Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384#(C) 2008 Graham Ellis ################################################################ InstallGlobalFunction(FreeZGResolution, function(arg) local P,N,prime, Dimension, DimensionRecord, DimRecs, FiltDimRecs, BinGp, Boundary, BoundaryP, Pair2Quad, Pair2QuadRec, Quad2Pair,Quad2PairRec, HtpyGen, HtpyWord, StabGrps, StabResls, ResolutionFG, Action, AlgRed, EltsG, G, Mult, MultRecord, DelGen, DelWord, DelGenRec, PseudoBoundary,FinalBoundary, FilteredLength, FilteredDimension, FilteredDimensionRecord, L,i,k,n,q,r,s,t, InducedHtpyGen, InducedHtpyWord, DelListSum, #Added Feb 2014 BUI A.T. Homotopy, HomotopyGen, NegateListWord, VertHtpy, InducedHtpyList, IndHtpyRec; SetInfoLevel(InfoWarning,0); P:=arg[1]; N:=arg[2]; if Length(arg)>2 then prime:=Gcd(arg[3],EvaluateProperty(P,"characteristic")); else prime:=EvaluateProperty(P,"characteristic"); fi; N:=Minimum(EvaluateProperty(P,"length"),N); G:=P!.group; EltsG:=P!.elts; BoundaryP:=P!.boundary; BinGp:=ContractibleGcomplex("SL(2,O-2)"); BinGp:=BinGp!.stabilizer(0,4);; BinGp:=Image(RegularActionHomomorphism(BinGp)); #BinGp:=Group(ReduceGenerators(GeneratorsOfGroup(BinGp),BinGp)); ############################# ResolutionFG:=function(G,n) local x, tmp, iso,iso1,iso2,iso3,res,Q, fn; ##Added Jan 2012 if IsBound(P!.resolutions) and HasName(G) then x:=Position(P!.resolutions[2], Name(G)); if not x=fail then return P!.resolutions[1][x]; fi; fi; ## ### if Order(G)=infinity and IsAbelian(G) then #This will only be correct if G is abelian of "rank" equal #to the number of generators GAP has for G res:=ResolutionGenericGroup(G,n); return res; fi; ### iso:=RegularActionHomomorphism(G); Q:=Image(iso); if IdGroup(Image(iso))=[24,3] then iso1:=IsomorphismGroups(Q,BinGp); res:=ResolutionFiniteGroup(BinGp,n); res!.group:=G; res!.elts:=List(res!.elts,x-> PreImagesRepresentative(iso,PreImagesRepresentative(iso1,x))); return res; fi; res:=ResolutionFiniteGroup(Q,n); res!.group:=G; res!.elts:=List(res!.elts,x->PreImagesRepresentative(iso,x)); return res; ### end; ############################# if prime>0 then ############################################## AlgRed:= function(ww) local w,x,v,pos,u; w:=StructuralCopy(ww); v:=Collected(w); for x in v do if x[1][1]<0 then x[1][1]:=-x[1][1]; x[2]:=-x[2] mod prime; fi; if x[1][2]<0 then x[1][2]:=-x[1][2]; x[2]:=-x[2] mod prime; fi; x[2]:=x[2] mod prime; od; u:=[]; for x in v do Append(u,MultiplyWord(x[2],[x[1]])); od; v:=Collected(u); for x in v do x[2]:=x[2] mod prime; od; u:=[]; for x in v do Append(u,MultiplyWord(x[2],[x[1]])); od; return u; end; ############################################## else ############################################## AlgRed:= function(ww) local x,i,v,k,u,w; #if Length(ww)>5000 then return ww; fi; w:=ww;#w:=StructuralCopy(ww); for x in w do if x[2]<0 then x[1]:=-x[1];x[2]:=-x[2];fi; od; v:=Filtered(w,x->x[1]>0); for x in w do if x[1]<0 then #RT:=RT-Runtime(); ##This takes neary all the computation time!! ########################## k:=Position(v,[-x[1],x[2],x[3]]); if (k=fail) then Add(v,x); else #Remove(v,k); Unbind(v[k]); fi; ########################## #RT:=RT+Runtime(); fi; od; v:=Filtered(v,x->IsBound(x)); return