CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418425
#(C) 2008 Graham Ellis

################################################################
InstallGlobalFunction(FreeZGResolution,
function(arg)
local 
	P,N,prime,
	Dimension, DimensionRecord, DimRecs, FiltDimRecs,
        BinGp,
	Boundary,
	BoundaryP,
	Pair2Quad, Pair2QuadRec,
      	Quad2Pair,Quad2PairRec,
	HtpyGen, HtpyWord,
	StabGrps, 
	StabResls, 
        ResolutionFG,
	Action,
        AlgRed,  
	EltsG, G, Mult, MultRecord,
	DelGen, DelWord, DelGenRec,
	PseudoBoundary,FinalBoundary,
        FilteredLength, FilteredDimension, FilteredDimensionRecord,
	L,i,k,n,q,r,s,t,
	InducedHtpyGen, InducedHtpyWord, DelListSum, #Added Feb 2014 BUI A.T.
	Homotopy, HomotopyGen, NegateListWord, VertHtpy, 
	InducedHtpyList, IndHtpyRec;    

SetInfoLevel(InfoWarning,0);

P:=arg[1];
N:=arg[2];
if Length(arg)>2 then prime:=Gcd(arg[3],EvaluateProperty(P,"characteristic"));
else prime:=EvaluateProperty(P,"characteristic"); fi;

N:=Minimum(EvaluateProperty(P,"length"),N);
G:=P!.group;
EltsG:=P!.elts;
BoundaryP:=P!.boundary;

BinGp:=ContractibleGcomplex("SL(2,O-2)");
BinGp:=BinGp!.stabilizer(0,4);;
BinGp:=Image(RegularActionHomomorphism(BinGp));
#BinGp:=Group(ReduceGenerators(GeneratorsOfGroup(BinGp),BinGp));

#############################
ResolutionFG:=function(G,n)
local x, tmp, iso,iso1,iso2,iso3,res,Q, fn;

##Added Jan 2012
if IsBound(P!.resolutions) and HasName(G) then
x:=Position(P!.resolutions[2], Name(G));
if not x=fail then return P!.resolutions[1][x]; fi;
fi;
##

###
if Order(G)=infinity and IsAbelian(G) then
#This will only be correct if G is abelian of "rank" equal
#to the number of generators GAP has for G 

res:=ResolutionGenericGroup(G,n);

return res;
fi;
###
iso:=RegularActionHomomorphism(G);
Q:=Image(iso);

if IdGroup(Image(iso))=[24,3] then 
iso1:=IsomorphismGroups(Q,BinGp); 
res:=ResolutionFiniteGroup(BinGp,n);
res!.group:=G;
res!.elts:=List(res!.elts,x->
PreImagesRepresentative(iso,PreImagesRepresentative(iso1,x)));
return res;
fi;

res:=ResolutionFiniteGroup(Q,n);
res!.group:=G;
res!.elts:=List(res!.elts,x->PreImagesRepresentative(iso,x));
return res;
###

end;
#############################

if prime>0 then 
##############################################
AlgRed:= function(ww)
local w,x,v,pos,u;

w:=StructuralCopy(ww);

v:=Collected(w);
for x in v do
if x[1][1]<0 then x[1][1]:=-x[1][1]; x[2]:=-x[2] mod prime; fi;
if x[1][2]<0 then x[1][2]:=-x[1][2]; x[2]:=-x[2] mod prime; fi;
x[2]:=x[2] mod prime;
od;

u:=[];
for x in v do
Append(u,MultiplyWord(x[2],[x[1]]));
od;

v:=Collected(u);
for x in v do
x[2]:=x[2] mod prime;
od;

u:=[];
for x in v do
Append(u,MultiplyWord(x[2],[x[1]]));
od;

return u;

end;
##############################################

else

##############################################
AlgRed:= function(ww)
local x,i,v,k,u,w;
#if Length(ww)>5000 then return ww; fi;

w:=ww;#w:=StructuralCopy(ww);

        for x in w do
        if x[2]<0 then x[1]:=-x[1];x[2]:=-x[2];fi;
        od;
v:=Filtered(w,x->x[1]>0);
        for x in w do
        if x[1]<0 then
#RT:=RT-Runtime(); ##This takes neary all the computation time!!
##########################
        k:=Position(v,[-x[1],x[2],x[3]]);  
        if (k=fail) then Add(v,x); 
        else
        #Remove(v,k);
        Unbind(v[k]);
        fi;
##########################
#RT:=RT+Runtime();
        fi;
        od;
        v:=Filtered(v,x->IsBound(x));

        return v;
end;
##############################################
fi;



