Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YPolytope[133X[101X234[1X6.1 [33X[0;0YPolytope: Category and Representations[133X[101X56[1X6.1-1 IsPolytope[101X78[29X[2XIsPolytope[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a polytope. Every polytope is a convex object.[133X1213[33X[0;0YRemember: Every cone is a convex object.[133X141516[1X6.2 [33X[0;0YPolytope: Properties[133X[101X1718[1X6.2-1 IsNotEmpty[101X1920[29X[2XIsNotEmpty[102X( [3Xpoly[103X ) [32X property21[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2223[33X[0;0YChecks if the polytope [3Xpoly[103X is not empty.[133X2425[1X6.2-2 IsLatticePolytope[101X2627[29X[2XIsLatticePolytope[102X( [3Xpoly[103X ) [32X property28[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2930[33X[0;0YChecks if the polytope [3Xpoly[103X is a lattice polytope, i.e. all its vertices are31lattice points.[133X3233[1X6.2-3 IsVeryAmple[101X3435[29X[2XIsVeryAmple[102X( [3Xpoly[103X ) [32X property36[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3738[33X[0;0YChecks if the polytope [3Xpoly[103X is very ample.[133X3940[1X6.2-4 IsNormalPolytope[101X4142[29X[2XIsNormalPolytope[102X( [3Xpoly[103X ) [32X property43[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4445[33X[0;0YChecks if the polytope [3Xpoly[103X is normal.[133X4647[1X6.2-5 IsSimplicial[101X4849[29X[2XIsSimplicial[102X( [3Xpoly[103X ) [32X property50[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5152[33X[0;0YChecks if the polytope [3Xpoly[103X is simplicial.[133X5354[1X6.2-6 IsSimplePolytope[101X5556[29X[2XIsSimplePolytope[102X( [3Xpoly[103X ) [32X property57[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5859[33X[0;0YChecks if the polytope [3Xpoly[103X is simple.[133X606162[1X6.3 [33X[0;0YPolytope: Attributes[133X[101X6364[1X6.3-1 Vertices[101X6566[29X[2XVertices[102X( [3Xpoly[103X ) [32X attribute67[6XReturns:[106X [33X[0;10Ya list[133X6869[33X[0;0YReturns the vertices of the polytope [3Xpoly[103X. For reasons, the corresponding70tester is HasVerticesOfPolytopes[133X7172[1X6.3-2 LatticePoints[101X7374[29X[2XLatticePoints[102X( [3Xpoly[103X ) [32X attribute75[6XReturns:[106X [33X[0;10Ya list[133X7677[33X[0;0YReturns the lattice points of the polytope [3Xpoly[103X.[133X7879[1X6.3-3 FacetInequalities[101X8081[29X[2XFacetInequalities[102X( [3Xpoly[103X ) [32X attribute82[6XReturns:[106X [33X[0;10Ya list[133X8384[33X[0;0YReturns the facet inequalities for the polytope [3Xpoly[103X.[133X8586[1X6.3-4 VerticesInFacets[101X8788[29X[2XVerticesInFacets[102X( [3Xpoly[103X ) [32X attribute89[6XReturns:[106X [33X[0;10Ya list[133X9091[33X[0;0YReturns the incidence matrix of vertices and facets of the polytope [3Xpoly[103X.[133X9293[1X6.3-5 AffineCone[101X9495[29X[2XAffineCone[102X( [3Xpoly[103X ) [32X attribute96[6XReturns:[106X [33X[0;10Ya cone[133X9798[33X[0;0YReturns the affine cone of the polytope [3Xpoly[103X.[133X99100[1X6.3-6 NormalFan[101X101102[29X[2XNormalFan[102X( [3Xpoly[103X ) [32X attribute103[6XReturns:[106X [33X[0;10Ya fan[133X104105[33X[0;0YReturns the normal fan of the polytope [3Xpoly[103X.[133X106107[1X6.3-7 RelativeInteriorLatticePoints[101X108109[29X[2XRelativeInteriorLatticePoints[102X( [3Xpoly[103X ) [32X attribute110[6XReturns:[106X [33X[0;10Ya list[133X111112[33X[0;0YReturns the lattice points in the relative interior of the polytope [3Xpoly[103X.[133X113114115[1X6.4 [33X[0;0YPolytope: Methods[133X[101X116117[1X6.4-1 *[101X118119[29X[2X*[102X( [3Xpolytope1[103X, [3Xpolytope2[103X ) [32X operation120[6XReturns:[106X [33X[0;10Ya polytope[133X121122[33X[0;0YReturns the Cartesian product of the polytopes [3Xpolytope1[103X and [3Xpolytope2[103X.[133X123124[1X6.4-2 #[101X125126[29X[2X#[102X( [3Xpolytope1[103X, [3Xpolytope2[103X ) [32X operation127[6XReturns:[106X [33X[0;10Ya polytope[133X128129[33X[0;0YReturns the Minkowski sum of the polytopes [3Xpolytope1[103X and [3Xpolytope2[103X.[133X130131132[1X6.5 [33X[0;0YPolytope: Constructors[133X[101X133134[1X6.5-1 Polytope[101X135136[29X[2XPolytope[102X( [3Xpoints[103X ) [32X operation137[6XReturns:[106X [33X[0;10Ya polytope[133X138139[33X[0;0YReturns a polytope that is the convex hull of the points [3Xpoints[103X.[133X140141[1X6.5-2 PolytopeByInequalities[101X142143[29X[2XPolytopeByInequalities[102X( [3Xineqs[103X ) [32X operation144[6XReturns:[106X [33X[0;10Ya polytope[133X145146[33X[0;0YReturns a polytope defined by the inequalities [3Xineqs[103X.[133X147148149[1X6.6 [33X[0;0YPolytope: Examples[133X[101X150151152[1X6.6-1 [33X[0;0YPolytope example[133X[101X153154[4X[32X Example [32X[104X155[4X[25Xgap>[125X [27XP := Polytope( [ [ 2, 0 ], [ 0, 2 ], [ -1, -1 ] ] );[127X[104X156[4X[28X<A polytope in |R^2>[128X[104X157[4X[25Xgap>[125X [27XIsVeryAmple( P );[127X[104X158[4X[28Xtrue[128X[104X159[4X[25Xgap>[125X [27XLatticePoints( P );[127X[104X160[4X[28X[ [ -1, -1 ], [ 0, 0 ], [ 0, 1 ], [128X[104X161[4X[28X[ 0, 2 ], [ 1, 0 ], [ 1, 1 ], [ 2, 0 ] ][128X[104X162[4X[25Xgap>[125X [27XNFP := NormalFan( P );[127X[104X163[4X[28X<A complete fan in |R^2>[128X[104X164[4X[25Xgap>[125X [27XC1 := MaximalCones( NFP )[ 1 ];[127X[104X165[4X[28X<A cone in |R^2>[128X[104X166[4X[25Xgap>[125X [27XRayGenerators( C1 );[127X[104X167[4X[28X[ [ -1, -1 ], [ -1, 3 ] ][128X[104X168[4X[25Xgap>[125X [27XIsRegularFan( NFP );[127X[104X169[4X[28Xtrue[128X[104X170[4X[32X[104X171172173174