Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

610956 views
1
<!-- #################################################################### -->
2
<!-- ## ## -->
3
<!-- ## databases.xml RCWA documentation Stefan Kohl ## -->
4
<!-- ## ## -->
5
<!-- #################################################################### -->
6
7
<Chapter Label="ch:Databases">
8
<Heading>
9
Databases of Residue-Class-Wise Affine Groups and -Mappings
10
</Heading>
11
12
The &RCWA; package contains a number of databases of rcwa groups and rcwa
13
mappings. They can be loaded into a &GAP; session by the functions described
14
in this chapter.
15
16
<!-- #################################################################### -->
17
18
<Section Label="sec:Examples">
19
<Heading>The collection of examples</Heading>
20
21
<ManSection>
22
<Func Name="LoadRCWAExamples" Arg = ""/>
23
<Returns>
24
the name of the variable to which the record containing the
25
collection of examples of rcwa groups and -mappings loaded from the file
26
<F>pkg/rcwa/examples/examples.g</F> got bound.
27
</Returns>
28
<Description>
29
The components of the examples record are records which contain the
30
individual groups and mappings.
31
A detailed description of some of the examples can be found in
32
Chapter&nbsp;<Ref Label="ch:Examples"/>.
33
<Example>
34
<![CDATA[
35
gap> LoadRCWAExamples();
36
"RCWAExamples"
37
gap> Set(RecNames(RCWAExamples));
38
[ "AbelianGroupOverPolynomialRing", "Basics", "CT3Z", "CTPZ",
39
"CheckingForSolvability", "ClassSwitches",
40
"ClassTranspositionProducts", "ClassTranspositionsAsCommutators",
41
"CollatzFactorizationOld", "CollatzMapping", "CollatzlikePerms",
42
"CoprimeMultDiv", "F2_PSL2Z", "Farkas", "FiniteQuotients",
43
"FiniteVsDenseCycles", "GF2xFiniteCycles", "GrigorchukQuotients",
44
"Hexagon", "HicksMullenYucasZavislak", "HigmanThompson",
45
"LongCyclesOfPrimeLength", "MatthewsLeigh",
46
"MaybeInfinitelyPresentedGroup", "ModuliOfPowers",
47
"OddNumberOfGens_FiniteOrder", "Semilocals",
48
"SlowlyContractingMappings", "Syl3_S9", "SymmetrizingCollatzTree",
49
"TameGroupByCommsOfWildPerms", "Venturini", "ZxZ" ]
50
gap> AssignGlobals(RCWAExamples.CollatzMapping);
51
The following global variables have been assigned:
52
[ "T", "T5", "T5m", "T5p", "Tm", "Tp" ]
53
]]>
54
</Example>
55
</Description>
56
</ManSection>
57
58
</Section>
59
60
<!-- #################################################################### -->
61
62
<Section Label="sec:DatabasesOfRcwaGroups">
63
<Heading>Databases of rcwa groups</Heading>
64
65
<ManSection>
66
<Func Name="LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions"
67
Arg = "" Label = "small database"/>
68
<Returns>
69
the name of the variable to which the record containing the
70
database of all groups generated by 3 class transpositions which
71
interchange residue classes with moduli <M>\leq 6</M> got bound.
72
</Returns>
73
<Description>
74
The database record has at least the following components (the index
75
<C>i</C> is always an integer in the range <C>[1..52394]</C>, and the
76
term <Q>indices</Q> always refers to list indices in that range):
77
<List>
78
79
<Mark><C>cts</C></Mark>
80
<Item>
81
The list of all 69 class transpositions which interchange residue
82
classes with moduli <M>\leq 6</M>.
83
</Item>
84
85
<Mark><C>grps</C></Mark>
86
<Item>
87
The list of the 52394 groups -- 21948 finite and 30446 infinite ones.
88
</Item>
89
90
<Mark><C>sizes</C></Mark>
91
<Item>
92
The list of group orders --
93
it is <C>Size(grps[i]) = sizes[i]</C>.
94
</Item>
95
96
<Mark><C>mods</C></Mark>
97
<Item>
98
The list of moduli of the groups --
99
it is <C>Mod(grps[i]) = mods[i]</C>.
