Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 41834612[1X[5XToricVarieties[105X[101X345[1XA [5XGAP[105X package for handling toric varieties.[101X678Version 2012.12.2291011October 2012121314Sebastian Gutsche15161718[33X[0;10YThis manual is best viewed as an [12XHTML[112X document. An19[12Xoffline[112X version should be included in the documentation20subfolder of the package.[133X21222324Sebastian Gutsche25Email: [7Xmailto:[email protected][107X26Homepage: [7Xhttp://wwwb.math.rwth-aachen.de/~gutsche[107X27Address: [33X[0;14YLehrstuhl B für Mathematik, RWTH Aachen, Templergraben 64,2852056 Aachen, Germany[133X29303132-------------------------------------------------------33[1XCopyright[101X34[33X[0;0Y© 2011-2012 by Sebastian Gutsche[133X3536[33X[0;0YThis package may be distributed under the terms and conditions of the GNU37Public License Version 2.[133X383940-------------------------------------------------------41[1XAcknowledgements[101X4243-------------------------------------------------------444546[1XContents (ToricVarieties)[101X47481 [33X[0;0YIntroduction[133X491.1 [33X[0;0YWhat is the goal of the [5XToricVarieties[105X package?[133X502 [33X[0;0YInstallation of the [5XToricVarieties[105X Package[133X513 [33X[0;0YToric varieties[133X523.1 [33X[0;0YToric variety: Category and Representations[133X533.1-1 IsToricVariety543.2 [33X[0;0YToric varieties: Properties[133X553.2-1 IsNormalVariety563.2-2 IsAffine573.2-3 IsProjective583.2-4 IsComplete593.2-5 IsSmooth603.2-6 HasTorusfactor613.2-7 HasNoTorusfactor623.2-8 IsOrbifold633.3 [33X[0;0YToric varieties: Attributes[133X643.3-1 AffineOpenCovering653.3-2 CoxRing663.3-3 ListOfVariablesOfCoxRing673.3-4 ClassGroup683.3-5 PicardGroup693.3-6 TorusInvariantDivisorGroup703.3-7 MapFromCharacterToPrincipalDivisor713.3-8 Dimension723.3-9 DimensionOfTorusfactor733.3-10 CoordinateRingOfTorus743.3-11 IsProductOf753.3-12 CharacterLattice763.3-13 TorusInvariantPrimeDivisors773.3-14 IrrelevantIdeal783.3-15 MorphismFromCoxVariety793.3-16 CoxVariety803.3-17 FanOfVariety813.3-18 CartierTorusInvariantDivisorGroup823.3-19 NameOfVariety833.3-20 twitter843.4 [33X[0;0YToric varieties: Methods[133X853.4-1 UnderlyingSheaf863.4-2 CoordinateRingOfTorus873.4-3 \*883.4-4 CharacterToRationalFunction893.4-5 CoxRing903.4-6 WeilDivisorsOfVariety913.4-7 Fan923.5 [33X[0;0YToric varieties: Constructors[133X933.5-1 ToricVariety943.6 [33X[0;0YToric varieties: Examples[133X953.6-1 [33X[0;0YThe Hirzebruch surface of index 5[133X964 [33X[0;0YToric subvarieties[133X974.1 [33X[0;0YToric subvarieties: Category and Representations[133X984.1-1 IsToricSubvariety994.2 [33X[0;0YToric subvarieties: Properties[133X1004.2-1 IsClosed1014.2-2 IsOpen1024.2-3 IsWholeVariety1034.3 [33X[0;0YToric subvarieties: Attributes[133X1044.3-1 UnderlyingToricVariety1054.3-2 InclusionMorphism1064.3-3 AmbientToricVariety1074.4 [33X[0;0YToric subvarieties: Methods[133X1084.4-1 ClosureOfTorusOrbitOfCone1094.5 [33X[0;0YToric subvarieties: Constructors[133X1104.5-1 ToricSubvariety1115 [33X[0;0YAffine toric varieties[133X1125.1 [33X[0;0YAffine toric varieties: Category and Representations[133X1135.1-1 