##############################################
if IsBound(P!.action) and not prime=2 then 
Action:=P!.action;
else 
Action:=function(k,j,g) return 1; end;
fi;
##############################################

MultRecord:=[];
################################################################
Mult:=function(g,h)
local pos;
if not IsBound(MultRecord[g]) then MultRecord[g]:=[]; fi;
if not IsBound(MultRecord[g][h]) then
    pos:= Position(EltsG,EltsG[g]*EltsG[h]);
    if pos=fail then Add(EltsG,EltsG[g]*EltsG[h]);  
    MultRecord[g][h]:= Length(EltsG);
    else MultRecord[g][h]:= pos; 
    fi;
fi;
return MultRecord[g][h];
end;
################################################################

StabGrps:= List([0..Length(P)],n->
           List([1..P!.dimension(n)], k->P!.stabilizer(n,k))); 

StabResls:=[];
i:=N;
if prime=0 then
##################################
for L in StabGrps do
Add(StabResls,List(L,	
g->ExtendScalars(ResolutionFG(g,i),G,EltsG))
);
i:=Maximum(0,AbsInt(i-1));
od;
#################################
else
##################################
for L in StabGrps do
Add(StabResls,List(L,
g->ExtendScalars(ResolutionFiniteGroup(g,i,false,prime),G,EltsG))
);
i:=Maximum(0,AbsInt(i-1));
od;
#################################
fi;

DimRecs:=List([0..N],i->[]);

###################################################################
Dimension:=function(k)
local dim,i,R;
dim:=0;
for i in [0..k] do
DimRecs[k+1][i+1]:=[];
for R in StabResls[i+1] do
dim:=dim+R!.dimension(k-i);
Add(DimRecs[k+1][i+1],dim);
od;
od;
return dim;
end;

DimensionRecord:=List([0..N],Dimension);

Dimension:=function(k);
return DimensionRecord[k+1];
end;
###################################################################

###################################################################
Quad2PairRec:=[];
for q in [0..N] do
Quad2PairRec[q+1]:=[];
for r in [1..Length(StabGrps[q+1])] do
Quad2PairRec[q+1][r]:=[];
for s in [0..N-q] do
Quad2PairRec[q+1][r][s+1]:=[];
od;od;od;
###################################################################


###################################################################
Pair2Quad:=function(k,n)
local qq,q,r,s,t;
#The n-th generator in degree k of our final resolution is actually the 
#t-th generator in degree s of the resolution of the r-th stabilizer group
#of the q-th chain module of the non-free resolution. We need the
#function f(k,n)=[q,r,s,t] .

for qq in [0..N] do
if n <= DimRecs[k+1][qq+1][Length(DimRecs[k+1][qq+1])] then q:=qq; break; fi;
od;

r:=PositionProperty(DimRecs[k+1][q+1],x->(n<=x));

s:=k-q;

if r-1>0 then
t:=n-DimRecs[k+1][q+1][r-1];
else
if q>=1 then
t:=n-DimRecs[k+1][q][Length(  DimRecs[k+1][q] )];;
else t:=n;
fi;
fi;
 
Quad2PairRec[q+1][r][s+1][t]:=[k,n];
return [q,r,s,t];

end;

Pair2QuadRec:=List([1..N+1],i->[]);
for k in [0..N] do
for n in [1..Dimension(k)] do
Pair2QuadRec[k+1][n]:=Pair2Quad(k,n);
od;
od;

##############
Pair2Quad:=function(k,n)
local a;
if n>0 then
return StructuralCopy(Pair2QuadRec[k+1][n]);
else
a:=StructuralCopy(Pair2QuadRec[k+1][-n]);
a[4]:=-a[4];
return a;
fi;
end;
##############

##############
Quad2Pair:=function(q,r,s,t)
local a,pr,pt;
if r>0 then pr:=r;pt:=t;
else
pr:=-r;pt:=-t;
fi;

if pt>0 then
return StructuralCopy(Quad2PairRec[q+1][pr][s+1][pt]);
else
a:=StructuralCopy(Quad2PairRec[q+1][pr][s+1][-pt]);
a[2]:=-a[2];
return a;
fi;
end;
##############
###################################################################