100
</Item>
101
102
<Mark><C>equalityclasses</C></Mark>
103
<Item>
104
A list of lists of indices <C>i</C> of groups which are known
105
to be equal, i.e. if <C>i</C> and <C>j</C> lie in the same list,
106
then <C>grps[i] = grps[j]</C>.
107
</Item>
108
109
<Mark><C>samegroups</C></Mark>
110
<Item>
111
A list of lists, where <C>samegroups[i]</C> is a list of indices
112
of groups which are known to be equal to <C>grps[i]</C>.
113
</Item>
114
115
<Mark><C>conjugacyclasses</C></Mark>
116
<Item>
117
A list of lists of indices of groups which are known to be conjugate
118
in RCWA(&ZZ;).
119
</Item>
120
121
<Mark><C>subgroups</C></Mark>
122
<Item>
123
A list of lists, where <C>subgroups[i]</C> is a list of indices
124
of groups which are known to be proper subgroups of <C>grps[i]</C>.
125
</Item>
126
127
<Mark><C>supergroups</C></Mark>
128
<Item>
129
A list of lists, where <C>supergroups[i]</C> is a list of indices
130
of groups which are known to be proper supergroups of <C>grps[i]</C>.
131
</Item>
132
133
<Mark><C>chains</C></Mark>
134
<Item>
135
A list of lists, where each list contains the indices of the groups
136
in a descending chain of subgroups.
137
</Item>
138
139
<Mark><C>respectedpartitions</C></Mark>
140
<Item>
141
The list of shortest respected partitions.
142
If <C>grps[i]</C> is finite, then <C>respectedpartitions[i]</C>
143
is a list of pairs (residue, modulus) for the residue classes
144
in the shortest respected partition <C>grps[i]</C>. If <C>grps[i]</C>
145
is infinite, then <C>respectedpartitions[i] = fail</C>.
146
</Item>
147
148
<Mark><C>partitionlengths</C></Mark>
149
<Item>
150
The list of lengths of shortest respected partitions.
151
If the group <C>grps[i]</C> is finite, then <C>partitionlengths[i]</C>
152
is the length of the shortest respected partition of <C>grps[i]</C>.
153
If <C>grps[i]</C> is infinite, then <C>partitionlengths[i] = 0</C>.
154
</Item>
155
156
<Mark><C>degrees</C></Mark>
157
<Item>
158
The list of permutation degrees, i.e. numbers of moved points,
159
in the action of the finite groups on their shortest respected
160
partitions. If there is no respected partition, i.e. if
161
<C>grps[i]</C> is infinite, then <C>degrees[i] = 0</C>.
162
</Item>
163
164
<Mark><C>orbitlengths</C></Mark>
165
<Item>
166
The list of lists of orbit lengths in the action of the finite groups
167
on their shortest respected partitions.
168
If <C>grps[i]</C> is infinite, then <C>orbitlengths[i] = fail</C>.
169
</Item>
170
171
<Mark><C>permgroupgens</C></Mark>
172
<Item>
173
The list of lists of generators of the isomorphic permutation groups
174
induced by the finite groups on their shortest respected partitions.
175
If <C>grps[i]</C> is infinite, then <C>permgroupgens[i] = fail</C>.
176
</Item>
177
178
<Mark><C>stabilize_digitsum_base2_mod2</C></Mark>
179
<Item>
180
The list of indices of groups which stabilize the digit sum
181
in base 2 modulo&nbsp;2.
182
</Item>
183
<Mark><C>stabilize_digitsum_base2_mod3</C></Mark>
184
<Item>
185
The list of indices of groups which stabilize the digit sum
186
in base 2 modulo&nbsp;3.
187
</Item>
188
189
<Mark><C>stabilize_digitsum_base3_mod2</C></Mark>
190
<Item>
191
The list of indices of groups which stabilize the digit sum
192
in base 3 modulo&nbsp;2.
193
</Item>
194
195
<Mark><C>freeproductcandidates</C></Mark>
196
<Item>
197
A list of indices of groups which may be isomorphic to the free
198
product of 3 copies of the cyclic group of order&nbsp;2.
199
</Item>
200
201
<Mark><C>freeproductlikes</C></Mark>
202
<Item>
203
A list of indices of groups which are not isomorphic to the free
204
product of 3 copies of the cyclic group of order&nbsp;2, but
205
where the shortest relation indicating this is relatively long.
