Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346#SIXFORMAT GapDocGAP HELPBOOKINFOSIXTMP := rec( encoding := "UTF-8", bookname := "ModulePresentationsForCAP", entries := [ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], [ "Table of Contents", ".-1", [ 0, 0, 1 ], 43, 2, "table of contents", "X8537FEB07AF2BEC8" ], [ "\033[1X\033[33X\033[0;-2YModule Presentations\033[133X\033[101X", "1", [ 1, 0, 0 ], 1, 3, "module presentations", "X7B8C95CA7DA733B4" ], [ "\033[1X\033[33X\033[0;-2YFunctors\033[133X\033[101X", "1.1", [ 1, 1, 0 ], 4, 3, "functors", "X78D1062D78BE08C1" ], [ "\033[1X\033[33X\033[0;-2YGAP Categories\033[133X\033[101X", "1.2", [ 1, 2, 0 ], 91, 4, "gap categories", "X7D03633A7D98026B" ], [ "\033[1X\033[33X\033[0;-2YConstructors\033[133X\033[101X", "1.3", [ 1, 3, 0 ], 138, 5, "constructors", "X86EC0F0A78ECBC10" ], [ "\033[1X\033[33X\033[0;-2YAttributes\033[133X\033[101X", "1.4", [ 1, 4, 0 ], 260, 7, "attributes", "X7C701DBF7BAE649A" ], [ "\033[1X\033[33X\033[0;-2YNon-Categorical Operations\033[133X\033[101X", "1.5", [ 1, 5, 0 ], 279, 8, "non-categorical operations", "X81CDBC6E7DBB4EA0" ], [ "\033[1X\033[33X\033[0;-2YNatural Transformations\033[133X\033[101X", "1.6", [ 1, 6, 0 ], 301, 8, "natural transformations", "X836749D8814FEEE6" ], [ "\033[1X\033[33X\033[0;-2YExamples and Tests\033[133X\033[101X", "2", [ 2, 0, 0 ], 1, 10, "examples and tests", "X7967FE8E7BBDF485" ], [ "\033[1X\033[33X\033[0;-2YAnnihilator\033[133X\033[101X", "2.1", [ 2, 1, 0 ], 4, 10, "annihilator", "X7FFB58F67850769C" ], [ "\033[1X\033[33X\033[0;-2YIntersection of Submodules\033[133X\033[101X", "2.2", [ 2, 2, 0 ], 27, 10, "intersection of submodules", "X86E8A9537A87B4EC" ], [ "\033[1X\033[33X\033[0;-2YKoszul Complex\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 69, 11, "koszul complex", "X8296A25779A52244" ], [ "\033[1X\033[33X\033[0;-2YClosed Monoidal Structure\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 155, 13, "closed monoidal structure", "X828DF9B1782D1AF6" ], [ "Index", "ind", [ "Ind", 0, 0 ], 1, 14, "index", "X83A0356F839C696F" ], [ "\033[2XFunctorStandardModuleLeft\033[102X (for IsHomalgRing)", "1.1-1", [ 1, 1, 1 ], 7, 3, "functorstandardmoduleleft for ishomalgring", "X7F7AC44478418555" ], [ "\033[2XFunctorStandardModuleRight\033[102X (for IsHomalgRing)", "1.1-2", [ 1, 1, 2 ], 15, 3, "functorstandardmoduleright for ishomalgring", "X87AEC1177DB7F50D" ], [ "\033[2XFunctorGetRidOfZeroGeneratorsLeft\033[102X (for IsHomalgRing)", "1.1-3", [ 1, 1, 3 ], 23, 3, "functorgetridofzerogeneratorsleft for ishomalgring", "X8427C0B17A445822" ], [ "\033[2XFunctorGetRidOfZeroGeneratorsRight\033[102X (for IsHomalgRing)", "1.1-4", [ 1, 1, 4 ], 31, 3, "functorgetridofzerogeneratorsright for ishomalgring", "X7F1E779D8003146B" ], [ "\033[2XFunctorLessGeneratorsLeft\033[102X (for IsHomalgRing)", "1.1-5", [ 1, 1, 5 ], 39, 3, "functorlessgeneratorsleft for ishomalgring", "X819A04517B3601C0" ], [ "\033[2XFunctorLessGeneratorsRight\033[102X (for IsHomalgRing)", "1.1-6", [ 1, 1, 6 ], 47, 4, "functorlessgeneratorsright for ishomalgring", "X7F80AE9B7EC07198" ], [ "\033[2XFunctorDualLeft\033[102X (for IsHomalgRing)", "1.1-7", [ 1, 1, 7 ], 55, 4, "functordualleft for