v; end; ############################################## fi; ############################################## if IsBound(P!.action) and not prime=2 then Action:=P!.action; else Action:=function(k,j,g) return 1; end; fi; ############################################## MultRecord:=[]; ################################################################ Mult:=function(g,h) local pos; if not IsBound(MultRecord[g]) then MultRecord[g]:=[]; fi; if not IsBound(MultRecord[g][h]) then pos:= Position(EltsG,EltsG[g]*EltsG[h]); if pos=fail then Add(EltsG,EltsG[g]*EltsG[h]); MultRecord[g][h]:= Length(EltsG); else MultRecord[g][h]:= pos; fi; fi; return MultRecord[g][h]; end; ################################################################ StabGrps:= List([0..Length(P)],n-> List([1..P!.dimension(n)], k->P!.stabilizer(n,k))); StabResls:=[]; i:=N; if prime=0 then ################################## for L in StabGrps do Add(StabResls,List(L, g->ExtendScalars(ResolutionFG(g,i),G,EltsG)) ); i:=Maximum(0,AbsInt(i-1)); od; ################################# else ################################## for L in StabGrps do Add(StabResls,List(L, g->ExtendScalars(ResolutionFiniteGroup(g,i,false,prime),G,EltsG)) ); i:=Maximum(0,AbsInt(i-1)); od; ################################# fi; DimRecs:=List([0..N],i->[]); ################################################################### Dimension:=function(k) local dim,i,R; dim:=0; for i in [0..k] do DimRecs[k+1][i+1]:=[]; for R in StabResls[i+1] do dim:=dim+R!.dimension(k-i); Add(DimRecs[k+1][i+1],dim); od; od; return dim; end; DimensionRecord:=List([0..N],Dimension); Dimension:=function(k); return DimensionRecord[k+1]; end; ################################################################### ################################################################### Quad2PairRec:=[]; for q in [0..N] do Quad2PairRec[q+1]:=[]; for r in [1..Length(StabGrps[q+1])] do Quad2PairRec[q+1][r]:=[]; for s in [0..N-q] do Quad2PairRec[q+1][r][s+1]:=[]; od;od;od; ################################################################### ################################################################### Pair2Quad:=function(k,n) local qq,q,r,s,t; #The n-th generator in degree k of our final resolution is actually the #t-th generator in degree s of the resolution of the r-th stabilizer group #of the q-th chain module of the non-free resolution. We need the #function f(k,n)=[q,r,s,t] . for qq in [0..N] do if n <= DimRecs[k+1][qq+1][Length(DimRecs[k+1][qq+1])] then q:=qq; break; fi; od; r:=PositionProperty(DimRecs[k+1][q+1],x->(n<=x)); s:=k-q; if r-1>0 then t:=n-DimRecs[k+1][q+1][r-1]; else if q>=1 then t:=n-DimRecs[k+1][q][Length( DimRecs[k+1][q] )];; else t:=n; fi; fi; Quad2PairRec[q+1][r][s+1][t]:=[k,n]; return [q,r,s,t]; end; Pair2QuadRec:=List([1..N+1],i->[]); for k in [0..N] do for n in [1..Dimension(k)] do Pair2QuadRec[k+1][n]:=Pair2Quad(k,n); od; od; ############## Pair2Quad:=function(k,n) local a; if n>0 then return StructuralCopy(Pair2QuadRec[k+1][n]); else a:=StructuralCopy(Pair2QuadRec[k+1][-n]); a[4]:=-a[4]; return a; fi; end; ############## ############## Quad2Pair:=function(q,r,s,t) local