Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X4 [33X[0;0Y[5XSCO[105X[101X[1X methods and functions[133X[101X234[1X4.1 [33X[0;0YMethods and functions for orbifold triangulations[133X[101X56[1X4.1-1 OrbifoldTriangulation[101X78[29X[2XOrbifoldTriangulation[102X( [3XM[103X[, [3XI[103X, [3Xmu_data[103X, [3Xinfo[103X] ) [32X function9[6XReturns:[106X [33X[0;10YOrbifoldTriangulation[133X1011[33X[0;0YThe constructor for OrbifoldTriangulations. Needs the list [3XM[103X of maximal12simplices, the Isotropy at certain vertices as a record [3XI[103X, and the list13[3Xmu_data[103X that encodes the function mu. If only one argument is given, [3XI[103X and14[3Xmu_data[103X are supposed to be empty. In case of two arguments, [3Xmu_data[103X is15supposed to be empty. If the last argument [3Xinfo[103X is given as a string, it is16stored in the info component of the orbifold triangulation and does not17count towards the total number of arguments.[133X1819[4X[32X Example [32X[104X20[4X[25Xgap>[125X [27XM := [ [1,2,3], [1,2,4], [1,3,4], [2,3,4] ];;[127X[104X21[4X[25Xgap>[125X [27XS2 := OrbifoldTriangulation( M, "S^2" );[127X[104X22[4X[28X<OrbifoldTriangulation "S^2" of dimension 2. 4 simplices on 4 vertices without\[128X[104X23[4X[28X Isotropy>[128X[104X24[4X[25Xgap>[125X [27XI := rec( 1 := Group( (1,2) ) );;[127X[104X25[4X[25Xgap>[125X [27Xmu_data := [[127X[104X26[4X[25X>[125X [27X[ [2], [1,2], [1,2,3], [1,2,4], x->x*(1,2) ],[127X[104X27[4X[25X>[125X [27X[ [2], [1,2], [1,2,4], [1,2,3], x->x*(1,2) ][127X[104X28[4X[25X>[125X [27X];;[127X[104X29[4X[25Xgap>[125X [27XTeardrop := OrbifoldTriangulation( M, I, mu_data, "Teardrop" );[127X[104X30[4X[28X<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\[128X[104X31[4X[28Xth Isotropy on 1 vertex and nontrivial mu-maps>[128X[104X32[4X[32X[104X3334[1X4.1-2 Vertices[101X3536[29X[2XVertices[102X( [3Xot[103X ) [32X method37[6XReturns:[106X [33X[0;10YList [3XV[103X[133X3839[33X[0;0YThis returns the list of vertices [3XV[103X of the orbifold triangulation [3Xot[103X. Should40be preferred to the equivalent [10Xot!.vertices[110X.[133X4142[1X4.1-3 Simplices[101X4344[29X[2XSimplices[102X( [3Xot[103X ) [32X method45[6XReturns:[106X [33X[0;10YList [3XM[103X[133X4647[33X[0;0YThis returns the list of maximal simplices [3XM[103X of the orbifold triangulation48[3Xot[103X. Should be preferred to the equivalent [10Xot!.max_simplices[110X.[133X4950[1X4.1-4 Isotropy[101X5152[29X[2XIsotropy[102X( [3Xot[103X ) [32X method53[6XReturns:[106X [33X[0;10YRecord [3XI[103X[133X5455[33X[0;0YThis returns the isotropy record [3XI[103X of the orbifold triangulation [3Xot[103X. Should56be preferred to the equivalent [10Xot!.isotropy[110X.[133X5758[1X4.1-5 Mu[101X5960[29X[2XMu[102X( [3Xot[103X ) [32X method61[6XReturns:[106X [33X[0;10YFunction [3Xmu[103X[133X6263[33X[0;0YThis returns the function [3Xmu[103X of the orbifold triangulation [3Xot[103X. Should be64preferred to the equivalent [10Xot!.mu[110X.[133X6566[1X4.1-6 MuData[101X6768[29X[2XMuData[102X( [3Xot[103X ) [32X method69[6XReturns:[106X [33X[0;10YList [3Xmu_data[103X[133X7071[33X[0;0YThis returns the list [3Xmu_data[103X that encodes the function mu of the orbifold72triangulation [3Xot[103X. Should be preferred to the equivalent [10Xot!.mu_data[110X.[133X7374[1X4.1-7 InfoString[101X7576[29X[2XInfoString[102X( [3Xot[103X ) [32X method77[6XReturns:[106X [33X[0;10YString [3Xinfo[103X[133X7879[33X[0;0YThis return the string [3Xinfo[103X of the orbifold triangulation [3Xot[103X. Should be80preferred to the equivalent [10Xot!.info[110X.