Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X3 [33X[0;0YToric varieties[133X[101X234[1X3.1 [33X[0;0YToric variety: Category and Representations[133X[101X56[1X3.1-1 IsToricVariety[101X78[29X[2XIsToricVariety[102X( [3XM[103X ) [32X Category9[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X1011[33X[0;0YThe [5XGAP[105X category of a toric variety.[133X121314[1X3.2 [33X[0;0YToric varieties: Properties[133X[101X1516[1X3.2-1 IsNormalVariety[101X1718[29X[2XIsNormalVariety[102X( [3Xvari[103X ) [32X property19[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2021[33X[0;0YChecks if the toric variety [3Xvari[103X is a normal variety.[133X2223[1X3.2-2 IsAffine[101X2425[29X[2XIsAffine[102X( [3Xvari[103X ) [32X property26[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X2728[33X[0;0YChecks if the toric variety [3Xvari[103X is an affine variety.[133X2930[1X3.2-3 IsProjective[101X3132[29X[2XIsProjective[102X( [3Xvari[103X ) [32X property33[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X3435[33X[0;0YChecks if the toric variety [3Xvari[103X is a projective variety.[133X3637[1X3.2-4 IsComplete[101X3839[29X[2XIsComplete[102X( [3Xvari[103X ) [32X property40[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4142[33X[0;0YChecks if the toric variety [3Xvari[103X is a complete variety.[133X4344[1X3.2-5 IsSmooth[101X4546[29X[2XIsSmooth[102X( [3Xvari[103X ) [32X property47[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X4849[33X[0;0YChecks if the toric variety [3Xvari[103X is a smooth variety.[133X5051[1X3.2-6 HasTorusfactor[101X5253[29X[2XHasTorusfactor[102X( [3Xvari[103X ) [32X property54[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X5556[33X[0;0YChecks if the toric variety [3Xvari[103X has a torus factor.[133X5758[1X3.2-7 HasNoTorusfactor[101X5960[29X[2XHasNoTorusfactor[102X( [3Xvari[103X ) [32X property61[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6263[33X[0;0YChecks if the toric variety [3Xvari[103X has no torus factor.[133X6465[1X3.2-8 IsOrbifold[101X6667[29X[2XIsOrbifold[102X( [3Xvari[103X ) [32X property68[6XReturns:[106X [33X[0;10Y[10Xtrue[110X or [10Xfalse[110X[133X6970[33X[0;0YChecks if the toric variety [3Xvari[103X has an orbifold, which is, in the toric71case, equivalent to the simpliciality of the fan.[133X727374[1X3.3 [33X[0;0YToric varieties: Attributes[133X[101X7576[1X3.3-1 AffineOpenCovering[101X7778[29X[2XAffineOpenCovering[102X( [3Xvari[103X ) [32X attribute79[6XReturns:[106X [33X[0;10Ya list[133X8081[33X[0;0YReturns a torus invariant affine open covering of the variety [3Xvari[103X. The82affine open cover is computed out of the cones of the fan.[133X8384[1X3.3-2 CoxRing[101X8586[29X[2XCoxRing[102X( [3Xvari[103X ) [32X attribute87[6XReturns:[106X [33X[0;10Ya ring[133X8889[33X[0;0YReturns the Cox ring of the variety [3Xvari[103X. The actual method requires a90string with a name for the variables. A method for computing the Cox ring91without a variable given is not implemented. You will get an error.[133X9293[1X3.3-3 ListOfVariablesOfCoxRing[101X9495[29X[2XListOfVariablesOfCoxRing[102X( [3Xvari[103X ) [32X attribute96[6XReturns:[106X [33X[0;10Ya list[133X9798[33X[0;0YReturns a list of the variables of the cox ring of the variety [3Xvari[103X.