GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
<!-- #################################################################### -->1<!-- ## ## -->2<!-- ## databases.xml RCWA documentation Stefan Kohl ## -->3<!-- ## ## -->4<!-- #################################################################### -->56<Chapter Label="ch:Databases">7<Heading>8Databases of Residue-Class-Wise Affine Groups and -Mappings9</Heading>1011The &RCWA; package contains a number of databases of rcwa groups and rcwa12mappings. They can be loaded into a &GAP; session by the functions described13in this chapter.1415<!-- #################################################################### -->1617<Section Label="sec:Examples">18<Heading>The collection of examples</Heading>1920<ManSection>21<Func Name="LoadRCWAExamples" Arg = ""/>22<Returns>23the name of the variable to which the record containing the24collection of examples of rcwa groups and -mappings loaded from the file25<F>pkg/rcwa/examples/examples.g</F> got bound.26</Returns>27<Description>28The components of the examples record are records which contain the29individual groups and mappings.30A detailed description of some of the examples can be found in31Chapter <Ref Label="ch:Examples"/>.32<Example>33<![CDATA[34gap> LoadRCWAExamples();35"RCWAExamples"36gap> Set(RecNames(RCWAExamples));37[ "AbelianGroupOverPolynomialRing", "Basics", "CT3Z", "CTPZ",38"CheckingForSolvability", "ClassSwitches",39"ClassTranspositionProducts", "ClassTranspositionsAsCommutators",40"CollatzFactorizationOld", "CollatzMapping", "CollatzlikePerms",41"CoprimeMultDiv", "F2_PSL2Z", "Farkas", "FiniteQuotients",42"FiniteVsDenseCycles", "GF2xFiniteCycles", "GrigorchukQuotients",43"Hexagon", "HicksMullenYucasZavislak", "HigmanThompson",44"LongCyclesOfPrimeLength", "MatthewsLeigh",45"MaybeInfinitelyPresentedGroup", "ModuliOfPowers",46"OddNumberOfGens_FiniteOrder", "Semilocals",47"SlowlyContractingMappings", "Syl3_S9", "SymmetrizingCollatzTree",48"TameGroupByCommsOfWildPerms", "Venturini", "ZxZ" ]49gap> AssignGlobals(RCWAExamples.CollatzMapping);50The following global variables have been assigned:51[ "T", "T5", "T5m", "T5p", "Tm", "Tp" ]52]]>53</Example>54</Description>55</ManSection>5657</Section>5859<!-- #################################################################### -->6061<Section Label="sec:DatabasesOfRcwaGroups">62<Heading>Databases of rcwa groups</Heading>6364<ManSection>65<Func Name="LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions"66Arg = "" Label = "small database"/>67<Returns>68the name of the variable to which the record containing the69database of all groups generated by 3 class transpositions which70interchange residue classes with moduli <M>\leq 6</M> got bound.71</Returns>72<Description>73The database record has at least the following components (the index74<C>i</C> is always an integer in the range <C>[1..52394]</C>, and the75term <Q>indices</Q> always refers to list indices in that range):76<List>7778<Mark><C>cts</C></Mark>79<Item>80The list of all 69 class transpositions which interchange residue81classes with moduli <M>\leq 6</M>.82</Item>8384<Mark><C>grps</C></Mark>85<Item>86The list of the 52394 groups -- 21948 finite and 30446 infinite ones.87</Item>8889<Mark><C>sizes</C></Mark>90<Item>91The list of group orders --92it is <C>Size(grps[i]) = sizes[i]</C>.93</Item>9495<Mark><C>mods</C></Mark>96<Item>97The list of moduli of the groups --98it is <C>Mod(grps[i]) = mods[i]</C>.99</Item>100101<Mark><C>equalityclasses</C></Mark>102<Item>103A list of lists of indices <C>i</C> of groups which are known104to be equal, i.e. if <C>i</C> and <C>j</C> lie in the same list,105then <C>grps[i] = grps[j]</C>.106</Item>107108<Mark><C>samegroups</C></Mark>109<Item>110A list of lists, where <C>samegroups[i]</C> is a list of indices111of groups which are known to be equal to <C>grps[i]</C>.112</Item>113114<Mark><C>conjugacyclasses</C></Mark>115<Item>116A list of lists of indices of groups which are known to be conjugate117in RCWA(&ZZ;).118</Item>119120<Mark><C>subgroups</C></Mark>121<Item>122A list of lists, where <C>subgroups[i]</C> is a list of indices123of groups which are known to be proper subgroups of <C>grps[i]</C>.124</Item>125126<Mark><C>supergroups</C></Mark>127<Item>128A list of lists, where <C>supergroups[i]</C> is a list of indices129of groups which are known to be proper supergroups of <C>grps[i]</C>.130</Item>131132<Mark><C>chains</C></Mark>133<Item>134A list of lists, where each list contains the indices of the groups135in a descending chain of subgroups.136</Item>137138<Mark><C>respectedpartitions</C></Mark>139<Item>140The list of shortest respected partitions.141If <C>grps[i]</C> is finite, then <C>respectedpartitions[i]</C>142is a list of pairs (residue, modulus) for the residue classes143in the shortest respected partition <C>grps[i]</C>. If <C>grps[i]</C>144is infinite, then <C>respectedpartitions[i] = fail</C>.145</Item>146147<Mark><C>partitionlengths</C></Mark>148<Item>149The list of lengths of shortest respected partitions.150If the group <C>grps[i]</C> is finite, then <C>partitionlengths[i]</C>151is the length of the shortest respected partition of <C>grps[i]</C>.152If <C>grps[i]</C> is infinite, then <C>partitionlengths[i] = 0</C>.153</Item>154155<Mark><C>degrees</C></Mark>156<Item>157The list of permutation degrees, i.e. numbers of moved points,158in the action of the finite groups on their shortest respected159partitions. If there is no respected partition, i.e. if160<C>grps[i]</C> is infinite, then <C>degrees[i] = 0</C>.161</Item>162163<Mark><C>orbitlengths</C></Mark>164<Item>165The list of lists of orbit lengths in the action of the finite groups166on their shortest respected partitions.167If <C>grps[i]</C> is infinite, then <C>orbitlengths[i] = fail</C>.168</Item>169170<Mark><C>permgroupgens</C></Mark>171<Item>172The list of lists of generators of the isomorphic permutation groups173induced by the finite groups on their shortest respected partitions.174If <C>grps[i]</C> is infinite, then <C>permgroupgens[i] = fail</C>.175</Item>176177<Mark><C>stabilize_digitsum_base2_mod2</C></Mark>178<Item>179The list of indices of groups which stabilize the digit sum180in base 2 modulo 2.181</Item>182<Mark><C>stabilize_digitsum_base2_mod3</C></Mark>183<Item>184The list of indices of groups which stabilize the digit sum185in base 2 modulo 3.186</Item>187188<Mark><C>stabilize_digitsum_base3_mod2</C></Mark>189<Item>190The list of indices of groups which stabilize the digit sum191in base 3 modulo 2.192</Item>193194<Mark><C>freeproductcandidates</C></Mark>195<Item>196A list of indices of groups which may be isomorphic to the free197product of 3 copies of the cyclic group of order 2.198</Item>199200<Mark><C>freeproductlikes</C></Mark>201<Item>202A list of indices of groups which are not isomorphic to the free203product of 3 copies of the cyclic group of order 2, but204where the shortest relation indicating this is relatively long.205</Item>206207<Mark><C>abc_torsion</C></Mark>208<Item>209A list of pairs (index, order of product of generators) for all210infinite groups for which the product of the generators has211finite order.212</Item>213214<Mark><C>cyclist</C></Mark>215<Item>216A list described in the comments in217<F>rcwa/data/3ctsgroups6/spheresizecycles.g</F>.218</Item>219220<Mark><C>finiteorbits</C></Mark>221<Item>222A