CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
<Chapter><Heading> Poincare series</Heading>
2
3
<Table Align="|l|" >
4
5
<Row>
6
<Item>
7
<C>EfficientNormalSubgroups(G)</C>
8
<C>EfficientNormalSubgroups(G,k)</C>
9
<P/>
10
Inputs a prime-power group <M>G</M> and, optionally, a positive
11
integer <M>k</M>. The default is <M>k=4</M>. The function returns a
12
list of normal subgroups <M>N</M> in <M>G</M> such that the Poincare
13
series for <M>G</M> equals
14
the Poincare series for the direct product <M>(N \times (G/N))</M> up to degree <M>k</M>.
15
</Item>
16
</Row>
17
<Row>
18
<Item>
19
<Index> ExpansionOfRationalFunction</Index>
20
<C>ExpansionOfRationalFunction(f,n)</C>
21
<P/>
22
23
Inputs a positive integer <M>n</M> and a rational function
24
<M>f(x)=p(x)/q(x)</M> where the degree of the polynomial <M>p(x)</M>
25
is less than that of <M>q(x)</M>. It returns a list
26
<M>[a_0 , a_1 , a_2 , a_3 , \ldots ,a_n]</M> of the first <M>n+1</M>
27
coefficients of the infinite expansion
28
<P/>
29
<M>f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots </M> .
30
</Item>
31
</Row>
32
33
<Row>
34
<Item>
35
<Index> PoincareSeries</Index>
36
<C>PoincareSeries(G,n) </C>
37
<C> PoincareSeries(R,n) </C>
38
<C> PoincareSeries(L,n) </C>
39
<C> PoincareSeries(G) </C>
40
<P/>
41
42
Inputs a finite <M>p</M>-group <M>G</M> and a positive integer <M>n</M>.
43
It returns a quotient of polynomials <M>f(x)=P(x)/Q(x)</M>
44
whose coefficient of <M>x^k</M> equals the rank of the vector space
45
<M>H_k(G,Z_p)</M> for all <M>k</M> in the range <M>k=1</M> to <M>k=n</M>.
46
(The second input variable can be omitted, in which case the
47
function tries to choose a "reasonable" value for <M>n</M>. For <M>2</M>-groups the function PoincareSeriesLHS(G) can be used to produce an <M>f(x)</M> that
48
is correct in all degrees.)
49
<P/>
50
51
In place of the group <M>G</M> the function can also input
52
(at least <M>n</M> terms of) a minimal mod <M>p</M> resolution
53
<M>R</M> for <M>G</M>.
54
<P/>
55
Alternatively, the first input variable can be a list <M>L</M>
56
of integers. In this case the coefficient of <M>x^k</M> in <M>f(x)</M>
57
is equal to the <M>(k+1)</M>st term in the list.
58
</Item>
59
</Row>
60
61
62
<Row>
63
<Item>
64
<Index> PoincareSeriesPrimePart</Index>
65
<C>PoincareSeriesPrimePart(G,p,n) </C>
66
<P/>
67
68
Inputs a finite group <M>G</M>, a prime <M>p</M>, and a positive integer
69
<M>n</M>. It returns a quotient of polynomials
70
<M>f(x)=P(x)/Q(x)</M> whose coefficient of <M>x^k</M>
71
equals the rank of the vector space <M>H_k(G,Z_p)</M>
72
for all <M>k</M> in the range <M>k=1</M> to <M>k=n</M>.
73
<P/>
74
The efficiency of this function needs to be improved.
75
</Item>
76
</Row>
77
78
79
<Row>
80
<Item>
81
<C>PoincareSeriesLHS(G) </C>
82
<P/>
83
84
Inputs a finite <M>2</M>-group <M>G</M>
85
and returns a quotient of polynomials
86
<M>f(x)=P(x)/Q(x)</M> whose coefficient of <M>x^k</M>
87
equals the rank of the vector space <M>H_k(G,Z_2)</M>
88
for all <M>k</M>.
89
<P/>
90
This function was written by <B>Paul Smith</B>. It use the Singular system for commutative algebra.
91
</Item>
92
</Row>
93
94
95
<Row>
96
<Item>
97
<Index> Prank</Index>
98
<C>Prank(G) </C>
99
<P/>
100
101
Inputs a <M>p</M>-group <M>G</M> and returns the rank of the
102
largest elementary abelian subgroup.
103
</Item>
104
</Row>
105
106
</Table>
107
</Chapter>
108
109
110
111