Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Functors</Heading>12<Table Align="|l|" >34<Row>5<Item>6<Index>ExtendScalars</Index>7<C>ExtendScalars(R,G,EltsG)</C>8<P/>910Inputs a <M>ZH</M>-resolution <M>R</M>,11a group <M>G</M> containing <M>H</M> as a subgroup, and a list <M>EltsG</M>12of elements of <M>G</M>. It returns the free <M>ZG</M>-resolution13<M>(R \otimes_{ZH} ZG)</M>. The returned resolution <M>S</M> has S!.elts:=EltsG. This is a resolution of the <M>ZG</M>-module14<M>(Z \otimes_{ZH} ZG)</M>. (Here <M>\otimes_{ZH}</M> means tensor over <M>ZH</M>.)15</Item>16</Row>1718<Row>19<Item>20<Index>HomToIntegers</Index>21<C>HomToIntegers(X) </C>22<P/>2324Inputs either a <M>ZG</M>-resolution <M>X=R</M>,25or an equivariant chain map <M>X = (F:R26\longrightarrow27S)</M>.28It returns the cochain complex or cochain map obtained by applying29<M>HomZG( _ , Z)</M> where <M>Z</M> is the30trivial module of integers (characteristic 0).31</Item>32</Row>3334<Row>35<Item>36<Index> HomToIntegersModP </Index>37<C>HomToIntegersModP(R) </C>38<P/>3940Inputs a <M>ZG</M>-resolution <M>R</M> and41returns the cochain complex obtained by applying42<M>HomZG( _ , Z_p)</M> where <M>Z_p</M> is the trivial module of43integers mod <M>p</M>.44(At present this functor does not handle equivariant chain maps.)45</Item>46</Row>4748<Row>49<Item>50<Index> HomToIntegralModule </Index>51<C>HomToIntegralModule(R,f) </C>52<P/>5354Inputs a <M>ZG</M>-resolution <M>R</M> and a55group homomorphism <M>f:G \longrightarrow56GL_n(Z)</M>57to the group of <M>n�n</M> invertible integer matrices. Here58<M>Z</M> must have characteristic 0.59It returns the cochain complex obtained by applying60<M>HomZG( _ , A)</M> where <M>A</M> is the <M>ZG</M>-module <M>Z^n</M>61with <M>G</M> action via <M>f</M>.62(At present this function does not handle equivariant chain maps.)63</Item>64</Row>6566<Row>67<Item>68<Index> TensorWithIntegralModule </Index>69<C>TensorWithIntegralModule(R,f) </C>70<P/>7172Inputs a <M>ZG</M>-resolution <M>R</M> and a73group homomorphism <M>f:G \longrightarrow74GL_n(Z)</M>75to the group of <M>n�n</M> invertible integer matrices. Here76<M>Z</M> must have characteristic 0.77It returns the chain complex obtained by tensoring over <M>ZG</M>78with the <M>ZG</M>-module <M>A=Z^n</M>79with <M>G</M> action via <M>f</M>.80(At present this function does not handle equivariant chain maps.)81</Item>82</Row>838485<Row>86<Item>87<Index> HomToGModule </Index>88<C>HomToGModule(R,A) </C>89<P/>9091Inputs a <M>ZG</M>-resolution <M>R</M> and an abelian92G-outer group A.93It returns the G-cocomplex obtained by applying94<M>HomZG( _ , A)</M>.95(At present this function does not handle equivariant chain maps.)96</Item>97</Row>9899<Row>100<Item>101<Index>InduceScalars </Index>102<C>InduceScalars(R,hom) </C>103<P/>104105Inputs a <M>ZQ</M>-resolution <M>R</M> and a surjective group homomorphism106<M>hom:G\rightarrow Q</M>.107It returns the unduced non-free <M>ZG</M>-resolution.108109</Item>110</Row>111112<Row>113<Item>114<Index>LowerCentralSeriesLieAlgebra</Index>115<C>LowerCentralSeriesLieAlgebra(G) </C>116<C>LowerCentralSeriesLieAlgebra(f) </C>117<P/>118119Inputs a pcp group <M>G</M>.120If each quotient <M>G_c/G_{c+1}</M>121of the lower central series is free abelian or p-elementary abelian122(for fixed prime p) then a Lie algebra <M>L(G)</M> is returned.123The abelian group underlying <M>L(G)</M> is the124direct sum of the quotients <M>G_c/G_{c+1}</M> .125The Lie bracket on <M>L(G)</M> is induced by the commutator in126<M>G</M>. (Here <M>G_1=G</M>, <M>G_{c+1}=[G_c,G]</M> .)127<P/>128129130The function can also be applied to a group homomorphism <M>f: G131\longrightarrow132G'</M> . In this case the induced homomorphism of Lie algebras133<M>L(f):L(G) \longrightarrow134L(G')</M> is returned.