record described in the comments in223<F>rcwa/data/3ctsgroups6/finite-orbits.g</F>.224</Item>225226<Mark><C>intransitivemodulo</C></Mark>227<Item>228For every modulus <C>m</C> from 1 to 60, <C>intransitivemodulo[m]</C>229is the list of indices of groups none of whose orbits on &ZZ;230has nontrivial intersection with all residue classes231modulo <C>m</C>.232</Item>233234<Mark><C>trsstatus</C></Mark>235<Item>236A list of strings which describe what is known about whether the237groups <C>grps[i]</C> act transitively on the nonnegative integers238in their support, or how the computation has failed.239</Item>240241<Mark><C>orbitgrowthtype</C></Mark>242<Item>243A list of integers and lists of integers which encode what has been244observed heuristically on the growth of the orbits of the groups245<C>grps[i]</C> on &ZZ;.246</Item>247248</List>249Note that the database contains an entry for every unordered2503-tuple of distinct class transpositions in <C>cts</C>, which means251that it contains multiple copies of equal groups -- cf. the components252<C>equalityclasses</C> and <C>samegroups</C> described above. <P/>253254To mention an example, the group <C>grps[44132]</C> might be called255the <Q>Collatz group</Q> -- its action on the set of positive integers256which are not multiples of 6 is transitive if and only if the Collatz257conjecture holds.258<Example>259<![CDATA[260gap> LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions();261"3CTsGroups6"262gap> AssignGlobals(3CTsGroups6); # for convenience263The following global variables have been assigned:264[ "3CTsGroupsWithGivenOrbit", "Id3CTsGroup",265"ProbablyFixesDigitSumsModulo", "ProbablyStabilizesDigitSumsModulo",266"TriangleTypes", "abc_torsion", "chains", "conjugacyclasses", "cts",267"cyclist", "degrees", "epifromfpgroupto_ct23z",268"epifromfpgrouptocollatzgroup_c", "epifromfpgrouptocollatzgroup_t",269"equalityclasses", "finiteorbits", "freeproductcandidates",270"freeproductlikes", "groups", "grps", "intransitivemodulo",271"minwordlengthcoprimemultdiv", "minwordlengthnonbalanced", "mods",272"orbitgrowthtype", "orbitlengths", "partitionlengths", "permgroupgens",273"redundant_generator", "refinementseqlngs", "respectedpartitions",274"samegroups", "shortresidueclassorbitlengths", "sizes", "sizespos",275"sizesset", "spheresizebound_12", "spheresizebound_24",276"spheresizebound_4", "spheresizebound_6",277"stabilize_digitsum_base2_mod2", "stabilize_digitsum_base2_mod3",278"stabilize_digitsum_base3_mod2", "subgroups", "supergroups",279"trsstatus", "trsstatuspos", "trsstatusset" ]280gap> grps[44132]; # the "3n+1 group"281<(2(3),4(6)),(1(3),2(6)),(1(2),4(6))>282gap> trsstatus[44132]; # deciding this would solve the 3n+1 problem283"exceeded memory bound"284gap> Length(Set(sizes));2851066286gap> Maximum(Filtered(sizes,IsInt)); # order of largest finite group stored2877165033589793852697531456980706732548435609645091822296777976465116824959\2882135499174617837911754921014138184155204934961004073853323458315539461543\2894480515260818409913846161473536000000000000000000000000000000000000000000\290000000291gap> PrintFactorsInt(last);2922^200*3^103*5^48*7^28*11^16*13^13*17^8*19^6*23^6*29293gap> Positions(sizes,last);294[ 33814, 36548 ]295gap> grps{last};296[ <(1(5),4(5)),(0(3),1(6)),(3(4),0(6))>,297<(0(5),3(5)),(2(3),4(6)),(0(4),5(6))> ]298gap> samegroups[1];299[ 1, 2, 68 ]300gap> grps[1] = grps[68];301true302gap> Maximum(mods);30377760304gap> Positions(mods,last);305[ 26311, 26313, 26452, 26453, 26455, 26456, 26457, 26459, 26461, 26462,30627781, 27784, 27785, 27786, 27788, 27789, 27790, 27791, 27829, 27832,30730523, 30524, 30525, 30526, 30529, 