CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
2
3 Toric varieties
3
4
5
3.1 Toric variety: Category and Representations
6
7
3.1-1 IsToricVariety
8
9
IsToricVariety( M )  Category
10
Returns: true or false
11
12
The GAP category of a toric variety.
13
14
15
3.2 Toric varieties: Properties
16
17
3.2-1 IsNormalVariety
18
19
IsNormalVariety( vari )  property
20
Returns: true or false
21
22
Checks if the toric variety vari is a normal variety.
23
24
3.2-2 IsAffine
25
26
IsAffine( vari )  property
27
Returns: true or false
28
29
Checks if the toric variety vari is an affine variety.
30
31
3.2-3 IsProjective
32
33
IsProjective( vari )  property
34
Returns: true or false
35
36
Checks if the toric variety vari is a projective variety.
37
38
3.2-4 IsComplete
39
40
IsComplete( vari )  property
41
Returns: true or false
42
43
Checks if the toric variety vari is a complete variety.
44
45
3.2-5 IsSmooth
46
47
IsSmooth( vari )  property
48
Returns: true or false
49
50
Checks if the toric variety vari is a smooth variety.
51
52
3.2-6 HasTorusfactor
53
54
HasTorusfactor( vari )  property
55
Returns: true or false
56
57
Checks if the toric variety vari has a torus factor.
58
59
3.2-7 HasNoTorusfactor
60
61
HasNoTorusfactor( vari )  property
62
Returns: true or false
63
64
Checks if the toric variety vari has no torus factor.
65
66
3.2-8 IsOrbifold
67
68
IsOrbifold( vari )  property
69
Returns: true or false
70
71
Checks if the toric variety vari has an orbifold, which is, in the toric
72
case, equivalent to the simpliciality of the fan.
73
74
75
3.3 Toric varieties: Attributes
76
77
3.3-1 AffineOpenCovering
78
79
AffineOpenCovering( vari )  attribute
80
Returns: a list
81
82
Returns a torus invariant affine open covering of the variety vari. The
83
affine open cover is computed out of the cones of the fan.
84
85
3.3-2 CoxRing
86
87
CoxRing( vari )  attribute
88
Returns: a ring
89
90
Returns the Cox ring of the variety vari. The actual method requires a
91
string with a name for the variables. A method for computing the Cox ring
92
without a variable given is not implemented. You will get an error.
93
94
3.3-3 ListOfVariablesOfCoxRing
95
96
ListOfVariablesOfCoxRing( vari )  attribute
97
Returns: a list
98
99
Returns a list of the variables of the cox ring of the variety vari.
100
101
3.3-4 ClassGroup
102
103
ClassGroup( vari )  attribute
104
Returns: a module
105
106
Returns the class group of the variety vari as factor of a free module.
107
108
3.3-5 PicardGroup
109
110
PicardGroup( vari )  attribute
111
Returns: a module
112
113
Returns the Picard group of the variety vari as factor of a free module.
114
115
3.3-6 TorusInvariantDivisorGroup
116
117
TorusInvariantDivisorGroup( vari )  attribute
118
Returns: a module
119
120
Returns the subgroup of the Weil divisor group of the variety vari generated
121
by the torus invariant prime divisors. This is always a finitely generated
122
free module over the integers.
123
124
3.3-7 MapFromCharacterToPrincipalDivisor
125
126
MapFromCharacterToPrincipalDivisor( vari )  attribute
127
Returns: a morphism
128
129
Returns a map which maps an element of the character group into the torus
130
invariant Weil group of the variety vari. This has to viewn as an help
131
method to compute divisor classes.
132
133
3.3-8 Dimension
134
135
Dimension( vari )  attribute
136
Returns: an integer
137
138
Returns the dimension of the variety vari.
139
140
3.3-9 DimensionOfTorusfactor
141
142
DimensionOfTorusfactor( vari )  attribute
143
Returns: an integer
144
145
Returns the dimension of the torus factor of the variety vari.
146
147
3.3-10 CoordinateRingOfTorus
148
149
CoordinateRingOfTorus( vari )  attribute
150
Returns: a ring
151
152
Returns the coordinate ring of the torus of the variety vari. This method is
153
not implemented, you need to call it with a second argument, which is a list
154
of strings for the variables of the ring.
155
156
3.3-11 IsProductOf
157
158
IsProductOf( vari )  attribute
159
Returns: a list
160
161
If the variety vari is a product of 2 or more varieties, the list contain
162
those varieties. If it is not a product or at least not generated as a
163
product, the list only contains the variety itself.
164
165
3.3-12 CharacterLattice
166
167
CharacterLattice( vari )  attribute
168
Returns: a module
169
170
The method returns the character lattice of the variety vari, computed as
171
the containing grid of the underlying convex object, if it exists.
172
173
3.3-13 TorusInvariantPrimeDivisors
174
175
TorusInvariantPrimeDivisors( vari )  attribute
176
Returns: a list
177
178
The method returns a list of the torus invariant prime divisors of the
179
variety vari.
180
181
3.3-14 IrrelevantIdeal
182
183
IrrelevantIdeal( vari )  attribute
184
Returns: an ideal
185
186
Returns the irrelevant ideal of the cox ring of the variety vari.