IsAffineToricVariety1145.2 [33X[0;0YAffine toric varieties: Properties[133X1155.3 [33X[0;0YAffine toric varieties: Attributes[133X1165.3-1 CoordinateRing1175.3-2 ListOfVariablesOfCoordinateRing1185.3-3 MorphismFromCoordinateRingToCoordinateRingOfTorus1195.3-4 ConeOfVariety1205.4 [33X[0;0YAffine toric varieties: Methods[133X1215.4-1 CoordinateRing1225.4-2 Cone1235.5 [33X[0;0YAffine toric varieties: Constructors[133X1245.6 [33X[0;0YAffine toric Varieties: Examples[133X1255.6-1 [33X[0;0YAffine space[133X1266 [33X[0;0YProjective toric varieties[133X1276.1 [33X[0;0YProjective toric varieties: Category and Representations[133X1286.1-1 IsProjectiveToricVariety1296.2 [33X[0;0YProjective toric varieties: Properties[133X1306.3 [33X[0;0YProjective toric varieties: Attributes[133X1316.3-1 AffineCone1326.3-2 PolytopeOfVariety1336.3-3 ProjectiveEmbedding1346.4 [33X[0;0YProjective toric varieties: Methods[133X1356.4-1 Polytope1366.5 [33X[0;0YProjective toric varieties: Constructors[133X1376.6 [33X[0;0YProjective toric varieties: Examples[133X1386.6-1 [33X[0;0YPxP1 created by a polytope[133X1397 [33X[0;0YToric morphisms[133X1407.1 [33X[0;0YToric morphisms: Category and Representations[133X1417.1-1 IsToricMorphism1427.2 [33X[0;0YToric morphisms: Properties[133X1437.2-1 IsMorphism1447.2-2 IsProper1457.3 [33X[0;0YToric morphisms: Attributes[133X1467.3-1 SourceObject1477.3-2 UnderlyingGridMorphism1487.3-3 ToricImageObject1497.3-4 RangeObject1507.3-5 MorphismOnWeilDivisorGroup1517.3-6 ClassGroup1527.3-7 MorphismOnCartierDivisorGroup1537.3-8 PicardGroup1547.4 [33X[0;0YToric morphisms: Methods[133X1557.4-1 UnderlyingListList1567.5 [33X[0;0YToric morphisms: Constructors[133X1577.5-1 ToricMorphism1587.5-2 ToricMorphism1597.6 [33X[0;0YToric morphisms: Examples[133X1607.6-1 [33X[0;0YMorphism between toric varieties and their class groups[133X1618 [33X[0;0YToric divisors[133X1628.1 [33X[0;0YToric divisors: Category and Representations[133X1638.1-1 IsToricDivisor1648.2 [33X[0;0YToric divisors: Properties[133X1658.2-1 IsCartier1668.2-2 IsPrincipal1678.2-3 IsPrimedivisor1688.2-4 IsBasepointFree1698.2-5 IsAmple1708.2-6 IsVeryAmple1718.3 [33X[0;0YToric divisors: Attributes[133X1728.3-1 CartierData1738.3-2 CharacterOfPrincipalDivisor1748.3-3 ToricVarietyOfDivisor1758.3-4 ClassOfDivisor1768.3-5 PolytopeOfDivisor1778.3-6 BasisOfGlobalSections1788.3-7 IntegerForWhichIsSureVeryAmple1798.3-8 AmbientToricVariety1808.3-9 UnderlyingGroupElement1818.3-10 UnderlyingToricVariety1828.3-11 DegreeOfDivisor1838.3-12 MonomsOfCoxRingOfDegree1848.3-13 CoxRingOfTargetOfDivisorMorphism1858.3-14 RingMorphismOfDivisor1868.4 [33X[0;0YToric divisors: Methods[133X1878.4-1 VeryAmpleMultiple1888.4-2 CharactersForClosedEmbedding1898.4-3 MonomsOfCoxRingOfDegree1908.4-4 DivisorOfGivenClass1918.4-5 AddDivisorToItsAmbientVariety1928.4-6 Polytope1938.4-7 +1948.4-8 -1958.4-9 *1968.5 [33X[0;0YToric divisors: Constructors[133X1978.5-1 DivisorOfCharacter1988.5-2 DivisorOfCharacter1998.5-3 CreateDivisor2008.5-4 CreateDivisor2018.6 [33X[0;0YToric divisors: Examples[133X2028.6-1 [33X[0;0YDivisors on a toric variety[133X203204205[32X206207208