206
</Item>
207
208
<Mark><C>abc_torsion</C></Mark>
209
<Item>
210
A list of pairs (index, order of product of generators) for all
211
infinite groups for which the product of the generators has
212
finite order.
213
</Item>
214
215
<Mark><C>cyclist</C></Mark>
216
<Item>
217
A list described in the comments in
218
<F>rcwa/data/3ctsgroups6/spheresizecycles.g</F>.
219
</Item>
220
221
<Mark><C>finiteorbits</C></Mark>
222
<Item>
223
A record described in the comments in
224
<F>rcwa/data/3ctsgroups6/finite-orbits.g</F>.
225
</Item>
226
227
<Mark><C>intransitivemodulo</C></Mark>
228
<Item>
229
For every modulus <C>m</C> from 1 to 60, <C>intransitivemodulo[m]</C>
230
is the list of indices of groups none of whose orbits on &ZZ;
231
has nontrivial intersection with all residue classes
232
modulo&nbsp;<C>m</C>.
233
</Item>
234
235
<Mark><C>trsstatus</C></Mark>
236
<Item>
237
A list of strings which describe what is known about whether the
238
groups <C>grps[i]</C> act transitively on the nonnegative integers
239
in their support, or how the computation has failed.
240
</Item>
241
242
<Mark><C>orbitgrowthtype</C></Mark>
243
<Item>
244
A list of integers and lists of integers which encode what has been
245
observed heuristically on the growth of the orbits of the groups
246
<C>grps[i]</C> on&nbsp;&ZZ;.
247
</Item>
248
249
</List>
250
Note that the database contains an entry for every unordered
251
3-tuple of distinct class transpositions in <C>cts</C>, which means
252
that it contains multiple copies of equal groups -- cf. the components
253
<C>equalityclasses</C> and <C>samegroups</C> described above. <P/>
254
255
To mention an example, the group <C>grps[44132]</C> might be called
256
the <Q>Collatz group</Q> -- its action on the set of positive integers
257
which are not multiples of 6 is transitive if and only if the Collatz
258
conjecture holds.
259
<Example>
260
<![CDATA[
261
gap> LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();
262
"3CTsGroups6"
263
gap> AssignGlobals(3CTsGroups6); # for convenience
264
The following global variables have been assigned:
265
[ "3CTsGroupsWithGivenOrbit", "Id3CTsGroup",
266
"ProbablyFixesDigitSumsModulo", "ProbablyStabilizesDigitSumsModulo",
267
"TriangleTypes", "abc_torsion", "chains", "conjugacyclasses", "cts",
268
"cyclist", "degrees", "epifromfpgroupto_ct23z",
269
"epifromfpgrouptocollatzgroup_c", "epifromfpgrouptocollatzgroup_t",
270
"equalityclasses", "finiteorbits", "freeproductcandidates",
271
"freeproductlikes", "groups", "grps", "intransitivemodulo",
272
"minwordlengthcoprimemultdiv", "minwordlengthnonbalanced", "mods",
273
"orbitgrowthtype", "orbitlengths", "partitionlengths", "permgroupgens",
274
"redundant_generator", "refinementseqlngs", "respectedpartitions",
275
"samegroups", "shortresidueclassorbitlengths", "sizes", "sizespos",
276
"sizesset", "spheresizebound_12", "spheresizebound_24",
277
"spheresizebound_4", "spheresizebound_6",
278
"stabilize_digitsum_base2_mod2", "stabilize_digitsum_base2_mod3",
279
"stabilize_digitsum_base3_mod2", "subgroups", "supergroups",
280
"trsstatus", "trsstatuspos", "trsstatusset" ]
281
gap> grps[44132]; # the "3n+1 group"
282
<(2(3),4(6)),(1(3),2(6)),(1(2),4(6))>
283
gap> trsstatus[44132]; # deciding this would solve the 3n+1 problem
284
"exceeded memory bound"
285
gap> Length(Set(sizes));
286
1066
287