###################################################################
HtpyGen:=function(q,s,r,t,g)
local y,pr,pt;
#This applies the "vertical homotopy" to the free group generator [r,t,g]
#in "dimension" [q,s]. The output is an "r-word" in "dimension" [q,s+1].

if r>0 then pr:=r;pt:=t;
else
pr:=-r;pt:=-t;
fi;

y:=StructuralCopy(StabResls[q+1][pr]!.homotopy(s,[pt,g]));
Apply(y,x->[pr,x[1],x[2]]);
return y;
end;
###################################################################

###################################################################
HtpyWord:=function(q,s,w)
local h,z,x,y;
#This applies the "vertical homotopy" to the r-word w in "dimension" 
#[q,s]. The output is an r-word in "dimension" [q,s+1].

h:=[];
for y in w do
x:=[Action(q,y[1],y[3])*y[1],y[2],y[3]];
z:=HtpyGen(q,s,x[1],x[2],x[3]);
z:=List(z,a->[Action(q,a[1],a[3])*a[1],a[2],a[3]]);
Append(h,z);
od;

return AlgRed(h);
end;
###################################################################

DelGenRec:=[];
for k in [1..N+1] do
DelGenRec[k]:=[];
for q in [1..N+1] do
DelGenRec[k][q]:=[];
for s in [1..N+1] do
DelGenRec[k][q][s]:=[];
for r in [1..P!.dimension(q-1)] do
DelGenRec[k][q][s][r]:=[];
od;
od;
od;
od;
###################################################################
DelGen:=function(k,q,s,r,t)
local y,pr,pt,i;
#For k=0,1,2 ... this is the equivariant homomorphism
#Del_k:A_{q,s} ---> A_{q-k,s+k-1} applied to a free r-generator [r,t]
#in dimension [q,s].


if r>0 then pr:=r;pt:=t;
else
pr:=-r;pt:=-t;
fi;

##############
if IsBound(DelGenRec[k+1][q+1][s+1][pr][AbsInt(pt)]) then

if pt>0 then return DelGenRec[k+1][q+1][s+1][pr][pt];
else
return List(DelGenRec[k+1][q+1][s+1][pr][-pt], a->[a[1],-a[2],a[3]]);
fi;

fi;
##############

if k=0 then
if s=0 then return [];
else
y:=List(StabResls[q+1][pr]!.boundary(s,pt),x->[Action(q,r,x[2])*x[1],x[2]]);
if pt>0 then
DelGenRec[k+1][q+1][s+1][pr][pt]:= AlgRed(List(y,x->[pr,x[1],x[2]]));
return DelGenRec[k+1][q+1][s+1][pr][pt];
else DelGenRec[k+1][q+1][s+1][pr][-pt]:=AlgRed(List(y,x->[pr,-x[1],x[2]]));
return AlgRed(List(y,x->[pr,x[1],x[2]]));   
fi;
fi;
fi;

if k=1 then
  if s=0 then  
    if q=0 then return [];
    fi;
y:=BoundaryP(q,pr);
    if pt>0 then 
DelGenRec[k+1][q+1][s+1][pr][pt]:= AlgRed(List(y,x->[x[1],1,x[2]]));
return DelGenRec[k+1][q+1][s+1][pr][pt];
    else
DelGenRec[k+1][q+1][s+1][pr][-pt]:= AlgRed(List(y,x->[x[1],1,x[2]]));
return List(y,x->[x[1],-1,x[2]]);
    fi;

  else

  if pt>0 then
DelGenRec[k+1][q+1][s+1][pr][pt]:=
AlgRed(HtpyWord(q-1,s-1,DelWord(1,q,s-1,DelGen(0,q,s,pr,-pt)))) ;
return DelGenRec[k+1][q+1][s+1][pr][pt];
  else
DelGenRec[k+1][q+1][s+1][pr][-pt]:=
AlgRed(HtpyWord(q-1,s-1,DelWord(1,q,s-1,DelGen(0,q,s,pr,pt)))) ;

return 
List(DelGenRec[k+1][q+1][s+1][pr][-pt], a->[a[1],-a[2],a[3]]);
fi;

fi;
fi;

y:=[];
for i in [1..k] do
Append(y,
HtpyWord(q-k,s+k-2,DelWord(i,q-k+i,s+k-i-1,DelGen(k-i,q,s,pr,-pt)))
);
od;
y:=AlgRed(y);

if pt>0 then
DelGenRec[k+1][q+1][s+1][pr][pt]:=y;
else
DelGenRec[k+1][q+1][s+1][pr][-pt]:=List(y,a->[a[1],-a[2],a[3]]);
fi;

return y;
end;
###################################################################

