Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X3 [33X[0;0YQuick Start[133X[101X234[1X3.1 [33X[0;0YLocalization of ℤ[133X[101X56[33X[0;0YThe following example is taken from Section 2 of [BR06].[133X7[33X[0;0YThe computation takes place over the local ring [22XR=ℤ_⟨ 2⟩[122X (i.e. ℤ localized8at the maximal ideal generated by [22X2[122X).[133X910[33X[0;0YHere we compute the (infinite) long exact homology sequence of the covariant11functor [22XHom(Hom(-,R/2^7R),R/2^4R)[122X (and its left derived functors) applied to12the short exact sequence[133X13[33X[0;0Y[22X0 -> M_=R/2^2R --alpha_1--> M=R/2^5R --alpha_2--> _M=R/2^3R -> 0[122X.[133X1415[33X[0;0YWe want to lead your attention to the commands [9XLocalizeAt[109X and16[9XHomalgLocalMatrix[109X. The first one creates a localized ring from a global one17and generators of a maximal ideal and the second one creates a local matrix18from a global matrix. The other commands used here are well known from19[5Xhomalg[105X.[133X2021[4X[32X Example [32X[104X22[4X[28X [128X[104X23[4X[25Xgap>[125X [27XLoadPackage( "LocalizeRingForHomalg" );;[127X[104X24[4X[25Xgap>[125X [27XZZ := HomalgRingOfIntegers( );[127X[104X25[4X[28XZ[128X[104X26[4X[25Xgap>[125X [27XR := LocalizeAt( ZZ , [ 2 ] );[127X[104X27[4X[28XZ_< 2 >[128X[104X28[4X[25Xgap>[125X [27XDisplay( R );[127X[104X29[4X[28X<A local ring>[128X[104X30[4X[25Xgap>[125X [27XLoadPackage( "Modules" );[127X[104X31[4X[28Xtrue[128X[104X32[4X[25Xgap>[125X [27XM := LeftPresentation( HomalgMatrix( [ 2^5 ], R ) );[127X[104X33[4X[28X<A cyclic left module presented by 1 relation for a cyclic generator>[128X[104X34[4X[25Xgap>[125X [27X_M := LeftPresentation( HomalgMatrix( [ 2^3 ], R ) );[127X[104X35[4X[28X<A cyclic left module presented by 1 relation for a cyclic generator>[128X[104X36[4X[25Xgap>[125X [27Xalpha2 := HomalgMap( HomalgMatrix( [ 1 ], R ), M, _M );[127X[104X37[4X[28X<A "homomorphism" of left modules>[128X[104X38[4X[25Xgap>[125X [27XM_ := Kernel( alpha2 );[127X[104X39[4X[28X<A cyclic left module presented by yet unknown relations for a cyclic generato\[128X[104X40[4X[28Xr>[128X[104X41[4X[25Xgap>[125X [27Xalpha1 := KernelEmb( alpha2 );[127X[104X42[4X[28X<A monomorphism of left modules>[128X[104X43[4X[25Xgap>[125X [27XDisplay( M_ );[127X[104X44[4X[28XZ_< 2 >/< -4/1 >[128X[104X45[4X[25Xgap>[125X [27XDisplay( alpha1 );[127X[104X46[4X[28X[ [ 24 ] ][128X[104X47[4X[28X/ 1[128X[104X48[4X[28X[128X[104X49[4X[28Xthe map is currently represented by the above 1 x 1 matrix[128X[104X50[4X[25Xgap>[125X [27XByASmallerPresentation( M_ );[127X[104X51[4X[28X<A cyclic left module presented by 1 relation for a cyclic generator>[128X[104X52[4X[25Xgap>[125X [27XDisplay( M_ );[127X[104X53[4X[28XZ_< 2 >/< 4/1 >[128X[104X54[4X[32X[104X55565758