Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Lie commutators and nonabelian Lie tensors</Heading>12<Table Align="|l|" >34<Row>5<Item>6Functions on this page are joint work with <B>Hamid Mohammadzadeh</B>, and implemented by him.7</Item>8</Row>910<Row>11<Item>12<Index> LieCoveringHomomorphism</Index>13<C>LieCoveringHomomorphism(L)</C>14<P/>1516Inputs a finite dimensional Lie algebra <M>L</M> over a field,17and returns a surjective Lie homomorphism <M>phi : C\rightarrow L</M>18where:19<List>20<Item>the kernel of <M>phi</M> lies in both the centre of <M>C</M> and the21derived subalgebra of <M>C</M>,22</Item>23<Item>24the kernel of <M>phi</M> is a vector space of rank equal to the rank of the second Chevalley-Eilenberg homology of <M>L</M>.25</Item>26</List>27</Item>28</Row>2930<Row>31<Item>32<Index> LeibnizQuasiCoveringHomomorphism</Index>33<C>LeibnizQuasiCoveringHomomorphism(L)</C>34<P/>3536Inputs a finite dimensional Lie algebra <M>L</M> over a field,37and returns a surjective homomorphism <M>phi : C\rightarrow L</M>38of Leibniz algebras where:39<List>40<Item>the kernel of <M>phi</M> lies in both the centre of <M>C</M> and the41derived subalgebra of <M>C</M>,42</Item>43<Item>44the kernel of <M>phi</M> is a vector space of rank equal to the rank of the kernel <M>J</M> of the homomorphism <M>L \otimes L \rightarrow L</M>45from the tensor square to <M>L</M>. (We note that, in general, <M>J</M> is NOT equal to the second Leibniz homology of <M>L</M>.)46</Item>47</List>48</Item>49</Row>5051525354<Row>55<Item>56<Index> LieEpiCentre</Index>57<C>LieEpiCentre(L)</C>58<P/>5960Inputs a finite dimensional Lie algebra <M>L</M> over a field,61and returns62an ideal <M>Z^\ast(L)</M> of the centre of <M>L</M>. The ideal63<M>Z^\ast(L)</M> is trivial if and only if64<M>L</M> is isomorphic to a quotient <M>L=E/Z(E)</M> of some Lie algebra65<M>E</M> by the centre of <M>E</M>.66</Item>67</Row>6869<Row>70<Item>71<Index> LieExteriorSquare</Index>72<C>LieExteriorSquare(L) </C>73<P/>7475Inputs a finite dimensional Lie algebra <M>L</M> over a field.76It returns a record <M>E</M> with the following components.77<List>78<Item>79<M>E.homomorphism</M> is a Lie homomorphism <M>� : (L \wedge L) \longrightarrow L</M> from the nonabelian exterior square <M>(L \wedge L)</M> to <M>L</M>.80The kernel of <M>�</M> is the Lie multiplier.81</Item>82<Item>83<M>E.pairing(x,y)</M> is a function which inputs elements <M>x, y</M> in <M>L</M> and returns <M>(x \wedge y)</M>84in the exterior square <M>(L \wedge L)</M> .85</Item>86</List>8788</Item>89</Row>909192<Row>93<Item>94<Index> LieTensorSquare</Index>95<C>LieTensorSquare(L) </C>96<P/>9798Inputs a finite dimensional Lie algebra <M>L</M> over a field99and returns a record <M>T</M> with the following components.100<List>101<Item>102<M>T.homomorphism</M> is a Lie homomorphism103<M>� : (L \otimes L) \longrightarrow L</M>104from the nonabelian tensor square of <M>L</M> to <M>L</M>.105</Item>106<Item>107<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in108<M>L</M> and returns the tensor <M>(x \otimes y)</M> in the tensor square109<M>(L \otimes L)</M> .110</Item>111</List>112</Item>113</Row>114115116<Row>117<Item>118<Index> LieTensorCentre</Index>119<C>LieTensorCentre(L) </C>120<P/>121122Inputs a finite dimensional123Lie algebra <M>L</M> over a field and returns the largest ideal <M>N</M>124such that the induced homomorphism of nonabelian tensor squares125<M>(L \otimes L) \longrightarrow (L/N \otimes L/N)</M>126is an isomorphism.127</Item>128</Row>129130131</Table>132</Chapter>133134135136137