<P/>135136If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail.<P/>137138This function was written by Pablo Fernandez Ascariz139</Item>140</Row>141<Row>142<Item>143<Index> TensorWithIntegers </Index>144<C>TensorWithIntegers(X) </C>145<P/>146147Inputs either a <M>ZG</M>-resolution <M>X=R</M>,148or an equivariant chain map <M>X = (F:R149\longrightarrow S)</M>. It returns the150chain complex or chain map obtained by tensoring with the151trivial module of integers (characteristic 0).152</Item>153</Row>154155<Row>156<Item>157<Index> FilteredTensorWithIntegers </Index>158<C>FilteredTensorWithIntegers(R) </C>159<P/>160161Inputs a <M>ZG</M>-resolution <M>R</M> for which "filteredDimension" lies in NamesOfComponents(R). (Such a resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or FreeGResolution().)162It returns the163filtered chain complex obtained by tensoring with the164trivial module of integers (characteristic 0).165</Item>166</Row>167168169<Row>170<Item>171<Index> TensorWithTwistedIntegers </Index>172<C>TensorWithTwistedIntegers(X,rho) </C>173<P/>174175Inputs either a <M>ZG</M>-resolution <M>X=R</M>,176or an equivariant chain map <M>X = (F:R177\longrightarrow S)</M>. It also inputs a function <M>rho\colon G\rightarrow \mathbb Z</M> where the action of <M>g \in G</M> on <M>\mathbb Z</M> is such that <M>g.1 = rho(g)</M>. It returns the178chain complex or chain map obtained by tensoring with the179(twisted) module of integers (characteristic 0).180</Item>181</Row>182183184<Row>185<Item>186<Index> TensorWithIntegersModP</Index>187<C>TensorWithIntegersModP(X,p) </C>188<P/>189190Inputs either a <M>ZG</M>-resolution <M>X=R</M>, or a characteristics 0 chain complex, or191an equivariant chain map <M>X = (F:R192\longrightarrow193S)</M>, or a chain map between characteristic 0 chain complexes, together with194a prime <M>p</M>.195It returns the chain196complex or chain map obtained by tensoring with the197trivial module of integers modulo <M>p</M>.198</Item>199</Row>200201<Row>202<Item>203<Index> TensorWithTwistedIntegersModP</Index>204<C>TensorWithTwistedIntegersModP(X,p,rho)</C>205<P/>206207Inputs either a <M>ZG</M>-resolution <M>X=R</M>, or208an equivariant chain map <M>X = (F:R209\longrightarrow210S)</M>, and a prime <M>p</M>. It also inputs a function <M>rho\colon G\rightarrow \mathbb Z</M> where the action of <M>g \in G</M> on <M>\mathbb Z</M> is such that <M>g.1 = rho(g)</M>. It returns the chain211complex or chain map obtained by tensoring with the212trivial module of integers modulo <M>p</M>.213</Item>214</Row>215216217<Row>218<Item>219<Index> TensorWithRationals </Index>220<C>TensorWithRationals(R)</C>221<P/>222223Inputs a <M>ZG</M>-resolution <M>R</M> and returns the chain224complex obtained by tensoring with the trivial module of225rational numbers.226</Item>227</Row>228229</Table>230</Chapter>231232233234235