gap> Maximum(Filtered(sizes,IsInt)); # order of largest finite group stored
288
7165033589793852697531456980706732548435609645091822296777976465116824959\
289
2135499174617837911754921014138184155204934961004073853323458315539461543\
290
4480515260818409913846161473536000000000000000000000000000000000000000000\
291
000000
292
gap> PrintFactorsInt(last);
293
2^200*3^103*5^48*7^28*11^16*13^13*17^8*19^6*23^6*29
294
gap> Positions(sizes,last);
295
[ 33814, 36548 ]
296
gap> grps{last};
297
[ <(1(5),4(5)),(0(3),1(6)),(3(4),0(6))>,
298
<(0(5),3(5)),(2(3),4(6)),(0(4),5(6))> ]
299
gap> samegroups[1];
300
[ 1, 2, 68 ]
301
gap> grps[1] = grps[68];
302
true
303
gap> Maximum(mods);
304
77760
305
gap> Positions(mods,last);
306
[ 26311, 26313, 26452, 26453, 26455, 26456, 26457, 26459, 26461, 26462,
307
27781, 27784, 27785, 27786, 27788, 27789, 27790, 27791, 27829, 27832,
308
30523, 30524, 30525, 30526, 30529, 30530, 30532, 30534, 32924, 32927,
309
32931, 32933 ]
310
gap> Set(sizes{last});
311
[ 45509262704640000 ]
312
gap> Collected(mods);
313
[ [ 0, 30446 ], [ 3, 1 ], [ 4, 37 ], [ 5, 120 ], [ 6, 1450 ], [ 8, 18 ],
314
[ 10, 45 ], [ 12, 3143 ], [ 15, 165 ], [ 18, 484 ], [ 20, 528 ],
315
[ 24, 1339 ], [ 30, 2751 ], [ 36, 2064 ], [ 40, 26 ], [ 48, 515 ],
316
[ 60, 2322 ], [ 72, 2054 ], [ 80, 44 ], [ 90, 108 ], [ 96, 108 ],
317
[ 108, 114 ], [ 120, 782 ], [ 144, 310 ], [ 160, 26 ], [ 180, 206 ],
318
[ 192, 6 ], [ 216, 72 ], [ 240, 304 ], [ 270, 228 ], [ 288, 14 ],
319
[ 360, 84 ], [ 432, 36 ], [ 480, 218 ], [ 540, 18 ], [ 720, 120 ],
320
[ 810, 112 ], [ 864, 8 ], [ 960, 94 ], [ 1080, 488 ], [ 1620, 44 ],
321
[ 1920, 38 ], [ 2160, 506 ], [ 3240, 34 ], [ 3840, 12 ],
322
[ 4320, 218 ], [ 4860, 16 ], [ 6480, 282 ], [ 7680, 10 ],
323
[ 8640, 16 ], [ 12960, 120 ], [ 14580, 2 ], [ 25920, 34 ],
324
[ 30720, 2 ], [ 38880, 12 ], [ 51840, 8 ], [ 77760, 32 ] ]
325
gap> Collected(trsstatus);
326
[ [ "> 1 orbit (mod m)", 593 ],
327
[ "Mod(U DecreasingOn) exceeded <maxmod>", 23 ],
328
[ "U DecreasingOn stable and exceeded memory bound", 11 ],
329
[ "U DecreasingOn stable for <maxeq> steps", 5753 ],
330
[ "exceeded memory bound", 497 ], [ "finite", 21948 ],
331
[ "intransitive, but finitely many orbits", 8 ],
332
[ "seemingly only finite orbits (long)", 1227 ],
333
[ "seemingly only finite orbits (medium)", 2501 ],
334
[ "seemingly only finite orbits (short)", 4816 ],
335
[ "seemingly only finite orbits (very long)", 230 ],
336
[ "seemingly only finite orbits (very long, very unclear)", 76 ],
337
[ "seemingly only finite orbits (very short)", 208 ],
338
[ "there are infinite orbits which have exponential sphere size growth"
339
, 2934 ],
340
[ "there are infinite orbits which have linear sphere size growth",
341
10881 ],
342
[ "there are infinite orbits which have unclear sphere size growth",
343
86 ], [ "transitive", 562 ],
344
[ "transitive up to one finite orbit", 40 ] ]
345
]]>
346
</Example>
347
</Description>
348
</ManSection>
349
350
<ManSection>
351
<Func Name="LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions"
352
Arg = "max_m" Label = "both databases"/>
353
<Returns>
354
the name of the variable to which the record containing the
355
database of all groups generated by 3 class transpositions which
356
interchange residue classes with moduli less than or equal to
357
<A>max_m</A> got bound, where <A>max_m</A> is either 6 or&nbsp;9.
