CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
4 SCO methods and functions
3
4
5
4.1 Methods and functions for orbifold triangulations
6
7
4.1-1 OrbifoldTriangulation
8
9
OrbifoldTriangulation( M[, I, mu_data, info] )  function
10
Returns: OrbifoldTriangulation
11
12
The constructor for OrbifoldTriangulations. Needs the list M of maximal
13
simplices, the Isotropy at certain vertices as a record I, and the list
14
mu_data that encodes the function mu. If only one argument is given, I and
15
mu_data are supposed to be empty. In case of two arguments, mu_data is
16
supposed to be empty. If the last argument info is given as a string, it is
17
stored in the info component of the orbifold triangulation and does not
18
count towards the total number of arguments.
19
20
 Example 
21
gap> M := [ [1,2,3], [1,2,4], [1,3,4], [2,3,4] ];;
22
gap> S2 := OrbifoldTriangulation( M, "S^2" );
23
<OrbifoldTriangulation "S^2" of dimension 2. 4 simplices on 4 vertices without\
24
 Isotropy>
25
gap> I := rec( 1 := Group( (1,2) ) );;
26
gap> mu_data := [
27
> [ [2], [1,2], [1,2,3], [1,2,4], x->x*(1,2) ],
28
> [ [2], [1,2], [1,2,4], [1,2,3], x->x*(1,2) ]
29
> ];;
30
gap> Teardrop := OrbifoldTriangulation( M, I, mu_data, "Teardrop" );
31
<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\
32
th Isotropy on 1 vertex and nontrivial mu-maps>
33

34
35
4.1-2 Vertices
36
37
Vertices( ot )  method
38
Returns: List V
39
40
This returns the list of vertices V of the orbifold triangulation ot. Should
41
be preferred to the equivalent ot!.vertices.
42
43
4.1-3 Simplices
44
45
Simplices( ot )  method
46
Returns: List M
47
48
This returns the list of maximal simplices M of the orbifold triangulation
49
ot. Should be preferred to the equivalent ot!.max_simplices.
50
51
4.1-4 Isotropy
52
53
Isotropy( ot )  method
54
Returns: Record I
55
56
This returns the isotropy record I of the orbifold triangulation ot. Should
57
be preferred to the equivalent ot!.isotropy.
58
59
4.1-5 Mu
60
61
Mu( ot )  method
62
Returns: Function mu
63
64
This returns the function mu of the orbifold triangulation ot. Should be
65
preferred to the equivalent ot!.mu.
66
67
4.1-6 MuData
68
69
MuData( ot )  method
70
Returns: List mu_data
71
72
This returns the list mu_data that encodes the function mu of the orbifold
73
triangulation ot. Should be preferred to the equivalent ot!.mu_data.
74
75
4.1-7 InfoString
76
77
InfoString( ot )  method
78
Returns: String info
79
80
This return the string info of the orbifold triangulation ot. Should be
81
preferred to the equivalent ot!.info.
82
83
84
4.2 Methods and functions for simplicial sets
85
86
4.2-1 SimplicialSet
87
88
SimplicialSet( ot )  method
89
Returns: SimplicialSet
90
91
The constructor for simplicial sets based on an orbifold triangulation ot.
92
This just sets up the object without any computations. These can be
93
triggered later, either explicitly or by SimplicialSet (4.2-2).
94
95
 Example 
96
gap> Teardrop;
97
<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\
98
th Isotropy on 1 vertex and nontrivial mu-maps>
99
gap> S := SimplicialSet( Teardrop );
100
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
101
imension 0 with Length vector [ 4 ]>
102

103
104
4.2-2 SimplicialSet
105
106
SimplicialSet( S, i )  method
107
Returns: List S_i
108
109
This returns the components of dimension i of the simplicial set S. Should
110
be used to access existing data instead of using S!.simplicial_set[ i + 1 ],
111
as it has the additional side effect of computing S up to dimension i, thus
112
always returning the desired result.
113
114
 Example 
115
gap> S := SimplicialSet( Teardrop );
116
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
117
imension 0 with Length vector [ 4 ]>
118
gap> S!.simplicial_set[1];
119
[ [ [ 1, 2, 3 ] ], [ [ 1, 2, 4 ] ], [ [ 1, 3, 4 ] ], [ [ 2, 3, 4 ] ] ]
120
gap> S!.simplicial_set[2];;
121
Error, List Element: <list>[2] must have an assigned value
122
gap> SimplicialSet( S, 0 );
123
[ [ [ 1, 2, 3 ] ], [ [ 1, 2, 4 ] ], [ [ 1, 3, 4 ] ], [ [ 2, 3, 4 ] ] ]
124
gap> SimplicialSet( S, 1 );;
125
gap> S;
126
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
127
imension 1 with Length vector [ 4, 12 ]>
128

129
130
4.2-3 ComputeNextDimension
131
132
ComputeNextDimension( S )  method
133
Returns: S
134
135
This computes the component of the next dimension of the simplicial set S. S
136
is extended as a side effect.
137
138
 Example 
139
gap> S;
140
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
141
imension 1 with Length vector [ 4, 12 ]>
142
gap> ComputeNextDimension( S );
143
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
144
imension 2 with Length vector [ 4, 12, 22 ]>
145