a,pr,pt; if r>0 then pr:=r;pt:=t; else pr:=-r;pt:=-t; fi; if pt>0 then return StructuralCopy(Quad2PairRec[q+1][pr][s+1][pt]); else a:=StructuralCopy(Quad2PairRec[q+1][pr][s+1][-pt]); a[2]:=-a[2]; return a; fi; end; ############## ################################################################### ################################################################### HtpyGen:=function(q,s,r,t,g) local y,pr,pt; #This applies the "vertical homotopy" to the free group generator [r,t,g] #in "dimension" [q,s]. The output is an "r-word" in "dimension" [q,s+1]. if r>0 then pr:=r;pt:=t; else pr:=-r;pt:=-t; fi; y:=StructuralCopy(StabResls[q+1][pr]!.homotopy(s,[pt,g])); Apply(y,x->[pr,x[1],x[2]]); return y; end; ################################################################### ################################################################### HtpyWord:=function(q,s,w) local h,z,x,y; #This applies the "vertical homotopy" to the r-word w in "dimension" #[q,s]. The output is an r-word in "dimension" [q,s+1]. h:=[]; for y in w do x:=[Action(q,y[1],y[3])*y[1],y[2],y[3]]; z:=HtpyGen(q,s,x[1],x[2],x[3]); z:=List(z,a->[Action(q,a[1],a[3])*a[1],a[2],a[3]]); Append(h,z); od; return AlgRed(h); end; ################################################################### DelGenRec:=[]; for k in [1..N+1] do DelGenRec[k]:=[]; for q in [1..N+1] do DelGenRec[k][q]:=[]; for s in [1..N+1] do DelGenRec[k][q][s]:=[]; for r in [1..P!.dimension(q-1)] do DelGenRec[k][q][s][r]:=[]; od; od; od; od; ################################################################### DelGen:=function(k,q,s,r,t) local y,pr,pt,i; #For k=0,1,2 ... this is the equivariant homomorphism #Del_k:A_{q,s} ---> A_{q-k,s+k-1} applied to a free r-generator [r,t] #in dimension [q,s]. if r>0 then pr:=r;pt:=t; else pr:=-r;pt:=-t; fi; ############## if IsBound(DelGenRec[k+1][q+1][s+1][pr][AbsInt(pt)]) then if pt>0 then return DelGenRec[k+1][q+1][s+1][pr][pt]; else return List(DelGenRec[k+1][q+1][s+1][pr][-pt], a->[a[1],-a[2],a[3]]); fi; fi; ############## if k=0 then if s=0 then return []; else y:=List(StabResls[q+1][pr]!.boundary(s,pt),x->[Action(q,r,x[2])*x[1],x[2]]); if pt>0 then DelGenRec[k+1][q+1][s+1][pr][pt]:= AlgRed(List(y,x->[pr,x[1],x[2]])); return DelGenRec[k+1][q+1][s+1][pr][pt]; else DelGenRec[k+1][q+1][s+1][pr][-pt]:=AlgRed(List(y,x->[pr,-x[1],x[2]])); return AlgRed(List(y,x->[pr,x[1],x[2]])); fi; fi; fi; if k=1 then if s=0 then if q=0 then return []; fi; y:=BoundaryP(q,pr); if pt>0 then DelGenRec[k+1][q+1][s+1][pr][pt]:= AlgRed(List(y,x->[x[1],1,x[2]])); return DelGenRec[k+1][q+1][s+1][pr][pt]; else DelGenRec[k+1][q+1][s+1][pr][-pt]:= AlgRed(List(y,x->[x[1],1,x[2]])); return List(y,x->[x[1],-1,x[2]]); fi; else if pt>0 then DelGenRec[k+1][q+1][s+1][pr][pt]:= AlgRed(HtpyWord(q-1,s-1,DelWord(1,q,s-1,DelGen(0,q,s,pr,-pt)))) ; return DelGenRec[k+1][q+1][s+1][pr][pt]; else DelGenRec[k+1][q+1][s+1][pr][-pt]:= AlgRed(HtpyWord(q-1,s-1,DelWord(1,q,s-1,DelGen(0,q,s,pr,pt)))) ; return List(DelGenRec[k+1][q+1][s+1][pr][-pt], a->[a[1],-a[2],a[3]]); fi; fi; fi; y:=[]; for i in [1..k] do Append(y, HtpyWord(q-k,s+k-2,DelWord(i,q-k+i,s+k-i-1,DelGen(k-i,q,s,pr,-pt))) ); od; y:=AlgRed(y); if