GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
#SIXFORMAT GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "ModulePresentationsForCAP",
entries :=
[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ],
[ "Table of Contents", ".-1", [ 0, 0, 1 ], 43, 2, "table of contents",
"X8537FEB07AF2BEC8" ],
[ "\033[1X\033[33X\033[0;-2YModule Presentations\033[133X\033[101X", "1",
[ 1, 0, 0 ], 1, 3, "module presentations", "X7B8C95CA7DA733B4" ],
[ "\033[1X\033[33X\033[0;-2YFunctors\033[133X\033[101X", "1.1",
[ 1, 1, 0 ], 4, 3, "functors", "X78D1062D78BE08C1" ],
[ "\033[1X\033[33X\033[0;-2YGAP Categories\033[133X\033[101X", "1.2",
[ 1, 2, 0 ], 91, 4, "gap categories", "X7D03633A7D98026B" ],
[ "\033[1X\033[33X\033[0;-2YConstructors\033[133X\033[101X", "1.3",
[ 1, 3, 0 ], 138, 5, "constructors", "X86EC0F0A78ECBC10" ],
[ "\033[1X\033[33X\033[0;-2YAttributes\033[133X\033[101X", "1.4",
[ 1, 4, 0 ], 260, 7, "attributes", "X7C701DBF7BAE649A" ],
[ "\033[1X\033[33X\033[0;-2YNon-Categorical Operations\033[133X\033[101X",
"1.5", [ 1, 5, 0 ], 279, 8, "non-categorical operations",
"X81CDBC6E7DBB4EA0" ],
[ "\033[1X\033[33X\033[0;-2YNatural Transformations\033[133X\033[101X",
"1.6", [ 1, 6, 0 ], 301, 8, "natural transformations",
"X836749D8814FEEE6" ],
[ "\033[1X\033[33X\033[0;-2YExamples and Tests\033[133X\033[101X", "2",
[ 2, 0, 0 ], 1, 10, "examples and tests", "X7967FE8E7BBDF485" ],
[ "\033[1X\033[33X\033[0;-2YAnnihilator\033[133X\033[101X", "2.1",
[ 2, 1, 0 ], 4, 10, "annihilator", "X7FFB58F67850769C" ],
[ "\033[1X\033[33X\033[0;-2YIntersection of Submodules\033[133X\033[101X",
"2.2", [ 2, 2, 0 ], 27, 10, "intersection of submodules",
"X86E8A9537A87B4EC" ],
[ "\033[1X\033[33X\033[0;-2YKoszul Complex\033[133X\033[101X", "2.3",
[ 2, 3, 0 ], 69, 11, "koszul complex", "X8296A25779A52244" ],
[ "\033[1X\033[33X\033[0;-2YClosed Monoidal Structure\033[133X\033[101X",
"2.4", [ 2, 4, 0 ], 155, 13, "closed monoidal structure",
"X828DF9B1782D1AF6" ],
[ "Index", "ind", [ "Ind", 0, 0 ], 1, 14, "index", "X83A0356F839C696F" ],
[ "\033[2XFunctorStandardModuleLeft\033[102X (for IsHomalgRing)", "1.1-1",
[ 1, 1, 1 ], 7, 3, "functorstandardmoduleleft for ishomalgring",
"X7F7AC44478418555" ],
[ "\033[2XFunctorStandardModuleRight\033[102X (for IsHomalgRing)", "1.1-2",
[ 1, 1, 2 ], 15, 3, "functorstandardmoduleright for ishomalgring",
"X87AEC1177DB7F50D" ],
[ "\033[2XFunctorGetRidOfZeroGeneratorsLeft\033[102X (for IsHomalgRing)",
"1.1-3", [ 1, 1, 3 ], 23, 3,
"functorgetridofzerogeneratorsleft for ishomalgring",
"X8427C0B17A445822" ],
[ "\033[2XFunctorGetRidOfZeroGeneratorsRight\033[102X (for IsHomalgRing)",
"1.1-4", [ 1, 1, 4 ], 31, 3,
"functorgetridofzerogeneratorsright for ishomalgring",
"X7F1E779D8003146B" ],
[ "\033[2XFunctorLessGeneratorsLeft\033[102X (for IsHomalgRing)", "1.1-5",
[ 1, 1, 5 ], 39, 3, "functorlessgeneratorsleft for ishomalgring",
"X819A04517B3601C0" ],
[ "\033[2XFunctorLessGeneratorsRight\033[102X (for IsHomalgRing)", "1.1-6",
[ 1, 1, 6 ], 47, 4, "functorlessgeneratorsright for ishomalgring",
"X7F80AE9B7EC07198" ],
[ "\033[2XFunctorDualLeft\033[102X (for IsHomalgRing)", "1.1-7",
[ 1, 1, 7 ], 55, 4, "functordualleft for ishomalgring",
"X877B7ACE87E1BEC2" ],