30530, 30532, 30534, 32924, 32927,30832931, 32933 ]309gap> Set(sizes{last});310[ 45509262704640000 ]311gap> Collected(mods);312[ [ 0, 30446 ], [ 3, 1 ], [ 4, 37 ], [ 5, 120 ], [ 6, 1450 ], [ 8, 18 ],313[ 10, 45 ], [ 12, 3143 ], [ 15, 165 ], [ 18, 484 ], [ 20, 528 ],314[ 24, 1339 ], [ 30, 2751 ], [ 36, 2064 ], [ 40, 26 ], [ 48, 515 ],315[ 60, 2322 ], [ 72, 2054 ], [ 80, 44 ], [ 90, 108 ], [ 96, 108 ],316[ 108, 114 ], [ 120, 782 ], [ 144, 310 ], [ 160, 26 ], [ 180, 206 ],317[ 192, 6 ], [ 216, 72 ], [ 240, 304 ], [ 270, 228 ], [ 288, 14 ],318[ 360, 84 ], [ 432, 36 ], [ 480, 218 ], [ 540, 18 ], [ 720, 120 ],319[ 810, 112 ], [ 864, 8 ], [ 960, 94 ], [ 1080, 488 ], [ 1620, 44 ],320[ 1920, 38 ], [ 2160, 506 ], [ 3240, 34 ], [ 3840, 12 ],321[ 4320, 218 ], [ 4860, 16 ], [ 6480, 282 ], [ 7680, 10 ],322[ 8640, 16 ], [ 12960, 120 ], [ 14580, 2 ], [ 25920, 34 ],323[ 30720, 2 ], [ 38880, 12 ], [ 51840, 8 ], [ 77760, 32 ] ]324gap> Collected(trsstatus);325[ [ "> 1 orbit (mod m)", 593 ],326[ "Mod(U DecreasingOn) exceeded <maxmod>", 23 ],327[ "U DecreasingOn stable and exceeded memory bound", 11 ],328[ "U DecreasingOn stable for <maxeq> steps", 5753 ],329[ "exceeded memory bound", 497 ], [ "finite", 21948 ],330[ "intransitive, but finitely many orbits", 8 ],331[ "seemingly only finite orbits (long)", 1227 ],332[ "seemingly only finite orbits (medium)", 2501 ],333[ "seemingly only finite orbits (short)", 4816 ],334[ "seemingly only finite orbits (very long)", 230 ],335[ "seemingly only finite orbits (very long, very unclear)", 76 ],336[ "seemingly only finite orbits (very short)", 208 ],337[ "there are infinite orbits which have exponential sphere size growth"338, 2934 ],339[ "there are infinite orbits which have linear sphere size growth",34010881 ],341[ "there are infinite orbits which have unclear sphere size growth",34286 ], [ "transitive", 562 ],343[ "transitive up to one finite orbit", 40 ] ]344]]>345</Example>346</Description>347</ManSection>348349<ManSection>350<Func Name="LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions"351Arg = "max_m" Label = "both databases"/>352<Returns>353the name of the variable to which the record containing the354database of all groups generated by 3 class transpositions which355interchange residue classes with moduli less than or equal to356<A>max_m</A> got bound, where <A>max_m</A> is either 6 or 9.357</Returns>358<Description>359If <A>max_m</A> is 6, this is equivalent to the call of the function360without argument described above. If <A>max_m</A> is 9, the function361returns a record with at least the following components362(in the sequel, the indices <C>i > j > k</C> are always integers in363the range <C>[1..264]</C>):364<List>365366<Mark><C>cts</C></Mark>367<Item>368The list of all 264 class transpositions which interchange residue369classes with moduli <M>\leq 9</M>.370</Item>371372<Mark><C>mods</C></Mark>373<Item>374The list of moduli of the groups, i.e.375<C>Mod(Group(cts{[i,j,k]})) = mods[i][j][k]</C>.376</Item>377378<Mark><C>partlengths</C></Mark>379<Item>380The list of lengths of shortest respected partitions of the groups381in the database, i.e.382<C>Length(RespectedPartition(Group(cts{[i,j,k]})))</C> <C>=</C>383<C>partlengths[i][j][k]</C>.384</Item>385386<Mark><C>sizes</C></Mark>387<Item>388The list of orders of the groups, i.e.389<C>Size(Group(cts{[i,j,k]}))</C> <C>=</C> <C>sizes[i][j][k]</C>.390</Item>391392<Mark><C>All3CTs9Indices</C></Mark>393<Item>394A selector function which takes as argument a function <A>func</A>395of three arguments <A>i</A>, <A>j</A> and <A>k</A>. It returns a396list of all triples of indices <C>[<A>i</A>,<A>j</A>,<A>k</A>]</C>397where <M>264 \geq