pt>0 then DelGenRec[k+1][q+1][s+1][pr][pt]:=y; else DelGenRec[k+1][q+1][s+1][pr][-pt]:=List(y,a->[a[1],-a[2],a[3]]); fi; return y; end; ################################################################### ################################################################### DelWord:=function(k,q,s,w) local y,x; #For k=0,1,2 ... this is the equivariant homomorphism #Del_k:A_{q,s} ---> A_{q-k,s+k-1} applied to an r-word [[r,t,g],...] #in dimension [q,s]. y:=[]; for x in w do Append(y,List(DelGen(k,q,s,x[1],x[2]), a->[a[1],a[2],Mult(x[3],a[3])])); od; return y; #Added Jan 2013. Speeds up the calculation in some(!!) examples. return AlgRed(y); end; ################################################################### ################################################################### Boundary:=function(k,n) local q,s,r,t,x,y,z,i; y:=Pair2Quad(k,n); q:=y[1];s:=y[3];r:=y[2];t:=y[4]; y:=[]; for i in [0..k] do #for i in [0..1] do if q>=i then z:=DelGen(i,q,s,r,t); Append(y, List(z,x->[Quad2Pair(q-i,x[1],s+i-1,x[2])[2],x[3]]) ); else break; fi; od; return AlgebraicReduction(y); end; ################################################################### PseudoBoundary:=[]; for n in [1..N+1] do PseudoBoundary[n]:=[]; od; ####################################### FinalBoundary:=function(n,k) local pk; pk:=AbsInt(k); if not IsBound(PseudoBoundary[n+1][pk]) then PseudoBoundary[n+1][pk]:= Boundary(n,pk); fi; if k>0 then return PseudoBoundary[n+1][k]; else return NegateWord(PseudoBoundary[n+1][pk]); fi; end; ####################################### ################spectral sequence requirements################## FiltDimRecs:=[]; for k in [0..N] do FiltDimRecs[k+1]:=[]; for i in [1..Dimension(k)] do FiltDimRecs[k+1][i]:=Pair2Quad(k,i)[1]; od; od; FilteredLength:=Maximum(Flat(FiltDimRecs)); ################################################## FilteredDimension:=function(r,k); return Length(Filtered(FiltDimRecs[k+1],x->x<=r)); end; ################################################# ########### BUI ANH TUAN - FEB 2014 ############# ################################################## InducedHtpyGen:=function(q,s,r,t,g) local y,pr,pt,w,v; #This constructs the "induced homotopy" h1 from the given homotopy of the non-free complex # h1: A_qs ->A_{q+1}s #This applies the "induced homotopy" to the free group generator [r,t,g] #in "dimension" [q,s]. The output is an "r-word" in "dimension" [q+1,s]. if r>0 then pr:=r;pt:=t; else pr:=-r;pt:=-t; fi; y:=StructuralCopy(P!.homotopy(q,[pr,g])); if pt>0 then Apply(y,x->[x[1],1,x[2]]); else Apply(y,x->[x[1],-1,x[2]]); fi; return y; end; ################################################## InducedHtpyWord:=function(q,s,w) local h,z,x,y; #This applies the "induced homotopy" to the r-word w in "dimension" #[q,s]. The output is an r-word in "dimension" [q+1,s]. h:=[]; for y in w do x:=[y[1],y[2],y[3]]; z:=StructuralCopy(InducedHtpyGen(q,s,x[1],x[2],x[3])); z:=List(z,a->[a[1],a[2],a[3]]); Append(h,z); od; return AlgRed(h); end; ############################################################ InducedHtpyList:=function(w) local h,z,x,y,v,b; #This applies the Horizontal Homotopy to a list of words #For each word, this applies the "induced homotopy" to the r-word w in "dimension" #[q,s]. The output is an r-word in "dimension" [q+1,s]. h:=[]; for y in w do z:=StructuralCopy(InducedHtpyGen(y[1],y[2],y[3],y[4],y[5])); z:=List(z,a->[y[1]+1,y[2],a[1],a[2],a[3]]); Append(h,z); od; return h; end; ############# d+=d1+d2+..