CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Functors</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<Index>ExtendScalars</Index>
8
<C>ExtendScalars(R,G,EltsG)</C>
9
<P/>
10
11
Inputs a <M>ZH</M>-resolution <M>R</M>,
12
a group <M>G</M> containing <M>H</M> as a subgroup, and a list <M>EltsG</M>
13
of elements of <M>G</M>. It returns the free <M>ZG</M>-resolution
14
<M>(R \otimes_{ZH} ZG)</M>. The returned resolution <M>S</M> has S!.elts:=EltsG. This is a resolution of the <M>ZG</M>-module
15
<M>(Z \otimes_{ZH} ZG)</M>. (Here <M>\otimes_{ZH}</M> means tensor over <M>ZH</M>.)
16
</Item>
17
</Row>
18
19
<Row>
20
<Item>
21
<Index>HomToIntegers</Index>
22
<C>HomToIntegers(X) </C>
23
<P/>
24
25
Inputs either a <M>ZG</M>-resolution <M>X=R</M>,
26
or an equivariant chain map <M>X = (F:R
27
\longrightarrow
28
S)</M>.
29
It returns the cochain complex or cochain map obtained by applying
30
<M>HomZG( _ , Z)</M> where <M>Z</M> is the
31
trivial module of integers (characteristic 0).
32
</Item>
33
</Row>
34
35
<Row>
36
<Item>
37
<Index> HomToIntegersModP </Index>
38
<C>HomToIntegersModP(R) </C>
39
<P/>
40
41
Inputs a <M>ZG</M>-resolution <M>R</M> and
42
returns the cochain complex obtained by applying
43
<M>HomZG( _ , Z_p)</M> where <M>Z_p</M> is the trivial module of
44
integers mod <M>p</M>.
45
(At present this functor does not handle equivariant chain maps.)
46
</Item>
47
</Row>
48
49
<Row>
50
<Item>
51
<Index> HomToIntegralModule </Index>
52
<C>HomToIntegralModule(R,f) </C>
53
<P/>
54
55
Inputs a <M>ZG</M>-resolution <M>R</M> and a
56
group homomorphism <M>f:G \longrightarrow
57
GL_n(Z)</M>
58
to the group of <M>n�n</M> invertible integer matrices. Here
59
<M>Z</M> must have characteristic 0.
60
It returns the cochain complex obtained by applying
61
<M>HomZG( _ , A)</M> where <M>A</M> is the <M>ZG</M>-module <M>Z^n</M>
62
with <M>G</M> action via <M>f</M>.
63
(At present this function does not handle equivariant chain maps.)
64
</Item>
65
</Row>
66
67
<Row>
68
<Item>
69
<Index> TensorWithIntegralModule </Index>
70
<C>TensorWithIntegralModule(R,f) </C>
71
<P/>
72
73
Inputs a <M>ZG</M>-resolution <M>R</M> and a
74
group homomorphism <M>f:G \longrightarrow
75
GL_n(Z)</M>
76
to the group of <M>n�n</M> invertible integer matrices. Here
77
<M>Z</M> must have characteristic 0.
78
It returns the chain complex obtained by tensoring over <M>ZG</M>
79
with the <M>ZG</M>-module <M>A=Z^n</M>
80
with <M>G</M> action via <M>f</M>.
81
(At present this function does not handle equivariant chain maps.)
82
</Item>
83
</Row>
84
85
86
<Row>
87
<Item>
88
<Index> HomToGModule </Index>
89
<C>HomToGModule(R,A) </C>
90
<P/>
91
92
Inputs a <M>ZG</M>-resolution <M>R</M> and an abelian
93
G-outer group A.
94
It returns the G-cocomplex obtained by applying
95
<M>HomZG( _ , A)</M>.
96
(At present this function does not handle equivariant chain maps.)
97
</Item>
98
</Row>
99
100
<Row>
101
<Item>
102
<Index>InduceScalars </Index>
103
<C>InduceScalars(R,hom) </C>
104
<P/>
105
106
Inputs a <M>ZQ</M>-resolution <M>R</M> and a surjective group homomorphism
107
<M>hom:G\rightarrow Q</M>.
108
It returns the unduced non-free <M>ZG</M>-resolution.
109
110
</Item>
111
</Row>
112
113
<Row>
114
<Item>
115
<Index>LowerCentralSeriesLieAlgebra</Index>
116
<C>LowerCentralSeriesLieAlgebra(G) </C>
117
<C>LowerCentralSeriesLieAlgebra(f) </C>
118
<P/>
119
120
Inputs a pcp group <M>G</M>.