358
</Returns>
359
<Description>
360
If <A>max_m</A> is 6, this is equivalent to the call of the function
361
without argument described above. If <A>max_m</A> is 9, the function
362
returns a record with at least the following components
363
(in the sequel, the indices <C>i > j > k</C> are always integers in
364
the range <C>[1..264]</C>):
365
<List>
366
367
<Mark><C>cts</C></Mark>
368
<Item>
369
The list of all 264 class transpositions which interchange residue
370
classes with moduli <M>\leq 9</M>.
371
</Item>
372
373
<Mark><C>mods</C></Mark>
374
<Item>
375
The list of moduli of the groups, i.e.
376
<C>Mod(Group(cts{[i,j,k]})) = mods[i][j][k]</C>.
377
</Item>
378
379
<Mark><C>partlengths</C></Mark>
380
<Item>
381
The list of lengths of shortest respected partitions of the groups
382
in the database, i.e.
383
<C>Length(RespectedPartition(Group(cts{[i,j,k]})))</C> <C>=</C>
384
<C>partlengths[i][j][k]</C>.
385
</Item>
386
387
<Mark><C>sizes</C></Mark>
388
<Item>
389
The list of orders of the groups, i.e.
390
<C>Size(Group(cts{[i,j,k]}))</C> <C>=</C> <C>sizes[i][j][k]</C>.
391
</Item>
392
393
<Mark><C>All3CTs9Indices</C></Mark>
394
<Item>
395
A selector function which takes as argument a function <A>func</A>
396
of three arguments <A>i</A>, <A>j</A> and <A>k</A>. It returns a
397
list of all triples of indices <C>[<A>i</A>,<A>j</A>,<A>k</A>]</C>
398
where <M>264 \geq i > j > k \geq 1</M> for which <A>func</A>
399
returns <C>true</C>.
400
</Item>
401
402
<Mark><C>All3CTs9Groups</C></Mark>
403
<Item>
404
A selector function which takes as argument a function <A>func</A>
405
of three arguments <A>i</A>, <A>j</A> and <A>k</A>. It returns a
406
list of all groups <C>Group(cts{[<A>i</A>,<A>j</A>,<A>k</A>]})</C>
407
from the database for which
408
<C><A>func</A>(<A>i</A>,<A>j</A>,<A>k</A>)</C> returns <C>true</C>.
409
</Item>
410
411
</List>
412
<Example>
413
<![CDATA[
414
gap> LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions(9);
415
"3CTsGroups9"
416
gap> AssignGlobals(3CTsGroups9);
417
The following global variables have been assigned:
418
[ "All3CTs9Groups", "All3CTs9Indices", "cts", "mods", "partlengths",
419
"sizes" ]
420
gap> PrintFactorsInt(Maximum(Filtered(Flat(sizes),n->n<>infinity)));
421
2^1283*3^673*5^305*7^193*11^98*13^84*17^50*19^41*23^25*29^13*31^4
422
]]>
423
</Example>
424
</Description>
425
</ManSection>
426
427
<ManSection>
428
<Func Name="LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions"
429
Arg = ""/>
430
<Returns>
431
the name of the variable to which the record containing the
432
database of all groups generated by 4 class transpositions which
433
interchange residue classes with moduli <M>\leq 6</M> for which
434
all subgroups generated by 3 out of the 4 generators are finite
435
got bound.
436
</Returns>
437
<Description>
438
The record has at least the following components (the index <C>i</C>
439
is always an integer in the range <C>[1..140947]</C>, and the term
440
<Q>indices</Q> always refers to list indices in that range):
441
<List>
442
443
<Mark><C>cts</C></Mark>
444
<Item>
445
The list of all 69 class transpositions which interchange residue
446
classes with moduli <M>\leq 6</M>.
447
</Item>
448
449
<Mark><C>grps4_3finite</C></Mark>
450
<Item>
451
The list of all 140947 groups in the database.
