Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<Chapter><Heading> Poincare series</Heading>12<Table Align="|l|" >34<Row>5<Item>6<C>EfficientNormalSubgroups(G)</C>7<C>EfficientNormalSubgroups(G,k)</C>8<P/>9Inputs a prime-power group <M>G</M> and, optionally, a positive10integer <M>k</M>. The default is <M>k=4</M>. The function returns a11list of normal subgroups <M>N</M> in <M>G</M> such that the Poincare12series for <M>G</M> equals13the Poincare series for the direct product <M>(N \times (G/N))</M> up to degree <M>k</M>.14</Item>15</Row>16<Row>17<Item>18<Index> ExpansionOfRationalFunction</Index>19<C>ExpansionOfRationalFunction(f,n)</C>20<P/>2122Inputs a positive integer <M>n</M> and a rational function23<M>f(x)=p(x)/q(x)</M> where the degree of the polynomial <M>p(x)</M>24is less than that of <M>q(x)</M>. It returns a list25<M>[a_0 , a_1 , a_2 , a_3 , \ldots ,a_n]</M> of the first <M>n+1</M>26coefficients of the infinite expansion27<P/>28<M>f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots </M> .29</Item>30</Row>3132<Row>33<Item>34<Index> PoincareSeries</Index>35<C>PoincareSeries(G,n) </C>36<C> PoincareSeries(R,n) </C>37<C> PoincareSeries(L,n) </C>38<C> PoincareSeries(G) </C>39<P/>4041Inputs a finite <M>p</M>-group <M>G</M> and a positive integer <M>n</M>.42It returns a quotient of polynomials <M>f(x)=P(x)/Q(x)</M>43whose coefficient of <M>x^k</M> equals the rank of the vector space44<M>H_k(G,Z_p)</M> for all <M>k</M> in the range <M>k=1</M> to <M>k=n</M>.45(The second input variable can be omitted, in which case the46function tries to choose a "reasonable" value for <M>n</M>. For <M>2</M>-groups the function PoincareSeriesLHS(G) can be used to produce an <M>f(x)</M> that47is correct in all degrees.)48<P/>4950In place of the group <M>G</M> the function can also input51(at least <M>n</M> terms of) a minimal mod <M>p</M> resolution52<M>R</M> for <M>G</M>.53<P/>54Alternatively, the first input variable can be a list <M>L</M>55of integers. In this case the coefficient of <M>x^k</M> in <M>f(x)</M>56is equal to the <M>(k+1)</M>st term in the list.57</Item>58</Row>596061<Row>62<Item>63<Index> PoincareSeriesPrimePart</Index>64<C>PoincareSeriesPrimePart(G,p,n) </C>65<P/>6667Inputs a finite group <M>G</M>, a prime <M>p</M>, and a positive integer68<M>n</M>. It returns a quotient of polynomials69<M>f(x)=P(x)/Q(x)</M> whose coefficient of <M>x^k</M>70equals the rank of the vector space <M>H_k(G,Z_p)</M>71for all <M>k</M> in the range <M>k=1</M> to <M>k=n</M>.72<P/>73The efficiency of this function needs to be improved.74</Item>75</Row>767778<Row>79<Item>80<C>PoincareSeriesLHS(G) </C>81<P/>8283Inputs a finite <M>2</M>-group <M>G</M>84and returns a quotient of polynomials85<M>f(x)=P(x)/Q(x)</M> whose coefficient of <M>x^k</M>86equals the rank of the vector space <M>H_k(G,Z_2)</M>87for all <M>k</M>.88<P/>89This function was written by <B>Paul Smith</B>. It use the Singular system for commutative algebra.90</Item>91</Row>929394<Row>95<Item>96<Index> Prank</Index>97<C>Prank(G) </C>98<P/>99100Inputs a <M>p</M>-group <M>G</M> and returns the rank of the101largest elementary abelian subgroup.102</Item>103</Row>104105</Table>106</Chapter>107108109110111