[133X99100[1X3.3-4 ClassGroup[101X101102[29X[2XClassGroup[102X( [3Xvari[103X ) [32X attribute103[6XReturns:[106X [33X[0;10Ya module[133X104105[33X[0;0YReturns the class group of the variety [3Xvari[103X as factor of a free module.[133X106107[1X3.3-5 PicardGroup[101X108109[29X[2XPicardGroup[102X( [3Xvari[103X ) [32X attribute110[6XReturns:[106X [33X[0;10Ya module[133X111112[33X[0;0YReturns the Picard group of the variety [3Xvari[103X as factor of a free module.[133X113114[1X3.3-6 TorusInvariantDivisorGroup[101X115116[29X[2XTorusInvariantDivisorGroup[102X( [3Xvari[103X ) [32X attribute117[6XReturns:[106X [33X[0;10Ya module[133X118119[33X[0;0YReturns the subgroup of the Weil divisor group of the variety [3Xvari[103X generated120by the torus invariant prime divisors. This is always a finitely generated121free module over the integers.[133X122123[1X3.3-7 MapFromCharacterToPrincipalDivisor[101X124125[29X[2XMapFromCharacterToPrincipalDivisor[102X( [3Xvari[103X ) [32X attribute126[6XReturns:[106X [33X[0;10Ya morphism[133X127128[33X[0;0YReturns a map which maps an element of the character group into the torus129invariant Weil group of the variety [3Xvari[103X. This has to viewn as an help130method to compute divisor classes.[133X131132[1X3.3-8 Dimension[101X133134[29X[2XDimension[102X( [3Xvari[103X ) [32X attribute135[6XReturns:[106X [33X[0;10Yan integer[133X136137[33X[0;0YReturns the dimension of the variety [3Xvari[103X.[133X138139[1X3.3-9 DimensionOfTorusfactor[101X140141[29X[2XDimensionOfTorusfactor[102X( [3Xvari[103X ) [32X attribute142[6XReturns:[106X [33X[0;10Yan integer[133X143144[33X[0;0YReturns the dimension of the torus factor of the variety [3Xvari[103X.[133X145146[1X3.3-10 CoordinateRingOfTorus[101X147148[29X[2XCoordinateRingOfTorus[102X( [3Xvari[103X ) [32X attribute149[6XReturns:[106X [33X[0;10Ya ring[133X150151[33X[0;0YReturns the coordinate ring of the torus of the variety [3Xvari[103X. This method is152not implemented, you need to call it with a second argument, which is a list153of strings for the variables of the ring.[133X154155[1X3.3-11 IsProductOf[101X156157[29X[2XIsProductOf[102X( [3Xvari[103X ) [32X attribute158[6XReturns:[106X [33X[0;10Ya list[133X159160[33X[0;0YIf the variety [3Xvari[103X is a product of 2 or more varieties, the list contain161those varieties. If it is not a product or at least not generated as a162product, the list only contains the variety itself.[133X163164[1X3.3-12 CharacterLattice[101X165166[29X[2XCharacterLattice[102X( [3Xvari[103X ) [32X attribute167[6XReturns:[106X [33X[0;10Ya module[133X168169[33X[0;0YThe method returns the character lattice of the variety [3Xvari[103X, computed as170the containing grid of the underlying convex object, if it exists.[133X171172[1X3.3-13 TorusInvariantPrimeDivisors[101X173174[29X[2XTorusInvariantPrimeDivisors[102X( [3Xvari[103X ) [32X attribute175[6XReturns:[106X [33X[0;10Ya list[133X176177[33X[0;0YThe method returns a list of the torus invariant prime divisors of the178variety [3Xvari[103X.[133X179180[1X3.3-14 IrrelevantIdeal[101X181182[29X[2XIrrelevantIdeal[102X( [3Xvari[103X ) [32X attribute183[6XReturns:[106X [33X[0;10Yan ideal[133X184185[33X[0;0YReturns the irrelevant ideal of the cox ring of the variety [3Xvari[103X.