###################################################################
DelWord:=function(k,q,s,w)
local y,x;
#For k=0,1,2 ... this is the equivariant homomorphism
#Del_k:A_{q,s} ---> A_{q-k,s+k-1} applied to an r-word [[r,t,g],...]
#in dimension [q,s].

y:=[];
for x in w do
Append(y,List(DelGen(k,q,s,x[1],x[2]),
a->[a[1],a[2],Mult(x[3],a[3])]));
od;

return y;  #Added Jan 2013. Speeds up the calculation in some(!!) examples.
return AlgRed(y);

end;
###################################################################

###################################################################
Boundary:=function(k,n)
local q,s,r,t,x,y,z,i;
y:=Pair2Quad(k,n); q:=y[1];s:=y[3];r:=y[2];t:=y[4];

y:=[];

for i in [0..k] do
#for i in [0..1] do
if q>=i then

z:=DelGen(i,q,s,r,t);

Append(y,
List(z,x->[Quad2Pair(q-i,x[1],s+i-1,x[2])[2],x[3]])  );
else break;
fi;
od;

return AlgebraicReduction(y);
end;
###################################################################

PseudoBoundary:=[];
for n in [1..N+1] do
PseudoBoundary[n]:=[];
od;
#######################################
FinalBoundary:=function(n,k)
local  pk;
pk:=AbsInt(k);
if  not IsBound(PseudoBoundary[n+1][pk]) then
PseudoBoundary[n+1][pk]:= Boundary(n,pk);
fi;
if k>0 then  return PseudoBoundary[n+1][k];
else  return NegateWord(PseudoBoundary[n+1][pk]); fi;
end;
#######################################



################spectral sequence requirements##################


FiltDimRecs:=[];
for k in [0..N] do
FiltDimRecs[k+1]:=[];
for i in [1..Dimension(k)] do
FiltDimRecs[k+1][i]:=Pair2Quad(k,i)[1];
od;
od;

FilteredLength:=Maximum(Flat(FiltDimRecs));

##################################################
FilteredDimension:=function(r,k);

return Length(Filtered(FiltDimRecs[k+1],x->x<=r));

end;
#################################################



########### BUI ANH TUAN - FEB 2014 #############



##################################################
InducedHtpyGen:=function(q,s,r,t,g)
local y,pr,pt,w,v;
#This constructs the "induced homotopy" h1 from the given homotopy of the non-free complex
# h1: A_qs ->A_{q+1}s
#This applies the "induced homotopy" to the free group generator [r,t,g]
#in "dimension" [q,s]. The output is an "r-word" in "dimension" [q+1,s].

if r>0 then pr:=r;pt:=t;
else
pr:=-r;pt:=-t;
fi;

	y:=StructuralCopy(P!.homotopy(q,[pr,g]));
	if pt>0 then 
		Apply(y,x->[x[1],1,x[2]]);

	else 

		Apply(y,x->[x[1],-1,x[2]]);
	fi;
	return y;


end;
##################################################
InducedHtpyWord:=function(q,s,w)
local h,z,x,y;
#This applies the "induced homotopy" to the r-word w in "dimension" 
#[q,s]. The output is an r-word in "dimension" [q+1,s].

h:=[];
for y in w do
	x:=[y[1],y[2],y[3]];
	z:=StructuralCopy(InducedHtpyGen(q,s,x[1],x[2],x[3]));
	z:=List(z,a->[a[1],a[2],a[3]]);
	Append(h,z);
od;

return AlgRed(h);
end;
############################################################
InducedHtpyList:=function(w)
local h,z,x,y,v,b;
#This applies the Horizontal Homotopy to a list of words
#For each word, this applies the "induced homotopy" to the r-word w in "dimension" 
#[q,s]. The output is an r-word in "dimension" [q+1,s].
h:=[];
for y in w do 

	z:=StructuralCopy(InducedHtpyGen(y[1],y[2],y[3],y[4],y[5]));
	z:=List(z,a->[y[1]+1,y[2],a[1],a[2],a[3]]);