i > j > k \geq 1</M> for which <A>func</A>398returns <C>true</C>.399</Item>400401<Mark><C>All3CTs9Groups</C></Mark>402<Item>403A selector function which takes as argument a function <A>func</A>404of three arguments <A>i</A>, <A>j</A> and <A>k</A>. It returns a405list of all groups <C>Group(cts{[<A>i</A>,<A>j</A>,<A>k</A>]})</C>406from the database for which407<C><A>func</A>(<A>i</A>,<A>j</A>,<A>k</A>)</C> returns <C>true</C>.408</Item>409410</List>411<Example>412<![CDATA[413gap> LoadDatabaseOfGroupsGeneratedBy3ClassTranspositions(9);414"3CTsGroups9"415gap> AssignGlobals(3CTsGroups9);416The following global variables have been assigned:417[ "All3CTs9Groups", "All3CTs9Indices", "cts", "mods", "partlengths",418"sizes" ]419gap> PrintFactorsInt(Maximum(Filtered(Flat(sizes),n->n<>infinity)));4202^1283*3^673*5^305*7^193*11^98*13^84*17^50*19^41*23^25*29^13*31^4421]]>422</Example>423</Description>424</ManSection>425426<ManSection>427<Func Name="LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions"428Arg = ""/>429<Returns>430the name of the variable to which the record containing the431database of all groups generated by 4 class transpositions which432interchange residue classes with moduli <M>\leq 6</M> for which433all subgroups generated by 3 out of the 4 generators are finite434got bound.435</Returns>436<Description>437The record has at least the following components (the index <C>i</C>438is always an integer in the range <C>[1..140947]</C>, and the term439<Q>indices</Q> always refers to list indices in that range):440<List>441442<Mark><C>cts</C></Mark>443<Item>444The list of all 69 class transpositions which interchange residue445classes with moduli <M>\leq 6</M>.446</Item>447448<Mark><C>grps4_3finite</C></Mark>449<Item>450The list of all 140947 groups in the database.451</Item>452453<Mark><C>grps4_3finitepos</C></Mark>454<Item>455The list obtained from <C>grps4_3finite</C> by replacing every group456by the list of positions of its generators in the list <C>cts</C>.457</Item>458459<Mark><C>sizes4</C></Mark>460<Item>461The list of group orders --462it is <C>Size(grps4_3finite[i]) = sizes4[i]</C>.463</Item>464465<Mark><C>mods4</C></Mark>466<Item>467The list of moduli of the groups --468it is <C>Mod(grps4_3finite[i]) = mods4[i]</C>.469</Item>470471<Mark><C>conjugacyclasses4cts</C></Mark>472<Item>473A list of lists of indices of groups which are known to be conjugate474in RCWA(&ZZ;).475</Item>476477<Mark><C>grps4_3finite_reps</C></Mark>478<Item>479Tentative conjugacy class representatives from the list480<C>grps4_3finite</C> -- <E>tentative</E> in the sense that likely481some of the groups in the list are still conjugate.482</Item>483484</List>485Note that the database contains an entry for every suitable unordered4864-tuple of distinct class transpositions in <C>cts</C>, which means487that it contains multiple copies of equal groups.488<Example>489<![CDATA[490gap> LoadDatabaseOfGroupsGeneratedBy4ClassTranspositions();491"4CTsGroups6"492gap> AssignGlobals(4CTsGroups6);493The following global variables have been assigned:494[ "conjugacyclasses4cts", "cts", "grps4_3finite", "grps4_3finite_reps",495"grps4_3finitepos", "mods4", "sizes4", "sizes4pos", "sizes4set" ]496gap> Length(grps4_3finite);497140947498gap> Length(sizes4);499140947500gap> Size(grps4_3finite[1]);501518400502gap> sizes4[1];503518400504gap> Maximum(Filtered(sizes4,IsInt));505<integer 420...000 (3852 digits)>506gap> Modulus(grps4_3finite[1]);50712508gap> mods4[1];50912510gap> Length(Set(sizes4));5117339512gap> Length(Set(mods4));51391514gap> conjugacyclasses4cts{[1..4]};515[ [ 1, 23, 563, 867 ], [ 2, 859 ], [ 3, 622 ], [ 4, 16, 868, 873 ] ]516gap> grps4_3finite[1] = grps4_3finite[23];517true518gap> grps4_3finite[4] = grps4_3finite[16];519false520]]>521</Example>522</Description>523</ManSection>524525</Section>526527<!