[133X818283[1X4.2 [33X[0;0YMethods and functions for simplicial sets[133X[101X8485[1X4.2-1 SimplicialSet[101X8687[29X[2XSimplicialSet[102X( [3Xot[103X ) [32X method88[6XReturns:[106X [33X[0;10YSimplicialSet[133X8990[33X[0;0YThe constructor for simplicial sets based on an orbifold triangulation [3Xot[103X.91This just sets up the object without any computations. These can be92triggered later, either explicitly or by [2XSimplicialSet[102X ([14X4.2-2[114X).[133X9394[4X[32X Example [32X[104X95[4X[25Xgap>[125X [27XTeardrop;[127X[104X96[4X[28X<OrbifoldTriangulation "Teardrop" of dimension 2. 4 simplices on 4 vertices wi\[128X[104X97[4X[28Xth Isotropy on 1 vertex and nontrivial mu-maps>[128X[104X98[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X99[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X100[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X101[4X[32X[104X102103[1X4.2-2 SimplicialSet[101X104105[29X[2XSimplicialSet[102X( [3XS[103X, [3Xi[103X ) [32X method106[6XReturns:[106X [33X[0;10YList [3XS[103X_[3Xi[103X[133X107108[33X[0;0YThis returns the components of dimension [3Xi[103X of the simplicial set [3XS[103X. Should109be used to access existing data instead of using [10XS!.simplicial_set[ i + 1 ][110X,110as it has the additional side effect of computing [3XS[103X up to dimension [3Xi[103X, thus111always returning the desired result.[133X112113[4X[32X Example [32X[104X114[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X115[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X116[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X117[4X[25Xgap>[125X [27XS!.simplicial_set[1];[127X[104X118[4X[28X[ [ [ 1, 2, 3 ] ], [ [ 1, 2, 4 ] ], [ [ 1, 3, 4 ] ], [ [ 2, 3, 4 ] ] ][128X[104X119[4X[25Xgap>[125X [27XS!.simplicial_set[2];;[127X[104X120[4X[28XError, List Element: <list>[2] must have an assigned value[128X[104X121[4X[25Xgap>[125X [27XSimplicialSet( S, 0 );[127X[104X122[4X[28X[ [ [ 1, 2, 3 ] ], [ [ 1, 2, 4 ] ], [ [ 1, 3, 4 ] ], [ [ 2, 3, 4 ] ] ][128X[104X123[4X[25Xgap>[125X [27XSimplicialSet( S, 1 );;[127X[104X124[4X[25Xgap>[125X [27XS;[127X[104X125[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X126[4X[28Ximension 1 with Length vector [ 4, 12 ]>[128X[104X127[4X[32X[104X128129[1X4.2-3 ComputeNextDimension[101X130131[29X[2XComputeNextDimension[102X( [3XS[103X ) [32X method132[6XReturns:[106X [33X[0;10Y[3XS[103X[133X133134[33X[0;0YThis computes the component of the next dimension of the simplicial set [3XS[103X. [3XS[103X135is extended as a side effect.[133X136137[4X[32X Example [32X[104X138[4X[25Xgap>[125X [27XS;[127X[104X139[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X140[4X[28Ximension 1 with Length vector [ 4, 12 ]>[128X[104X141[4X[25Xgap>[125X [27XComputeNextDimension( S );[127X[104X142[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X143[4X[28Ximension 2 with Length vector [ 4, 12, 22 ]>[128X[104X144[4X[32X[104X145146[1X4.2-4 Extend[101X147148[29X[2XExtend[102X( [3XS[103X, [3Xi[103X ) [32X method149[6XReturns:[106X [33X[0;10Y[3XS[103X[133X150151[33X[0;0YThis computes the components of the simplicial set [3XS[103X up to dimension [3Xi[103X. [3XS[103X is152extended as a side effect. This method is equivalent to calling153[2XComputeNextDimension[102X ([14X4.2-3[114X) the appropriate number of times.