[133X186187[1X3.3-15 MorphismFromCoxVariety[101X188189[29X[2XMorphismFromCoxVariety[102X( [3Xvari[103X ) [32X attribute190[6XReturns:[106X [33X[0;10Ya morphism[133X191192[33X[0;0YThe method returns the quotient morphism from the variety of the Cox ring to193the variety [3Xvari[103X.[133X194195[1X3.3-16 CoxVariety[101X196197[29X[2XCoxVariety[102X( [3Xvari[103X ) [32X attribute198[6XReturns:[106X [33X[0;10Ya variety[133X199200[33X[0;0YThe method returns the Cox variety of the variety [3Xvari[103X.[133X201202[1X3.3-17 FanOfVariety[101X203204[29X[2XFanOfVariety[102X( [3Xvari[103X ) [32X attribute205[6XReturns:[106X [33X[0;10Ya fan[133X206207[33X[0;0YReturns the fan of the variety [3Xvari[103X. This is set by default.[133X208209[1X3.3-18 CartierTorusInvariantDivisorGroup[101X210211[29X[2XCartierTorusInvariantDivisorGroup[102X( [3Xvari[103X ) [32X attribute212[6XReturns:[106X [33X[0;10Ya module[133X213214[33X[0;0YReturns the the group of Cartier divisors of the variety [3Xvari[103X as a subgroup215of the divisor group.[133X216217[1X3.3-19 NameOfVariety[101X218219[29X[2XNameOfVariety[102X( [3Xvari[103X ) [32X attribute220[6XReturns:[106X [33X[0;10Ya string[133X221222[33X[0;0YReturns the name of the variety [3Xvari[103X if it has one and it is known or can be223computed.[133X224225[1X3.3-20 twitter[101X226227[29X[2Xtwitter[102X( [3Xvari[103X ) [32X attribute228[6XReturns:[106X [33X[0;10Ya ring[133X229230[33X[0;0YThis is a dummy to get immediate methods triggered at some times. It never231has a value.[133X232233234[1X3.4 [33X[0;0YToric varieties: Methods[133X[101X235236[1X3.4-1 UnderlyingSheaf[101X237238[29X[2XUnderlyingSheaf[102X( [3Xvari[103X ) [32X operation239[6XReturns:[106X [33X[0;10Ya sheaf[133X240241[33X[0;0YThe method returns the underlying sheaf of the variety [3Xvari[103X.[133X242243[1X3.4-2 CoordinateRingOfTorus[101X244245[29X[2XCoordinateRingOfTorus[102X( [3Xvari[103X, [3Xvars[103X ) [32X operation246[6XReturns:[106X [33X[0;10Ya ring[133X247248[33X[0;0YComputes the coordinate ring of the torus of the variety [3Xvari[103X with the249variables [3Xvars[103X. The argument [3Xvars[103X need to be a list of strings with length250dimension or two times dimension.[133X251252[1X3.4-3 \*[101X253254[29X[2X\*[102X( [3Xvari1[103X, [3Xvari2[103X ) [32X operation255[6XReturns:[106X [33X[0;10Ya variety[133X256257[33X[0;0YComputes the categorial product of the varieties [3Xvari1[103X and [3Xvari2[103X.[133X258259[1X3.4-4 CharacterToRationalFunction[101X260261[29X[2XCharacterToRationalFunction[102X( [3Xelem[103X, [3Xvari[103X ) [32X operation262[6XReturns:[106X [33X[0;10Ya homalg element[133X263264[33X[0;0YComputes the rational function corresponding to the character grid element265[3Xelem[103X or to the list of integers [3Xelem[103X. To compute rational functions you266first need to compute to coordinate ring of the torus of the variety [3Xvari[103X.[133X267268[1X3.4-5 CoxRing[101X269270[29X[2XCoxRing[102X( [3Xvari[103X, [3Xvars[103X ) [32X operation271[6XReturns:[106X [33X[0;10Ya ring[133X272273[33X[0;0YComputes the Cox ring of the variety [3Xvari[103X. [3Xvars[103X needs to be a string274containing one variable, which will be numbered by the method.[133X275276[1X3.4-6 WeilDivisorsOfVariety[101X277278[29X[2XWeilDivisorsOfVariety[102X( [3Xvari[103X ) [32X operation279[6XReturns:[106X [33X[0;10Ya list[133X280281[33X[0;0YReturns a list of the currently defined Divisors of the toric variety.