121
If each quotient <M>G_c/G_{c+1}</M>
122
of the lower central series is free abelian or p-elementary abelian
123
(for fixed prime p) then a Lie algebra <M>L(G)</M> is returned.
124
The abelian group underlying <M>L(G)</M> is the
125
direct sum of the quotients <M>G_c/G_{c+1}</M> .
126
The Lie bracket on <M>L(G)</M> is induced by the commutator in
127
<M>G</M>. (Here <M>G_1=G</M>, <M>G_{c+1}=[G_c,G]</M> .)
128
<P/>
129
130
131
The function can also be applied to a group homomorphism <M>f: G
132
\longrightarrow
133
G'</M> . In this case the induced homomorphism of Lie algebras
134
<M>L(f):L(G) \longrightarrow
135
L(G')</M> is returned.<P/>
136
137
If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail.<P/>
138
139
This function was written by Pablo Fernandez Ascariz
140
</Item>
141
</Row>
142
<Row>
143
<Item>
144
<Index> TensorWithIntegers </Index>
145
<C>TensorWithIntegers(X) </C>
146
<P/>
147
148
Inputs either a <M>ZG</M>-resolution <M>X=R</M>,
149
or an equivariant chain map <M>X = (F:R
150
\longrightarrow S)</M>. It returns the
151
chain complex or chain map obtained by tensoring with the
152
trivial module of integers (characteristic 0).
153
</Item>
154
</Row>
155
156
<Row>
157
<Item>
158
<Index> FilteredTensorWithIntegers </Index>
159
<C>FilteredTensorWithIntegers(R) </C>
160
<P/>
161
162
Inputs a <M>ZG</M>-resolution <M>R</M> for which "filteredDimension" lies in NamesOfComponents(R). (Such a resolution can be produced using TwisterTensorProduct(), ResolutionNormalSubgroups() or FreeGResolution().)
163
It returns the
164
filtered chain complex obtained by tensoring with the
165
trivial module of integers (characteristic 0).
166
</Item>
167
</Row>
168
169
170
<Row>
171
<Item>
172
<Index> TensorWithTwistedIntegers </Index>
173
<C>TensorWithTwistedIntegers(X,rho) </C>
174
<P/>
175
176
Inputs either a <M>ZG</M>-resolution <M>X=R</M>,
177
or an equivariant chain map <M>X = (F:R
178
\longrightarrow S)</M>. It also inputs a function <M>rho\colon G\rightarrow \mathbb Z</M> where the action of <M>g \in G</M> on <M>\mathbb Z</M> is such that <M>g.1 = rho(g)</M>. It returns the
179
chain complex or chain map obtained by tensoring with the
180
(twisted) module of integers (characteristic 0).
181
</Item>
182
</Row>
183
184
185
<Row>
186
<Item>
187
<Index> TensorWithIntegersModP</Index>
188
<C>TensorWithIntegersModP(X,p) </C>
189
<P/>
190
191
Inputs either a <M>ZG</M>-resolution <M>X=R</M>, or a characteristics 0 chain complex, or
192
an equivariant chain map <M>X = (F:R
193
\longrightarrow
194
S)</M>, or a chain map between characteristic 0 chain complexes, together with
195
a prime <M>p</M>.
196
It returns the chain
197
complex or chain map obtained by tensoring with the
198
trivial module of integers modulo <M>p</M>.
199
</Item>
200
</Row>
201
202
<Row>
203
<Item>
204
<Index> TensorWithTwistedIntegersModP</Index>
205
<C>TensorWithTwistedIntegersModP(X,p,rho)</C>
206
<P/>
207
208
Inputs either a <M>ZG</M>-resolution <M>X=R</M>, or
209
an equivariant chain map <M>X = (F:R
210
\longrightarrow
211
S)</M>, and a prime <M>p</M>. It also inputs a function <M>rho\colon G\rightarrow \mathbb Z</M> where the action of <M>g \in G</M> on <M>\mathbb Z</M> is such that <M>g.1 = rho(g)</M>. It returns the chain
212
complex or chain map obtained by tensoring with the
213
trivial module of integers modulo <M>p</M>.
214
</Item>
215
</Row>
216
217
218
<Row>
219
<Item>
220
<Index> TensorWithRationals </Index>
221
<C>TensorWithRationals(R)</C>
222
<P/>
223
224
Inputs a <M>ZG</M>-resolution <M>R</M> and returns the chain
225
complex obtained by tensoring with the trivial module of
226
rational numbers.
227
</Item>
228
</Row>
229
230
</Table>
231
</Chapter>
232
233
234
235