[133X154155[4X[32X Example [32X[104X156[4X[25Xgap>[125X [27XS;[127X[104X157[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X158[4X[28Ximension 2 with Length vector [ 4, 12, 22 ]>[128X[104X159[4X[25Xgap>[125X [27XExtend( S, 5 );[127X[104X160[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X161[4X[28Ximension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>[128X[104X162[4X[32X[104X163164165[1X4.3 [33X[0;0YMethods and functions for matrix creation and computation[133X[101X166167[1X4.3-1 BoundaryOperator[101X168169[29X[2XBoundaryOperator[102X( [3Xi[103X, [3XL[103X, [3Xmu[103X ) [32X function170[6XReturns:[106X [33X[0;10YList B[133X171172[33X[0;0YThis returns the [3Xi[103Xth boundary of [3XL[103X, which has to be an element of a173simplicial set. [3Xmu[103X is the function [22Xμ[122X that has to be taken into account when174computing orbifold boundaries. This function is used for matrix creation,175there should not be much reason for calling it independently.[133X176177[1X4.3-2 CreateBoundaryMatrices[101X178179[29X[2XCreateBoundaryMatrices[102X( [3XS[103X, [3Xd[103X, [3XR[103X ) [32X method180[6XReturns:[106X [33X[0;10YList [3XM[103X[133X181182[33X[0;0YThis returns the list [3XM[103X of homalg matrices over the homalg ring [3XR[103X up to183dimension [3Xd[103X, corresponding to the boundary matrices induced by the184simplicial set [3XS[103X. If [3Xd[103X is not given, the current dimension of [3XS[103X is used.[133X185186[4X[32X Example [32X[104X187[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X188[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X189[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X190[4X[25Xgap>[125X [27XM := CreateBoundaryMatrices( S, 4, HomalgRingOfIntegers() );;[127X[104X191[4X[25Xgap>[125X [27XS;[127X[104X192[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X193[4X[28Ximension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>[128X[104X194[4X[32X[104X195196[1X4.3-3 Homology[101X197198[29X[2XHomology[102X( [3XM[103X[, [3XR[103X] ) [32X method199[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X complex[133X200201[33X[0;0YThis returns the homology complex of a list [3XM[103X of [5Xhomalg[105X matrices over the202[5Xhomalg[105X ring [3XR[103X.[133X203204[4X[32X Example [32X[104X205[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X206[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X207[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X208[4X[25Xgap>[125X [27XR := HomalgRingOfIntegers();[127X[104X209[4X[28XZ[128X[104X210[4X[25Xgap>[125X [27XM := CreateBoundaryMatrices( S, 4, R );;[127X[104X211[4X[25Xgap>[125X [27XHomology( M, R );[127X[104X212[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X213[4X[28X----------------------------------------------->>>> 0[128X[104X214[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X215[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X216[4X[28X----------------------------------------------->>>> 0[128X[104X217[4X[28X<A graded homology object consisting of 5 left modules at degrees [ 0 .. 4 ]>[128X[104X218[4X[32X[104X219220[1X4.3-4 CreateCoboundaryMatrices[101X221222[29X[2XCreateCoboundaryMatrices[102X( [3XS[103X[, [3Xd[103X], [3XR[103X ) [32X method223[6XReturns:[106X [33X[0;10YList [3XM[103X[133X224225[33X[0;0YThis returns the list [3XM[103X of homalg matrices over the homalg ring [3XR[103X up to226dimension [3Xd[103X, corresponding to the coboundary matrices induced by the227simplicial set [3XS[103X. If [3Xd[103X is not given, the current dimension of [3XS[103X is used.