ishomalgring", "X877B7ACE87E1BEC2" ], [ "\033[2XFunctorDualRight\033[102X (for IsHomalgRing)", "1.1-8", [ 1, 1, 8 ], 64, 4, "functordualright for ishomalgring", "X7D56611D7BF91B54" ], [ "\033[2XFunctorDoubleDualLeft\033[102X (for IsHomalgRing)", "1.1-9", [ 1, 1, 9 ], 73, 4, "functordoubledualleft for ishomalgring", "X7C9901F8851FD24A" ], [ "\033[2XFunctorDoubleDualRight\033[102X (for IsHomalgRing)", "1.1-10", [ 1, 1, 10 ], 82, 4, "functordoubledualright for ishomalgring", "X8016306881444DCA" ], [ "\033[2XIsLeftOrRightPresentationMorphism\033[102X (for IsCapCategoryMorphi\ sm)", "1.2-1", [ 1, 2, 1 ], 94, 4, "isleftorrightpresentationmorphism for iscapcategorymorphism", "X79DBCB747E91FB70" ], [ "\033[2XIsLeftPresentationMorphism\033[102X (for IsLeftOrRightPresentationM\ orphism)", "1.2-2", [ 1, 2, 2 ], 102, 5, "isleftpresentationmorphism for isleftorrightpresentationmorphism", "X85E26CFF86855B6B" ], [ "\033[2XIsRightPresentationMorphism\033[102X (for IsLeftOrRightPresentation\ Morphism)", "1.2-3", [ 1, 2, 3 ], 109, 5, "isrightpresentationmorphism for isleftorrightpresentationmorphism", "X873EFE29849F6998" ], [ "\033[2XIsLeftOrRightPresentation\033[102X (for IsCapCategoryObject)", "1.2-4", [ 1, 2, 4 ], 116, 5, "isleftorrightpresentation for iscapcategoryobject", "X7BB95B7A7EB96854" ], [ "\033[2XIsLeftPresentation\033[102X (for IsLeftOrRightPresentation)", "1.2-5", [ 1, 2, 5 ], 124, 5, "isleftpresentation for isleftorrightpresentation", "X7C71B8D17C60C6B5" ], [ "\033[2XIsRightPresentation\033[102X (for IsLeftOrRightPresentation)", "1.2-6", [ 1, 2, 6 ], 131, 5, "isrightpresentation for isleftorrightpresentation", "X7DBF478D7EE3FE63" ], [ "\033[2XPresentationMorphism\033[102X (for IsLeftOrRightPresentation, IsHom\ algMatrix, IsLeftOrRightPresentation)", "1.3-1", [ 1, 3, 1 ], 141, 5, "presentationmorphism for isleftorrightpresentation ishomalgmatrix islef\ torrightpresentation", "X87010AB6819736C8" ], [ "\033[2XAsMorphismBetweenFreeLeftPresentations\033[102X (for IsHomalgMatrix\ )", "1.3-2", [ 1, 3, 2 ], 152, 5, "asmorphismbetweenfreeleftpresentations for ishomalgmatrix", "X7C9B36AD7B9CCC8D" ], [ "\033[2XAsMorphismBetweenFreeRightPresentations\033[102X (for IsHomalgMatri\ x)", "1.3-3", [ 1, 3, 3 ], 162, 6, "asmorphismbetweenfreerightpresentations for ishomalgmatrix", "X7F1AD55C852BE617" ], [ "\033[2XAsLeftPresentation\033[102X (for IsHomalgMatrix)", "1.3-4", [ 1, 3, 4 ], 172, 6, "asleftpresentation for ishomalgmatrix", "X7BE01A1381744627" ], [ "\033[2XAsRightPresentation\033[102X (for IsHomalgMatrix)", "1.3-5", [ 1, 3, 5 ], 181, 6, "asrightpresentation for ishomalgmatrix", "X780443B07F43AA1C" ], [ "\033[2XAsLeftOrRightPresentation\033[102X", "1.3-6", [ 1, 3, 6 ], 190, 6, "asleftorrightpresentation", "X815FF28D8474BEEB" ], [ "\033[2XFreeLeftPresentation\033[102X (for IsInt, IsHomalgRing)", "1.3-7", [ 1, 3, 7 ], 200, 6, "freeleftpresentation for isint ishomalgring", "X7F345A2A87ABE417" ], [ "\033[2XFreeRightPresentation\033[102X (for IsInt, IsHomalgRing)", "1.3-8", [ 1, 3, 8 ], 209, 6, "freerightpresentation for isint ishomalgring", "X85536E4E85D15252" ], [ "\033[2XUnderlyingMatrix\033[102X (for IsLeftOrRightPresentation)", "1.3-9", [ 1, 3, 9 ], 218, 7, "underlyingmatrix for