	Append(h,z);
od;

return h;
end;


############# d+=d1+d2+..+dq of a list of words#############
DelListSum:=function(w)
#Sum of DelWord_k where k from 1 to q

local y,d,x,h,k;
h:=[];
for x in w do
	y:=[];
	for k in [1..x[1]] do
		d:=StructuralCopy(DelGen(k,x[1],x[2],x[3],x[4]));
		Apply(d,v->[x[1]-k,x[2]+k-1,v[1],v[2],Mult(x[5],v[3])]);		
		Append(y,d);
	od;
	Append(h,y);
od;

return h;
end;

############# Vertical Homotopy ##################
VertHtpy:=function(w)
# Applies to a list of [q,s,r,t,g]: could be in different A_qs
# return a list of elements of the form [q,s,r,t,g]

local h,x,y,v;
h:=[];;
for x in w do
	v:=[x[1],x[2],Action(x[1],x[3],x[5])*x[3],x[4],x[5]];
	y:=StructuralCopy(HtpyGen(v[1],v[2],v[3],v[4],v[5]));
	Apply(y,a->[x[1],x[2]+1,Action(x[1],a[1],a[3])*a[1],a[2],a[3]]);
	Append(h,y);
od;	
return h;
end;
##################################################
NegateListWord:=function(w)
Apply(w,x->[x[1],x[2],-x[3],x[4],x[5]]);
return w;
end;
##################################################
HomotopyGen:=function(arg)
local f,g,q,s,r,t,x,e,v,y,
      h0, h1, h0dh1, e3, h2, h;
q:=arg[1];
s:=arg[2];
r:=arg[3];
t:=arg[4];
g:=arg[5];

if arg=[] then return [];
else
	if s = 0 then 

		h1:=StructuralCopy(InducedHtpyList([[q,s,r,t,g]]));

		h0dh1:=StructuralCopy(VertHtpy(DelListSum(h1)));

		v:=StructuralCopy(DelListSum(h0dh1));

		e3:=[];         # e3=h(d+)h0(d+)d1
		for x in v do
			Append(e3,HomotopyGen(x[1],x[2],x[3],x[4],x[5]));
		od;
		e:=[];          # e=h1-h0(d+)h1+h(d+)h0(d+)h1
		Append(e,h1);
		Append(e,NegateListWord(h0dh1));
		Append(e,e3);
	elif s>0 then
	# s>0 then e=0
		e:=[];
	fi;
	y:=StructuralCopy([q,s,r,t,g]);

	h0:=VertHtpy([y]);

	v:=DelListSum(h0);
	h2:=[];         # h2=h(d+)h0
	for x in v do
		Append(h2,HomotopyGen(x[1],x[2],x[3],x[4],x[5]));
	od;
	h:=[];         # h=h0-d(d+)h0 + e
	Append(h,h0);
	Append(h,NegateListWord(h2));
	Append(h,e);
	return h;
fi;


end;
##################################################
Homotopy:=function(k,w)
local f,g,q,s,r,t,v,e,h;

### h([])=[] #####
if w=[] then return [];fi;
##################

f:=w[1];
g:=w[2];
v:=Pair2Quad(k,f);
q:=v[1];
r:=v[2];
s:=v[3];
t:=v[4];

##################
h:=HomotopyGen(q,s,r,t,g);
Apply(h,x->[Quad2Pair(x[1],x[3],x[2],x[4])[2],x[5]]);

return AlgebraicReduction(h);
end;
##################################################

SetInfoLevel(InfoWarning,1);

return Objectify(HapResolution,
                rec(
                inputresl:=P,
                verthtpy:=VertHtpy,
                htpy:=HtpyWord,
                delword:=DelWord,
                dimension:=Dimension,
                filteredDimension:=FilteredDimension,
                boundary:=FinalBoundary,
		inducedhomotopy:=InducedHtpyGen,
		stabrels:=StabResls,
                homotopy:=Homotopy,
                elts:=P!.elts,
                group:=P!.group,
                pseudoBoundary:=PseudoBoundary,
                properties:=
                   [["length",N],
                    ["filtration_length",FilteredLength],
                    ["initial_inclusion",true],
                    ["reduced",true],
                    ["type","resolution"],
                    ["characteristic",prime]  ]));


end);
################################################################
################################################################