[133X228229[4X[32X Example [32X[104X230[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X231[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X232[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X233[4X[25Xgap>[125X [27XM := CreateCoboundaryMatrices( S, 4, HomalgRingOfIntegers() );;[127X[104X234[4X[25Xgap>[125X [27XS;[127X[104X235[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X236[4X[28Ximension 5 with Length vector [ 4, 12, 22, 33, 51, 73 ]>[128X[104X237[4X[32X[104X238239[1X4.3-5 Cohomology[101X240241[29X[2XCohomology[102X( [3XM[103X[, [3XR[103X] ) [32X method242[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X complex[133X243244[33X[0;0YThis returns the cohomology complex of a list [3XM[103X of [5Xhomalg[105X matrices over the245[5Xhomalg[105X ring [3XR[103X.[133X246247[4X[32X Example [32X[104X248[4X[25Xgap>[125X [27XS := SimplicialSet( Teardrop );[127X[104X249[4X[28X<The simplicial set of the orbifold triangulation "Teardrop", computed up to d\[128X[104X250[4X[28Ximension 0 with Length vector [ 4 ]>[128X[104X251[4X[25Xgap>[125X [27XR := HomalgRingOfIntegers();[127X[104X252[4X[28XZ[128X[104X253[4X[25Xgap>[125X [27XM := CreateCoboundaryMatrices( S, 4, R );;[127X[104X254[4X[25Xgap>[125X [27XCohomology( M, R );[127X[104X255[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X256[4X[28X----------------------------------------------->>>> 0[128X[104X257[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X258[4X[28X----------------------------------------------->>>> 0[128X[104X259[4X[28X----------------------------------------------->>>> Z/< 2 >[128X[104X260[4X[28X<A graded cohomology object consisting of 5 left modules at degrees[128X[104X261[4X[28X[ 0 .. 4 ]>[128X[104X262[4X[32X[104X263264[1X4.3-6 SCO_Examples[101X265266[29X[2XSCO_Examples[102X( ) [32X function267[6XReturns:[106X [33X[0;10Ynothing[133X268269[33X[0;0YThis is just an easy way to call the script [11Xexamples.g[111X, which is located in270[11Xgap/pkg/SCO/examples/[111X.[133X271272[4X[32X Example [32X[104X273[4X[25Xgap>[125X [27XSCO_Examples();[127X[104X274[4X[28X@@@@@@@@ SCO @@@@@@@@[128X[104X275[4X[28X[128X[104X276[4X[28XSelect base ring:[128X[104X277[4X[28X 1) Integers (default)[128X[104X278[4X[28X 2) Rationals[128X[104X279[4X[28X 3) Z/nZ[128X[104X280[4X[28X:1[128X[104X281[4X[28X[128X[104X282[4X[28XSelect Computer Algebra System:[128X[104X283[4X[28X 1) GAP (default)[128X[104X284[4X[28X 2) External GAP[128X[104X285[4X[28X 3) MAGMA[128X[104X286[4X[28X 4) Maple[128X[104X287[4X[28X 5) Sage[128X[104X288[4X[28X:3[128X[104X289[4X[28X---------------------------------------------------------------[128X[104X290[4X[28XMagma V2.14-14 Tue Aug 19 2008 08:36:19 on evariste [Seed = 1054613462][128X[104X291[4X[28XType ? for help. Type <Ctrl>-D to quit.[128X[104X292[4X[28X----------------------------------------------------------------[128X[104X293[4X[28X[128X[104X294[4X[28X[128X[104X295[4X[28XSelect Method:[128X[104X296[4X[28X 1) Full syzygy computation (default)[128X[104X297[4X[28X 2) matrix creation and rank computation only[128X[104X298[4X[28X:1[128X[104X299[4X[28X[128X[104X300[4X[28XSelect orbifold (default="C2")[128X[104X301[4X[28X:Torus[128X[104X302[4X[28X [128X[104X303[4X[28XSelect mode:[128X[104X304[4X[28X 1) Cohomology (default)[128X[104X305[4X[28X 2) Homology[128X[104X306[4X[28X:1[128X[104X307[4X[28X[128X[104X308[4X[28XSelect dimension (default = 4)[128X[104X309[4X[28X:4[128X[104X310[4X[28XCreating the coboundary matrices ...[128X[104X311[4X[28XStarting cohomology computation ...[128X[104X312[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X313[4X[28X----------------------------------------------->>>> Z^(1 x 2)[128X[104X314[4X[28X----------------------------------------------->>>> Z^(1 x 1)[128X[104X315[4X[28X----------------------------------------------->>>> 0[128X[104X316[4X[28X----------------------------------------------->>>> 0 [128X[104X317[4X[32X[104X318319320321