[ "\033[2XFunctorDualRight\033[102X (for IsHomalgRing)", "1.1-8",
[ 1, 1, 8 ], 64, 4, "functordualright for ishomalgring",
"X7D56611D7BF91B54" ],
[ "\033[2XFunctorDoubleDualLeft\033[102X (for IsHomalgRing)", "1.1-9",
[ 1, 1, 9 ], 73, 4, "functordoubledualleft for ishomalgring",
"X7C9901F8851FD24A" ],
[ "\033[2XFunctorDoubleDualRight\033[102X (for IsHomalgRing)", "1.1-10",
[ 1, 1, 10 ], 82, 4, "functordoubledualright for ishomalgring",
"X8016306881444DCA" ],
[
"\033[2XIsLeftOrRightPresentationMorphism\033[102X (for IsCapCategoryMorphi\
sm)", "1.2-1", [ 1, 2, 1 ], 94, 4,
"isleftorrightpresentationmorphism for iscapcategorymorphism",
"X79DBCB747E91FB70" ],
[
"\033[2XIsLeftPresentationMorphism\033[102X (for IsLeftOrRightPresentationM\
orphism)", "1.2-2", [ 1, 2, 2 ], 102, 5,
"isleftpresentationmorphism for isleftorrightpresentationmorphism",
"X85E26CFF86855B6B" ],
[
"\033[2XIsRightPresentationMorphism\033[102X (for IsLeftOrRightPresentation\
Morphism)", "1.2-3", [ 1, 2, 3 ], 109, 5,
"isrightpresentationmorphism for isleftorrightpresentationmorphism",
"X873EFE29849F6998" ],
[ "\033[2XIsLeftOrRightPresentation\033[102X (for IsCapCategoryObject)",
"1.2-4", [ 1, 2, 4 ], 116, 5,
"isleftorrightpresentation for iscapcategoryobject",
"X7BB95B7A7EB96854" ],
[ "\033[2XIsLeftPresentation\033[102X (for IsLeftOrRightPresentation)",
"1.2-5", [ 1, 2, 5 ], 124, 5,
"isleftpresentation for isleftorrightpresentation", "X7C71B8D17C60C6B5"
],
[ "\033[2XIsRightPresentation\033[102X (for IsLeftOrRightPresentation)",
"1.2-6", [ 1, 2, 6 ], 131, 5,
"isrightpresentation for isleftorrightpresentation",
"X7DBF478D7EE3FE63" ],
[
"\033[2XPresentationMorphism\033[102X (for IsLeftOrRightPresentation, IsHom\
algMatrix, IsLeftOrRightPresentation)", "1.3-1", [ 1, 3, 1 ], 141, 5,
"presentationmorphism for isleftorrightpresentation ishomalgmatrix islef\
torrightpresentation", "X87010AB6819736C8" ],
[
"\033[2XAsMorphismBetweenFreeLeftPresentations\033[102X (for IsHomalgMatrix\
)", "1.3-2", [ 1, 3, 2 ], 152, 5,
"asmorphismbetweenfreeleftpresentations for ishomalgmatrix",
"X7C9B36AD7B9CCC8D" ],
[
"\033[2XAsMorphismBetweenFreeRightPresentations\033[102X (for IsHomalgMatri\
x)", "1.3-3", [ 1, 3, 3 ], 162, 6,
"asmorphismbetweenfreerightpresentations for ishomalgmatrix",
"X7F1AD55C852BE617" ],
[ "\033[2XAsLeftPresentation\033[102X (for IsHomalgMatrix)", "1.3-4",
[ 1, 3, 4 ], 172, 6, "asleftpresentation for ishomalgmatrix",
"X7BE01A1381744627" ],
[ "\033[2XAsRightPresentation\033[102X (for IsHomalgMatrix)", "1.3-5",
[ 1, 3, 5 ], 181, 6, "asrightpresentation for ishomalgmatrix",
"X780443B07F43AA1C" ],
[ "\033[2XAsLeftOrRightPresentation\033[102X", "1.3-6", [ 1, 3, 6 ], 190,
6, "asleftorrightpresentation", "X815FF28D8474BEEB" ],
[ "\033[2XFreeLeftPresentation\033[102X (for IsInt, IsHomalgRing)",
"1.3-7", [ 1, 3, 7 ], 200, 6,
"freeleftpresentation for isint ishomalgring", "X7F345A2A87ABE417" ],
[ "\033[2XFreeRightPresentation\033[102X (for IsInt, IsHomalgRing)",
"1.3-8", [ 1, 3, 8 ], 209, 6,
"freerightpresentation for isint ishomalgring", "X85536E4E85D15252" ],
[ "\033[2XUnderlyingMatrix\033[102X (for IsLeftOrRightPresentation)",
"1.3-9", [ 1, 3, 9 ], 218, 7,
"underlyingmatrix for isleftorrightpresentation", "X86F926B27C579E66" ],