146
147
4.2-4 Extend
148
149
Extend( S, i )  method
150
Returns: S
151
152
This computes the components of the simplicial set S up to dimension i. S is
153
extended as a side effect. This method is equivalent to calling
154
ComputeNextDimension (4.2-3) the appropriate number of times.
155
156
 Example 
157
gap> S;
158
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
159
imension 2 with Length vector [ 4, 12, 22 ]>
160
gap> Extend( S, 5 );
161
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
162
imension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>
163

164
165
166
4.3 Methods and functions for matrix creation and computation
167
168
4.3-1 BoundaryOperator
169
170
BoundaryOperator( i, L, mu )  function
171
Returns: List B
172
173
This returns the ith boundary of L, which has to be an element of a
174
simplicial set. mu is the function μ that has to be taken into account when
175
computing orbifold boundaries. This function is used for matrix creation,
176
there should not be much reason for calling it independently.
177
178
4.3-2 CreateBoundaryMatrices
179
180
CreateBoundaryMatrices( S, d, R )  method
181
Returns: List M
182
183
This returns the list M of homalg matrices over the homalg ring R up to
184
dimension d, corresponding to the boundary matrices induced by the
185
simplicial set S. If d is not given, the current dimension of S is used.
186
187
 Example 
188
gap> S := SimplicialSet( Teardrop );
189
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
190
imension 0 with Length vector [ 4 ]>
191
gap> M := CreateBoundaryMatrices( S, 4, HomalgRingOfIntegers() );;
192
gap> S;
193
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
194
imension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>
195

196
197
4.3-3 Homology
198
199
Homology( M[, R] )  method
200
Returns: a homalg complex
201
202
This returns the homology complex of a list M of homalg matrices over the
203
homalg ring R.
204
205
 Example 
206
gap> S := SimplicialSet( Teardrop );
207
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
208
imension 0 with Length vector [ 4 ]>
209
gap> R := HomalgRingOfIntegers();
210
Z
211
gap> M := CreateBoundaryMatrices( S, 4, R );;
212
gap> Homology( M, R );
213
----------------------------------------------->>>> Z^(1 x 1)
214
----------------------------------------------->>>> 0
215
----------------------------------------------->>>> Z^(1 x 1)
216
----------------------------------------------->>>> Z/< 2 >
217
----------------------------------------------->>>> 0
218
<A graded homology object consisting of 5 left modules at degrees [ 0 .. 4 ]>
219

220
221
4.3-4 CreateCoboundaryMatrices
222
223
CreateCoboundaryMatrices( S[, d], R )  method
224
Returns: List M
225
226
This returns the list M of homalg matrices over the homalg ring R up to
227
dimension d, corresponding to the coboundary matrices induced by the
228
simplicial set S. If d is not given, the current dimension of S is used.
229
230
 Example 
231
gap> S := SimplicialSet( Teardrop );
232
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
233
imension 0 with Length vector [ 4 ]>
234
gap> M := CreateCoboundaryMatrices( S, 4, HomalgRingOfIntegers() );;
235
gap> S;
236
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
237
imension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>
238

239
240
4.3-5 Cohomology
241
242
Cohomology( M[, R] )  method
243
Returns: a homalg complex
244
245
This returns the cohomology complex of a list M of homalg matrices over the
246
homalg ring R.
247
248
 Example 
249
gap> S := SimplicialSet( Teardrop );
250
<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\
251
imension 0 with Length vector [ 4 ]>
252
gap> R := HomalgRingOfIntegers();
253
Z
254
gap> M := CreateCoboundaryMatrices( S, 4, R );;
255
gap> Cohomology( M, R );
256
----------------------------------------------->>>> Z^(1 x 1)
257
----------------------------------------------->>>> 0
258
----------------------------------------------->>>> Z^(1 x 1)
259
----------------------------------------------->>>> 0
260
----------------------------------------------->>>> Z/< 2 >
261
<A graded cohomology object consisting of 5 left modules at degrees
262
[ 0 .. 4 ]>
263

264
265
4.3-6 SCO_Examples
266
267
SCO_Examples( )  function
268
Returns: nothing
269
270
This is just an easy way to call the script examples.g, which is located in
271
gap/pkg/SCO/examples/.
272
273
 Example 
274
gap> SCO_Examples();
275
@@@@@@@@ SCO @@@@@@@@
276

277
Select base ring:
278
 1) Integers (default)
279
 2) Rationals
280
 3) Z/nZ
281
:1
282

283
Select Computer Algebra System:
284
 1) GAP (default)
285
 2) External GAP
286
 3) MAGMA
287
 4) Maple
288
 5) Sage
289
:3
290
---------------------------------------------------------------
291
Magma V2.14-14 Tue Aug 19 2008 08:36:19 on evariste [Seed = 1054613462]
292
Type ? for help. Type <Ctrl>-D to quit.
293
----------------------------------------------------------------
294

295

296
Select Method:
297
 1) Full syzygy computation (default)
298
 2) matrix creation and rank computation only
299
:1
300

301
Select orbifold (default="C2")
302
:Torus
303
 
304
Select mode:
305
 1) Cohomology (default)
306
 2) Homology
307
:1
308

309
Select dimension (default = 4)
310
:4
311
Creating the coboundary matrices ...
312
Starting cohomology computation ...
313
----------------------------------------------->>>> Z^(1 x 1)
314
----------------------------------------------->>>> Z^(1 x 2)
315
----------------------------------------------->>>> Z^(1 x 1)
316
----------------------------------------------->>>> 0
317
----------------------------------------------->>>> 0 
318

319
320
321