[133X282283[1X3.4-7 Fan[101X284285[29X[2XFan[102X( [3Xvari[103X ) [32X operation286[6XReturns:[106X [33X[0;10Ya fan[133X287288[33X[0;0YReturns the fan of the variety [3Xvari[103X. This is a rename for FanOfVariety.[133X289290291[1X3.5 [33X[0;0YToric varieties: Constructors[133X[101X292293[1X3.5-1 ToricVariety[101X294295[29X[2XToricVariety[102X( [3Xconv[103X ) [32X operation296[6XReturns:[106X [33X[0;10Ya ring[133X297298[33X[0;0YCreates a toric variety out of the convex object [3Xconv[103X.[133X299300301[1X3.6 [33X[0;0YToric varieties: Examples[133X[101X302303304[1X3.6-1 [33X[0;0YThe Hirzebruch surface of index 5[133X[101X305306[4X[32X Example [32X[104X307[4X[25Xgap>[125X [27XH5 := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );[127X[104X308[4X[28X<A fan in |R^2>[128X[104X309[4X[25Xgap>[125X [27XH5 := ToricVariety( H5 );[127X[104X310[4X[28X<A toric variety of dimension 2>[128X[104X311[4X[25Xgap>[125X [27XIsComplete( H5 );[127X[104X312[4X[28Xtrue[128X[104X313[4X[25Xgap>[125X [27XIsAffine( H5 );[127X[104X314[4X[28Xfalse[128X[104X315[4X[25Xgap>[125X [27XIsOrbifold( H5 );[127X[104X316[4X[28Xtrue[128X[104X317[4X[25Xgap>[125X [27XIsProjective( H5 );[127X[104X318[4X[28Xtrue[128X[104X319[4X[25Xgap>[125X [27XTorusInvariantPrimeDivisors(H5);[127X[104X320[4X[28X[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,[128X[104X321[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, [128X[104X322[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>,[128X[104X323[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ][128X[104X324[4X[25Xgap>[125X [27XP := TorusInvariantPrimeDivisors(H5);[127X[104X325[4X[28X[ <A prime divisor of a toric variety with coordinates [ 1, 0, 0, 0 ]>,[128X[104X326[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 1, 0, 0 ]>, [128X[104X327[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 1, 0 ]>, [128X[104X328[4X[28X <A prime divisor of a toric variety with coordinates [ 0, 0, 0, 1 ]> ][128X[104X329[4X[25Xgap>[125X [27XA := P[ 1 ] - P[ 2 ] + 4*P[ 3 ];[127X[104X330[4X[28X<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>[128X[104X331[4X[25Xgap>[125X [27XA;[127X[104X332[4X[28X<A divisor of a toric variety with coordinates [ 1, -1, 4, 0 ]>[128X[104X333[4X[25Xgap>[125X [27XIsAmple(A);[127X[104X334[4X[28Xfalse[128X[104X335[4X[25Xgap>[125X [27XCoordinateRingOfTorus(H5,"x");;[127X[104X336[4X[28XQ[x1,x1_,x2,x2_]/( x2*x2_-1, x1*x1_-1 )[128X[104X337[4X[25Xgap>[125X [27XD:=CreateDivisor([0,0,0,0],H5);[127X[104X338[4X[28X<A divisor of a toric variety with coordinates 0>[128X[104X339[4X[25Xgap>[125X [27XBasisOfGlobalSections(D);[127X[104X340[4X[28X[ |[ 1 ]| ][128X[104X341[4X[25Xgap>[125X [27XD:=Sum(P);[127X[104X342[4X[28X<A divisor of a toric variety with coordinates [ 1, 1, 1, 1 ]>[128X[104X343[4X[25Xgap>[125X [27XBasisOfGlobalSections(D);[127X[104X344[4X[28X[ |[ x1_ ]|, |[ x1_*x2 ]|, |[ 1 ]|, |[ x2 ]|,[128X[104X345[4X[28X |[ x1 ]|, |[ x1*x2 ]|, |[ x1^2*x2 ]|, [128X[104X346[4X[28X |[ x1^3*x2 ]|, |[ x1^4*x2 ]|, |[ x1^5*x2 ]|, [128X[104X347[4X[28X |[ x1^6*x2 ]| ][128X[104X348[4X[25Xgap>[125X [27XDivisorOfCharacter([1,2],H5);[127X[104X349[4X[28X<A principal divisor of a toric variety with coordinates [ 9, 2, 1, -2 ]>[128X[104X350[4X[25Xgap>[125X [27XBasisOfGlobalSections(last);[127X[104X351[4X[28X[ |[ x1_*x2_^2 ]| ][128X[104X352[4X[32X[104X353354355356