]
169
gap> IsRegularFan( NFP );
170
true
171

172
173
174