452
</Item>
453
454
<Mark><C>grps4_3finitepos</C></Mark>
455
<Item>
456
The list obtained from <C>grps4_3finite</C> by replacing every group
457
by the list of positions of its generators in the list <C>cts</C>.
458
</Item>
459
460
<Mark><C>sizes4</C></Mark>
461
<Item>
462
The list of group orders --
463
it is <C>Size(grps4_3finite[i]) = sizes4[i]</C>.
464
</Item>
465
466
<Mark><C>mods4</C></Mark>
467
<Item>
468
The list of moduli of the groups --
469
it is <C>Mod(grps4_3finite[i]) = mods4[i]</C>.
470
</Item>
471
472
<Mark><C>conjugacyclasses4cts</C></Mark>
473
<Item>
474
A list of lists of indices of groups which are known to be conjugate
475
in RCWA(&ZZ;).
476
</Item>
477
478
<Mark><C>grps4_3finite_reps</C></Mark>
479
<Item>
480
Tentative conjugacy class representatives from the list
481
<C>grps4_3finite</C> -- <E>tentative</E> in the sense that likely
482
some of the groups in the list are still conjugate.
483
</Item>
484
485
</List>
486
Note that the database contains an entry for every suitable unordered
487
4-tuple of distinct class transpositions in <C>cts</C>, which means
488
that it contains multiple copies of equal groups.
489
<Example>
490
<![CDATA[
491
gap> LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions();
492
"4CTsGroups6"
493
gap> AssignGlobals(4CTsGroups6);
494
The following global variables have been assigned:
495
[ "conjugacyclasses4cts", "cts", "grps4_3finite", "grps4_3finite_reps",
496
"grps4_3finitepos", "mods4", "sizes4", "sizes4pos", "sizes4set" ]
497
gap> Length(grps4_3finite);
498
140947
499
gap> Length(sizes4);
500
140947
501
gap> Size(grps4_3finite[1]);
502
518400
503
gap> sizes4[1];
504
518400
505
gap> Maximum(Filtered(sizes4,IsInt));
506
<integer 420...000 (3852 digits)>
507
gap> Modulus(grps4_3finite[1]);
508
12
509
gap> mods4[1];
510
12
511
gap> Length(Set(sizes4));
512
7339
513
gap> Length(Set(mods4));
514
91
515
gap> conjugacyclasses4cts{[1..4]};
516
[ [ 1, 23, 563, 867 ], [ 2, 859 ], [ 3, 622 ], [ 4, 16, 868, 873 ] ]
517
gap> grps4_3finite[1] = grps4_3finite[23];
518
true
519
gap> grps4_3finite[4] = grps4_3finite[16];
520
false
521
]]>
522
</Example>
523
</Description>
524
</ManSection>
525
526
</Section>
527
528
<!-- #################################################################### -->
529
530
<Section Label="sec:DatabasesOfRcwaMappings">
531
<Heading>Databases of rcwa mappings</Heading>
532
533
<ManSection>
534
<Func Name="LoadDatabaseOfProductsOf2ClassTranspositions"
535
Arg = ""/>
536
<Returns>
537
the name of the variable to which the record containing
538
the database of products of 2 class transpositions got bound.
539
</Returns>
540
<Description>
541
There are 69 class transpositions which interchange residue
542
classes with moduli <M>\leq 6</M>, thus there is a total of
543
<M>(69 \cdot 68)/2 = 2346</M> unordered pairs of distinct
544
such class transpositions. Looking at intersection-
545
and subset relations between the 4 involved residue classes,
546
we can distinguish 17 different <Q>intersection types</Q>
547
(or 18, together with the trivial case of equal class transpositions).
548
The intersection type does not fully determine the cycle
549
structure of the product. -- In total, we can distinguish
550
88 different cycle types of products of 2 class transpositions
551
which interchange residue classes with moduli <M>\leq 6</M>. <P/>
552
553
The components of the database record are a list <C>CTPairs</C>
554
of all 2346 pairs of distinct class transpositions which interchange
555
residue classes with moduli <M>\leq 6</M>, functions
556
<C>CTPairsIntersectionTypes</C>, <C>CTPairIntersectionType</C> and
557
<C>CTPairProductType</C>, as well as data lists <C>OrdersMatrix</C>,
558
<C>CTPairsProductClassification</C>, <C>CTPairsProductType</C>,
559
<C>CTProds12</C> and <C>CTProds32</C>.