187
188
3.3-15 MorphismFromCoxVariety
189
190
MorphismFromCoxVariety( vari )  attribute
191
Returns: a morphism
192
193
The method returns the quotient morphism from the variety of the Cox ring to
194
the variety vari.
195
196
3.3-16 CoxVariety
197
198
CoxVariety( vari )  attribute
199
Returns: a variety
200
201
The method returns the Cox variety of the variety vari.
202
203
3.3-17 FanOfVariety
204
205
FanOfVariety( vari )  attribute
206
Returns: a fan
207
208
Returns the fan of the variety vari. This is set by default.
209
210
3.3-18 CartierTorusInvariantDivisorGroup
211
212
CartierTorusInvariantDivisorGroup( vari )  attribute
213
Returns: a module
214
215
Returns the the group of Cartier divisors of the variety vari as a subgroup
216
of the divisor group.
217
218
3.3-19 NameOfVariety
219
220
NameOfVariety( vari )  attribute
221
Returns: a string
222
223
Returns the name of the variety vari if it has one and it is known or can be
224
computed.
225
226
3.3-20 twitter
227
228
twitter( vari )  attribute
229
Returns: a ring
230
231
This is a dummy to get immediate methods triggered at some times. It never
232
has a value.
233
234
235
3.4 Toric varieties: Methods
236
237
3.4-1 UnderlyingSheaf
238
239
UnderlyingSheaf( vari )  operation
240
Returns: a sheaf
241
242
The method returns the underlying sheaf of the variety vari.
243
244
3.4-2 CoordinateRingOfTorus
245
246
CoordinateRingOfTorus( vari, vars )  operation
247
Returns: a ring
248
249
Computes the coordinate ring of the torus of the variety vari with the
250
variables vars. The argument vars need to be a list of strings with length
251
dimension or two times dimension.
252
253
3.4-3 \*
254
255
\*( vari1, vari2 )  operation
256
Returns: a variety
257
258
Computes the categorial product of the varieties vari1 and vari2.
259
260
3.4-4 CharacterToRationalFunction
261
262
CharacterToRationalFunction( elem, vari )  operation
263
Returns: a homalg element
264
265
Computes the rational function corresponding to the character grid element
266
elem or to the list of integers elem. To compute rational functions you
267
first need to compute to coordinate ring of the torus of the variety vari.
268
269
3.4-5 CoxRing
270
271
CoxRing( vari, vars )  operation
272
Returns: a ring
273
274
Computes the Cox ring of the variety vari. vars needs to be a string
275
containing one variable, which will be numbered by the method.
276
277
3.4-6 WeilDivisorsOfVariety
278
279
WeilDivisorsOfVariety( vari )  operation
280
Returns: a list
281
282
Returns a list of the currently defined Divisors of the toric variety.
283
284
3.4-7 Fan
285
286
Fan( vari )  operation
287
Returns: a fan
288
289
Returns the fan of the variety vari. This is a rename for FanOfVariety.
290
291
292
3.5 Toric varieties: Constructors
293
294
3.5-1 ToricVariety
295
296
ToricVariety( conv )  operation
297
Returns: a ring
298
299
Creates a toric variety out of the convex object conv.
300
301
302
3.6 Toric varieties: Examples
303
304
305
3.6-1 The Hirzebruch surface of index 5
306
307
 Example 
308
gap> H5 := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );
309
<A fan in |R^2>
310
gap> H5 := ToricVariety( H5 );
311
<A toric variety of dimension 2>
312
gap> IsComplete( H5 );
313
true
314
gap> IsAffine( H5 );
315
false
316
gap> IsOrbifold( H5 );
317
true
318
gap> IsProjective( H5 );
319
true
320
gap> TorusInvariantPrimeDivisors(H5);
321
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
322
 <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, 
323
 <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,
324
 <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
325
gap> P := TorusInvariantPrimeDivisors(H5);
326
[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,
327
 <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, 
328
 <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>, 
329
 <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ]
330
gap> A := P[ 1 ] - P[ 2 ] + 4*P[ 3 ];
331
<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>
332
gap> A;
333
<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>
334
gap> IsAmple(A);
335
false
336
gap> CoordinateRingOfTorus(H5,"x");;
337
Q[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )
338
gap> D:=CreateDivisor([0,0,0,0],H5);
339
<A divisor of a toric variety with coordinates 0>
340
gap> BasisOfGlobalSections(D);
341
[ |[ 1 ]| ]
342
gap> D:=Sum(P);
343
<A divisor of a toric variety with coordinates [ 1, 1, 1, 1 ]>
344
gap> BasisOfGlobalSections(D);
345
[ |[ x1_ ]|, |[ x1_*x2 ]|, |[ 1 ]|, |[ x2 ]|,
346
 |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|, 
347
 |[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|, 
348
 |[ x1^6*x2 ]| ]
349
gap> DivisorOfCharacter([1,2],H5);
350
<A principal divisor of a toric variety with coordinates [ 9, 2, 1, -2 ]>
351
gap> BasisOfGlobalSections(last);
352
[ |[ x1_*x2_^2 ]| ]
353

354
355
356