CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Path: gap4r8 / pkg / Hap1.12 / doc / Lie.xml
Views: 418346
1
<Chapter><Heading> Lie commutators and nonabelian Lie tensors</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
Functions on this page are joint work with <B>Hamid Mohammadzadeh</B>, and implemented by him.
8
</Item>
9
</Row>
10
11
<Row>
12
<Item>
13
<Index> LieCoveringHomomorphism</Index>
14
<C>LieCoveringHomomorphism(L)</C>
15
<P/>
16
17
Inputs a finite dimensional Lie algebra <M>L</M> over a field,
18
and returns a surjective Lie homomorphism <M>phi : C\rightarrow L</M>
19
where:
20
<List>
21
<Item>the kernel of <M>phi</M> lies in both the centre of <M>C</M> and the
22
derived subalgebra of <M>C</M>,
23
</Item>
24
<Item>
25
the kernel of <M>phi</M> is a vector space of rank equal to the rank of the second Chevalley-Eilenberg homology of <M>L</M>.
26
</Item>
27
</List>
28
</Item>
29
</Row>
30
31
<Row>
32
<Item>
33
<Index> LeibnizQuasiCoveringHomomorphism</Index>
34
<C>LeibnizQuasiCoveringHomomorphism(L)</C>
35
<P/>
36
37
Inputs a finite dimensional Lie algebra <M>L</M> over a field,
38
and returns a surjective homomorphism <M>phi : C\rightarrow L</M>
39
of Leibniz algebras where:
40
<List>
41
<Item>the kernel of <M>phi</M> lies in both the centre of <M>C</M> and the
42
derived subalgebra of <M>C</M>,
43
</Item>
44
<Item>
45
the kernel of <M>phi</M> is a vector space of rank equal to the rank of the kernel <M>J</M> of the homomorphism <M>L \otimes L \rightarrow L</M>
46
from the tensor square to <M>L</M>. (We note that, in general, <M>J</M> is NOT equal to the second Leibniz homology of <M>L</M>.)
47
</Item>
48
</List>
49
</Item>
50
</Row>
51
52
53
54
55
<Row>
56
<Item>
57
<Index> LieEpiCentre</Index>
58
<C>LieEpiCentre(L)</C>
59
<P/>
60
61
Inputs a finite dimensional Lie algebra <M>L</M> over a field,
62
and returns
63
an ideal <M>Z^\ast(L)</M> of the centre of <M>L</M>. The ideal
64
<M>Z^\ast(L)</M> is trivial if and only if
65
<M>L</M> is isomorphic to a quotient <M>L=E/Z(E)</M> of some Lie algebra
66
<M>E</M> by the centre of <M>E</M>.
67
</Item>
68
</Row>
69
70
<Row>
71
<Item>
72
<Index> LieExteriorSquare</Index>
73
<C>LieExteriorSquare(L) </C>
74
<P/>
75
76
Inputs a finite dimensional Lie algebra <M>L</M> over a field.
77
It returns a record <M>E</M> with the following components.
78
<List>
79
<Item>
80
<M>E.homomorphism</M> is a Lie homomorphism <M>� : (L \wedge L) \longrightarrow L</M> from the nonabelian exterior square <M>(L \wedge L)</M> to <M>L</M>.
81
The kernel of <M></M> is the Lie multiplier.
82
</Item>
83
<Item>
84
<M>E.pairing(x,y)</M> is a function which inputs elements <M>x, y</M> in <M>L</M> and returns <M>(x \wedge y)</M>
85
in the exterior square <M>(L \wedge L)</M> .
86
</Item>
87
</List>
88
89
</Item>
90
</Row>
91
92
93
<Row>
94
<Item>
95
<Index> LieTensorSquare</Index>
96
<C>LieTensorSquare(L) </C>
97
<P/>
98
99
Inputs a finite dimensional Lie algebra <M>L</M> over a field
100
and returns a record <M>T</M> with the following components.
101
<List>
102
<Item>
103
<M>T.homomorphism</M> is a Lie homomorphism
104
<M>� : (L \otimes L) \longrightarrow L</M>
105
from the nonabelian tensor square of <M>L</M> to <M>L</M>.
106
</Item>
107
<Item>
108
<M>T.pairing(x,y)</M> is a function which inputs two elements <M>x, y</M> in
109
<M>L</M> and returns the tensor <M>(x \otimes y)</M> in the tensor square
110
<M>(L \otimes L)</M> .
111
</Item>
112
</List>
113
</Item>
114
</Row>
115
116
117
<Row>
118
<Item>
119
<Index> LieTensorCentre</Index>
120
<C>LieTensorCentre(L) </C>
121
<P/>
122
123
Inputs a finite dimensional
124
Lie algebra <M>L</M> over a field and returns the largest ideal <M>N</M>
125
such that the induced homomorphism of nonabelian tensor squares
126
<M>(L \otimes L) \longrightarrow (L/N \otimes L/N)</M>
127
is an isomorphism.
128
</Item>
129
</Row>
130
131
132
</Table>
133
</Chapter>
134
135
136
137