CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3
ToricVarieties
4
5
6
A GAP package for handling toric varieties.
7
8
9
Version 2012.12.22
10
11
12
October 2012
13
14
15
Sebastian Gutsche
16
17
18
19
This manual is best viewed as an HTML document. An
20
offline version should be included in the documentation
21
subfolder of the package.
22
23
24
25
Sebastian Gutsche
26
Email: mailto:[email protected]
27
Homepage: http://wwwb.math.rwth-aachen.de/~gutsche
28
Address: Lehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64,
29
52056 Aachen, Germany
30
31
32
33
-------------------------------------------------------
34
Copyright
35
© 2011-2012 by Sebastian Gutsche
36
37
This package may be distributed under the terms and conditions of the GNU
38
Public License Version 2.
39
40
41
-------------------------------------------------------
42
Acknowledgements
43
44
-------------------------------------------------------
45
46
47
Contents (ToricVarieties)
48
49
1 Introduction
50
1.1 What is the goal of the ToricVarieties package?
51
2 Installation of the ToricVarieties Package
52
3 Toric varieties
53
3.1 Toric variety: Category and Representations
54
3.1-1 IsToricVariety
55
3.2 Toric varieties: Properties
56
3.2-1 IsNormalVariety
57
3.2-2 IsAffine
58
3.2-3 IsProjective
59
3.2-4 IsComplete
60
3.2-5 IsSmooth
61
3.2-6 HasTorusfactor
62
3.2-7 HasNoTorusfactor
63
3.2-8 IsOrbifold
64
3.3 Toric varieties: Attributes
65
3.3-1 AffineOpenCovering
66
3.3-2 CoxRing
67
3.3-3 ListOfVariablesOfCoxRing
68
3.3-4 ClassGroup
69
3.3-5 PicardGroup
70
3.3-6 TorusInvariantDivisorGroup
71
3.3-7 MapFromCharacterToPrincipalDivisor
72
3.3-8 Dimension
73
3.3-9 DimensionOfTorusfactor
74
3.3-10 CoordinateRingOfTorus
75
3.3-11 IsProductOf
76
3.3-12 CharacterLattice
77
3.3-13 TorusInvariantPrimeDivisors
78
3.3-14 IrrelevantIdeal
79
3.3-15 MorphismFromCoxVariety
80
3.3-16 CoxVariety
81
3.3-17 FanOfVariety
82
3.3-18 CartierTorusInvariantDivisorGroup
83
3.3-19 NameOfVariety
84
3.3-20 twitter
85
3.4 Toric varieties: Methods
86
3.4-1 UnderlyingSheaf
87
3.4-2 CoordinateRingOfTorus
88
3.4-3 \*
89
3.4-4 CharacterToRationalFunction
90
3.4-5 CoxRing
91
3.4-6 WeilDivisorsOfVariety
92
3.4-7 Fan
93
3.5 Toric varieties: Constructors
94
3.5-1 ToricVariety
95
3.6 Toric varieties: Examples
96
3.6-1 The Hirzebruch surface of index 5
97
4 Toric subvarieties
98
4.1 Toric subvarieties: Category and Representations
99
4.1-1 IsToricSubvariety
100
4.2 Toric subvarieties: Properties
101
4.2-1 IsClosed
102
4.2-2 IsOpen
103
4.2-3 IsWholeVariety
104
4.3 Toric subvarieties: Attributes
105
4.3-1 UnderlyingToricVariety
106
4.3-2 InclusionMorphism
107
4.3-3 AmbientToricVariety
108
4.4 Toric subvarieties: Methods
109
4.4-1 ClosureOfTorusOrbitOfCone
110
4.5 Toric subvarieties: Constructors
111
4.5-1 ToricSubvariety
112
5 Affine toric varieties
113
5.1 Affine toric varieties: Category and Representations