isleftorrightpresentation", "X86F926B27C579E66" ], [ "\033[2XUnderlyingHomalgRing\033[102X (for IsLeftOrRightPresentation)", "1.3-10", [ 1, 3, 10 ], 226, 7, "underlyinghomalgring for isleftorrightpresentation", "X7D8E30E486A08439" ], [ "\033[2XAnnihilator\033[102X (for IsLeftOrRightPresentation)", "1.3-11", [ 1, 3, 11 ], 234, 7, "annihilator for isleftorrightpresentation", "X7B5539AB8541F618" ], [ "\033[2XLeftPresentations\033[102X (for IsHomalgRing)", "1.3-12", [ 1, 3, 12 ], 244, 7, "leftpresentations for ishomalgring", "X87946F997AD1005A" ], [ "\033[2XRightPresentations\033[102X (for IsHomalgRing)", "1.3-13", [ 1, 3, 13 ], 252, 7, "rightpresentations for ishomalgring", "X7BDF988F7FFEAB8C" ], [ "\033[2XUnderlyingHomalgRing\033[102X (for IsLeftOrRightPresentationMorphis\ m)", "1.4-1", [ 1, 4, 1 ], 263, 7, "underlyinghomalgring for isleftorrightpresentationmorphism", "X8157F3E8847B15E1" ], [ "\033[2XUnderlyingMatrix\033[102X (for IsLeftOrRightPresentationMorphism)" , "1.4-2", [ 1, 4, 2 ], 271, 7, "underlyingmatrix for isleftorrightpresentationmorphism", "X83CA6F06832162B7" ], [ "\033[2XStandardGeneratorMorphism\033[102X (for IsLeftOrRightPresentation, \ IsInt)", "1.5-1", [ 1, 5, 1 ], 282, 8, "standardgeneratormorphism for isleftorrightpresentation isint", "X8508310C7E908093" ], [ "\033[2XCoverByFreeModule\033[102X (for IsLeftOrRightPresentation)", "1.5-2", [ 1, 5, 2 ], 292, 8, "coverbyfreemodule for isleftorrightpresentation", "X7EF1493A7D341F5E" ] , [ "\033[2XNaturalIsomorphismFromIdentityToStandardModuleLeft\033[102X (for Is\ HomalgRing)", "1.6-1", [ 1, 6, 1 ], 304, 8, "naturalisomorphismfromidentitytostandardmoduleleft for ishomalgring", "X85D3DB1F856D05EF" ], [ "\033[2XNaturalIsomorphismFromIdentityToStandardModuleRight\033[102X (for I\ sHomalgRing)", "1.6-2", [ 1, 6, 2 ], 313, 8, "naturalisomorphismfromidentitytostandardmoduleright for ishomalgring", "X7B64AF718133C945" ], [ "\033[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsLeft\033[102X\ (for IsHomalgRing)", "1.6-3", [ 1, 6, 3 ], 322, 8, "naturalisomorphismfromidentitytogetridofzerogeneratorsleft for ishomalg\ ring", "X7CA2B84E7F933125" ], [ "\033[2XNaturalIsomorphismFromIdentityToGetRidOfZeroGeneratorsRight\033[102\ X (for IsHomalgRing)", "1.6-4", [ 1, 6, 4 ], 332, 8, "naturalisomorphismfromidentitytogetridofzerogeneratorsright for ishomal\ gring", "X7A2DCBD6844093E3" ], [ "\033[2XNaturalIsomorphismFromIdentityToLessGeneratorsLeft\033[102X (for Is\ HomalgRing)", "1.6-5", [ 1, 6, 5 ], 342, 9, "naturalisomorphismfromidentitytolessgeneratorsleft for ishomalgring", "X7B331B0A86010185" ], [ "\033[2XNaturalIsomorphismFromIdentityToLessGeneratorsRight\033[102X (for I\ sHomalgRing)", "1.6-6", [ 1, 6, 6 ], 351, 9, "naturalisomorphismfromidentitytolessgeneratorsright for ishomalgring", "X834AC0FD825FCD2F" ], [ "\033[2XNaturalTransformationFromIdentityToDoubleDualLeft\033[102X (for IsH\ omalgRing)", "1.6-7", [ 1, 6, 7 ], 360, 9, "naturaltransformationfromidentitytodoubledualleft for ishomalgring", "X7E37CB058378CBEE" ], [ "\033[2XNaturalTransformationFromIdentityToDoubleDualRight\033[102X (for Is\ HomalgRing)", "1.6-8", [ 1, 6, 8 ], 369, 9, "naturaltransformationfromidentitytodoubledualright for ishomalgring", "X7F92B4448041A68C" ] ] );