560
-- For the description of these components, see the file
561
<F>pkg/rcwa/data/ctproducts/ctprodclass.g</F>.
562
<Example>
563
<![CDATA[
564
gap> LoadDatabaseOfProductsOf2ClassTranspositions();
565
"CTProducts"
566
gap> Set(RecNames(CTProducts));
567
[ "CTPairIntersectionType", "CTPairProductType", "CTPairs",
568
"CTPairsIntersectionTypes", "CTPairsProductClassification",
569
"CTPairsProductType", "CTProds12", "CTProds32", "OrdersMatrix" ]
570
gap> Length(CTProducts.CTPairs);
571
2346
572
gap> Collected(List(CTProducts.CTPairsProductType,l->l[2])); # order stats
573
[ [ 2, 165 ], [ 3, 255 ], [ 4, 173 ], [ 6, 693 ], [ 10, 2 ],
574
[ 12, 345 ], [ 15, 4 ], [ 20, 10 ], [ 30, 120 ], [ 60, 44 ],
575
[ infinity, 535 ] ]
576
]]>
577
</Example>
578
</Description>
579
</ManSection>
580
581
<ManSection>
582
<Func Name="LoadDatabaseOfNonbalancedProductsOfClassTranspositions"
583
Arg = ""/>
584
<Returns>
585
the name of the variable to which the record containing the database
586
of non-balanced products of class transpositions got bound.
587
</Returns>
588
<Description>
589
This database contains a list of the 24 pairs of class
590
transpositions which interchange residue classes with moduli
591
<M>\leq 6</M> and whose product is not balanced, as well as a list
592
of all 36 essentially distinct triples of such class transpositions
593
whose product has coprime multiplier and divisor.
594
<Example>
595
<![CDATA[
596
gap> LoadDatabaseOfNonbalancedProductsOfClassTranspositions();
597
"CTProductsNB"
598
gap> Set(RecNames(CTProductsNB));
599
[ "PairsOfCTsWhoseProductIsNotBalanced",
600
"TriplesOfCTsWhoseProductHasCoprimeMultiplierAndDivisor" ]
601
gap> CTProductsNB.PairsOfCTsWhoseProductIsNotBalanced;
602
[ [ ( 1(2), 2(4) ), ( 2(4), 3(6) ) ], [ ( 1(2), 2(4) ), ( 2(4), 5(6) ) ],
603
[ ( 1(2), 2(4) ), ( 2(4), 1(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 1(6) ) ],
604
[ ( 1(2), 0(4) ), ( 0(4), 3(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 5(6) ) ],
605
[ ( 0(2), 1(4) ), ( 1(4), 2(6) ) ], [ ( 0(2), 1(4) ), ( 1(4), 4(6) ) ],
606
[ ( 0(2), 1(4) ), ( 1(4), 0(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 4(6) ) ],
607
[ ( 0(2), 3(4) ), ( 3(4), 2(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 0(6) ) ],
608
[ ( 1(2), 2(6) ), ( 3(4), 2(6) ) ], [ ( 1(2), 2(6) ), ( 1(4), 2(6) ) ],
609
[ ( 1(2), 4(6) ), ( 3(4), 4(6) ) ], [ ( 1(2), 4(6) ), ( 1(4), 4(6) ) ],
610
[ ( 1(2), 0(6) ), ( 1(4), 0(6) ) ], [ ( 1(2), 0(6) ), ( 3(4), 0(6) ) ],
611
[ ( 0(2), 1(6) ), ( 2(4), 1(6) ) ], [ ( 0(2), 1(6) ), ( 0(4), 1(6) ) ],
612
[ ( 0(2), 3(6) ), ( 2(4), 3(6) ) ], [ ( 0(2), 3(6) ), ( 0(4), 3(6) ) ],
613
[ ( 0(2), 5(6) ), ( 2(4), 5(6) ) ], [ ( 0(2), 5(6) ), ( 0(4), 5(6) ) ]
614
]
615
]]>
616
</Example>
617
</Description>
618
</ManSection>
619
620
</Section>
621
622
<!-- #################################################################### -->
623
624
</Chapter>
625
626
<!-- #################################################################### -->
627
628