114
5.1-1 IsAffineToricVariety
115
5.2 Affine toric varieties: Properties
116
5.3 Affine toric varieties: Attributes
117
5.3-1 CoordinateRing
118
5.3-2 ListOfVariablesOfCoordinateRing
119
5.3-3 MorphismFromCoordinateRingToCoordinateRingOfTorus
120
5.3-4 ConeOfVariety
121
5.4 Affine toric varieties: Methods
122
5.4-1 CoordinateRing
123
5.4-2 Cone
124
5.5 Affine toric varieties: Constructors
125
5.6 Affine toric Varieties: Examples
126
5.6-1 Affine space
127
6 Projective toric varieties
128
6.1 Projective toric varieties: Category and Representations
129
6.1-1 IsProjectiveToricVariety
130
6.2 Projective toric varieties: Properties
131
6.3 Projective toric varieties: Attributes
132
6.3-1 AffineCone
133
6.3-2 PolytopeOfVariety
134
6.3-3 ProjectiveEmbedding
135
6.4 Projective toric varieties: Methods
136
6.4-1 Polytope
137
6.5 Projective toric varieties: Constructors
138
6.6 Projective toric varieties: Examples
139
6.6-1 PxP1 created by a polytope
140
7 Toric morphisms
141
7.1 Toric morphisms: Category and Representations
142
7.1-1 IsToricMorphism
143
7.2 Toric morphisms: Properties
144
7.2-1 IsMorphism
145
7.2-2 IsProper
146
7.3 Toric morphisms: Attributes
147
7.3-1 SourceObject
148
7.3-2 UnderlyingGridMorphism
149
7.3-3 ToricImageObject
150
7.3-4 RangeObject
151
7.3-5 MorphismOnWeilDivisorGroup
152
7.3-6 ClassGroup
153
7.3-7 MorphismOnCartierDivisorGroup
154
7.3-8 PicardGroup
155
7.4 Toric morphisms: Methods
156
7.4-1 UnderlyingListList
157
7.5 Toric morphisms: Constructors
158
7.5-1 ToricMorphism
159
7.5-2 ToricMorphism
160
7.6 Toric morphisms: Examples
161
7.6-1 Morphism between toric varieties and their class groups
162
8 Toric divisors
163
8.1 Toric divisors: Category and Representations
164
8.1-1 IsToricDivisor
165
8.2 Toric divisors: Properties
166
8.2-1 IsCartier
167
8.2-2 IsPrincipal
168
8.2-3 IsPrimedivisor
169
8.2-4 IsBasepointFree
170
8.2-5 IsAmple
171
8.2-6 IsVeryAmple
172
8.3 Toric divisors: Attributes
173
8.3-1 CartierData
174
8.3-2 CharacterOfPrincipalDivisor
175
8.3-3 ToricVarietyOfDivisor
176
8.3-4 ClassOfDivisor
177
8.3-5 PolytopeOfDivisor
178
8.3-6 BasisOfGlobalSections
179
8.3-7 IntegerForWhichIsSureVeryAmple
180
8.3-8 AmbientToricVariety
181
8.3-9 UnderlyingGroupElement
182
8.3-10 UnderlyingToricVariety
183
8.3-11 DegreeOfDivisor
184
8.3-12 MonomsOfCoxRingOfDegree
185
8.3-13 CoxRingOfTargetOfDivisorMorphism
186
8.3-14 RingMorphismOfDivisor
187
8.4 Toric divisors: Methods
188
8.4-1 VeryAmpleMultiple
189
8.4-2 CharactersForClosedEmbedding
190
8.4-3 MonomsOfCoxRingOfDegree
191
8.4-4 DivisorOfGivenClass
192
8.4-5 AddDivisorToItsAmbientVariety
193
8.4-6 Polytope
194
8.4-7 +
195
8.4-8 -
196
8.4-9 *
197
8.5 Toric divisors: Constructors
198
8.5-1 DivisorOfCharacter
199
8.5-2 DivisorOfCharacter
200
8.5-3 CreateDivisor
201
8.5-4 CreateDivisor
202
8.6 Toric divisors: Examples
203
8.6-1 Divisors on a toric variety
204
205
206

207
208