[ "\033[2XUnderlyingHomalgRing\033[102X (for IsLeftOrRightPresentation)",
"1.3-10", [ 1, 3, 10 ], 226, 7,
"underlyinghomalgring for isleftorrightpresentation",
"X7D8E30E486A08439" ],
[ "\033[2XAnnihilator\033[102X (for IsLeftOrRightPresentation)", "1.3-11",
[ 1, 3, 11 ], 234, 7, "annihilator for isleftorrightpresentation",
"X7B5539AB8541F618" ],
[ "\033[2XLeftPresentations\033[102X (for IsHomalgRing)", "1.3-12",
[ 1, 3, 12 ], 244, 7, "leftpresentations for ishomalgring",
"X87946F997AD1005A" ],
[ "\033[2XRightPresentations\033[102X (for IsHomalgRing)", "1.3-13",
[ 1, 3, 13 ], 252, 7, "rightpresentations for ishomalgring",
"X7BDF988F7FFEAB8C" ],
[
"\033[2XUnderlyingHomalgRing\033[102X (for IsLeftOrRightPresentationMorphis\
m)", "1.4-1", [ 1, 4, 1 ], 263, 7,
"underlyinghomalgring for isleftorrightpresentationmorphism",
"X8157F3E8847B15E1" ],
[ "\033[2XUnderlyingMatrix\033[102X (for IsLeftOrRightPresentationMorphism)"
, "1.4-2", [ 1, 4, 2 ], 271, 7,
"underlyingmatrix for isleftorrightpresentationmorphism",
"X83CA6F06832162B7" ],
[
"\033[2XStandardGeneratorMorphism\033[102X (for IsLeftOrRightPresentation, \
IsInt)", "1.5-1", [ 1, 5, 1 ], 282, 8,
"standardgeneratormorphism for isleftorrightpresentation isint",
"X8508310C7E908093" ],
[ "\033[2XCoverByFreeModule\033[102X (for IsLeftOrRightPresentation)",
"1.5-2", [ 1, 5, 2 ], 292, 8,
"coverbyfreemodule for isleftorrightpresentation", "X7EF1493A7D341F5E" ]
,
[
"\033[2XNaturalIsomorphismFromIdentityToStandardModuleLeft\033[102X (for Is\
HomalgRing)", "1.6-1", [ 1, 6, 1 ], 304, 8,
"naturalisomorphismfromidentitytostandardmoduleleft for ishomalgring",
"X85D3DB1F856D05EF" ],
[
"\033[2XNaturalIsomorphismFromIdentityToStandardModuleRight\033[102X (for I\
sHomalgRing)", "1.6-2", [ 1, 6, 2 ], 313, 8,
"naturalisomorphismfromidentitytostandardmoduleright for ishomalgring",
"X7B64AF718133C945" ],
[
"\033[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft\033[102X\
(for IsHomalgRing)", "1.6-3", [ 1, 6, 3 ], 322, 8,
"naturalisomorphismfromidentitytogetridofzerogeneratorsleft for ishomalg\
ring", "X7CA2B84E7F933125" ],
[
"\033[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight\033[102\
X (for IsHomalgRing)", "1.6-4", [ 1, 6, 4 ], 332, 8,
"naturalisomorphismfromidentitytogetridofzerogeneratorsright for ishomal\
gring", "X7A2DCBD6844093E3" ],
[
"\033[2XNaturalIsomorphismFromIdentityToLessGeneratorsLeft\033[102X (for Is\
HomalgRing)", "1.6-5", [ 1, 6, 5 ], 342, 9,
"naturalisomorphismfromidentitytolessgeneratorsleft for ishomalgring",
"X7B331B0A86010185" ],
[
"\033[2XNaturalIsomorphismFromIdentityToLessGeneratorsRight\033[102X (for I\
sHomalgRing)", "1.6-6", [ 1, 6, 6 ], 351, 9,
"naturalisomorphismfromidentitytolessgeneratorsright for ishomalgring",
"X834AC0FD825FCD2F" ],
[
"\033[2XNaturalTransformationFromIdentityToDoubleDualLeft\033[102X (for IsH\
omalgRing)", "1.6-7", [ 1, 6, 7 ], 360, 9,
"naturaltransformationfromidentitytodoubledualleft for ishomalgring",
"X7E37CB058378CBEE" ],
[
"\033[2XNaturalTransformationFromIdentityToDoubleDualRight\033[102X (for Is\
HomalgRing)", "1.6-8", [ 1, 6, 8 ], 369, 9,
"naturaltransformationfromidentitytodoubledualright for ishomalgring",
"X7F92B4448041A68C" ] ]
);