+dq of a list of words############# DelListSum:=function(w) #Sum of DelWord_k where k from 1 to q local y,d,x,h,k; h:=[]; for x in w do y:=[]; for k in [1..x[1]] do d:=StructuralCopy(DelGen(k,x[1],x[2],x[3],x[4])); Apply(d,v->[x[1]-k,x[2]+k-1,v[1],v[2],Mult(x[5],v[3])]); Append(y,d); od; Append(h,y); od; return h; end; ############# Vertical Homotopy ################## VertHtpy:=function(w) # Applies to a list of [q,s,r,t,g]: could be in different A_qs # return a list of elements of the form [q,s,r,t,g] local h,x,y,v; h:=[];; for x in w do v:=[x[1],x[2],Action(x[1],x[3],x[5])*x[3],x[4],x[5]]; y:=StructuralCopy(HtpyGen(v[1],v[2],v[3],v[4],v[5])); Apply(y,a->[x[1],x[2]+1,Action(x[1],a[1],a[3])*a[1],a[2],a[3]]); Append(h,y); od; return h; end; ################################################## NegateListWord:=function(w) Apply(w,x->[x[1],x[2],-x[3],x[4],x[5]]); return w; end; ################################################## HomotopyGen:=function(arg) local f,g,q,s,r,t,x,e,v,y, h0, h1, h0dh1, e3, h2, h; q:=arg[1]; s:=arg[2]; r:=arg[3]; t:=arg[4]; g:=arg[5]; if arg=[] then return []; else if s = 0 then h1:=StructuralCopy(InducedHtpyList([[q,s,r,t,g]])); h0dh1:=StructuralCopy(VertHtpy(DelListSum(h1))); v:=StructuralCopy(DelListSum(h0dh1)); e3:=[]; # e3=h(d+)h0(d+)d1 for x in v do Append(e3,HomotopyGen(x[1],x[2],x[3],x[4],x[5])); od; e:=[]; # e=h1-h0(d+)h1+h(d+)h0(d+)h1 Append(e,h1); Append(e,NegateListWord(h0dh1)); Append(e,e3); elif s>0 then # s>0 then e=0 e:=[]; fi; y:=StructuralCopy([q,s,r,t,g]); h0:=VertHtpy([y]); v:=DelListSum(h0); h2:=[]; # h2=h(d+)h0 for x in v do Append(h2,HomotopyGen(x[1],x[2],x[3],x[4],x[5])); od; h:=[]; # h=h0-d(d+)h0 + e Append(h,h0); Append(h,NegateListWord(h2)); Append(h,e); return h; fi; end; ################################################## Homotopy:=function(k,w) local f,g,q,s,r,t,v,e,h; ### h([])=[] ##### if w=[] then return [];fi; ################## f:=w[1]; g:=w[2]; v:=Pair2Quad(k,f); q:=v[1]; r:=v[2]; s:=v[3]; t:=v[4]; ################## h:=HomotopyGen(q,s,r,t,g); Apply(h,x->[Quad2Pair(x[1],x[3],x[2],x[4])[2],x[5]]); return AlgebraicReduction(h); end; ################################################## SetInfoLevel(InfoWarning,1); return Objectify(HapResolution, rec( inputresl:=P, verthtpy:=VertHtpy, htpy:=HtpyWord, delword:=DelWord, dimension:=Dimension, filteredDimension:=FilteredDimension, boundary:=FinalBoundary, inducedhomotopy:=InducedHtpyGen, stabrels:=StabResls, homotopy:=Homotopy, elts:=P!.elts, group:=P!.group, pseudoBoundary:=PseudoBoundary, properties:= [["length",N], ["filtration_length",FilteredLength], ["initial_inclusion",true], ["reduced",true], ["type","resolution"], ["characteristic",prime] ])); end); ################################################################ ################################################################