-- #################################################################### -->528529<Section Label="sec:DatabasesOfRcwaMappings">530<Heading>Databases of rcwa mappings</Heading>531532<ManSection>533<Func Name="LoadDatabaseOfProductsOf2ClassTranspositions"534Arg = ""/>535<Returns>536the name of the variable to which the record containing537the database of products of 2 class transpositions got bound.538</Returns>539<Description>540There are 69 class transpositions which interchange residue541classes with moduli <M>\leq 6</M>, thus there is a total of542<M>(69 \cdot 68)/2 = 2346</M> unordered pairs of distinct543such class transpositions. Looking at intersection-544and subset relations between the 4 involved residue classes,545we can distinguish 17 different <Q>intersection types</Q>546(or 18, together with the trivial case of equal class transpositions).547The intersection type does not fully determine the cycle548structure of the product. -- In total, we can distinguish54988 different cycle types of products of 2 class transpositions550which interchange residue classes with moduli <M>\leq 6</M>. <P/>551552The components of the database record are a list <C>CTPairs</C>553of all 2346 pairs of distinct class transpositions which interchange554residue classes with moduli <M>\leq 6</M>, functions555<C>CTPairsIntersectionTypes</C>, <C>CTPairIntersectionType</C> and556<C>CTPairProductType</C>, as well as data lists <C>OrdersMatrix</C>,557<C>CTPairsProductClassification</C>, <C>CTPairsProductType</C>,558<C>CTProds12</C> and <C>CTProds32</C>.559-- For the description of these components, see the file560<F>pkg/rcwa/data/ctproducts/ctprodclass.g</F>.561<Example>562<![CDATA[563gap> LoadDatabaseOfProductsOf2ClassTranspositions();564"CTProducts"565gap> Set(RecNames(CTProducts));566[ "CTPairIntersectionType", "CTPairProductType", "CTPairs",567"CTPairsIntersectionTypes", "CTPairsProductClassification",568"CTPairsProductType", "CTProds12", "CTProds32", "OrdersMatrix" ]569gap> Length(CTProducts.CTPairs);5702346571gap> Collected(List(CTProducts.CTPairsProductType,l->l[2])); # order stats572[ [ 2, 165 ], [ 3, 255 ], [ 4, 173 ], [ 6, 693 ], [ 10, 2 ],573[ 12, 345 ], [ 15, 4 ], [ 20, 10 ], [ 30, 120 ], [ 60, 44 ],574[ infinity, 535 ] ]575]]>576</Example>577</Description>578</ManSection>579580<ManSection>581<Func Name="LoadDatabaseOfNonbalancedProductsOfClassTranspositions"582Arg = ""/>583<Returns>584the name of the variable to which the record containing the database585of non-balanced products of class transpositions got bound.586</Returns>587<Description>588This database contains a list of the 24 pairs of class589transpositions which interchange residue classes with moduli590<M>\leq 6</M> and whose product is not balanced, as well as a list591of all 36 essentially distinct triples of such class transpositions592whose product has coprime multiplier and divisor.593<Example>594<![CDATA[595gap> LoadDatabaseOfNonbalancedProductsOfClassTranspositions();596"CTProductsNB"597gap> Set(RecNames(CTProductsNB));598[ "PairsOfCTsWhoseProductIsNotBalanced",599"TriplesOfCTsWhoseProductHasCoprimeMultiplierAndDivisor" ]600gap> CTProductsNB.PairsOfCTsWhoseProductIsNotBalanced;601[ [ ( 1(2), 2(4) ), ( 2(4), 3(6) ) ], [ ( 1(2), 2(4) ), ( 2(4), 5(6) ) ],602[ ( 1(2), 2(4) ), ( 2(4), 1(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 1(6) ) ],603[ ( 1(2), 0(4) ), ( 0(4), 3(6) ) ], [ ( 1(2), 0(4) ), ( 0(4), 5(6) ) ],604[ ( 0(2), 1(4) ), ( 1(4), 2(6) ) ], [ ( 0(2), 1(4) ), ( 1(4), 4(6) ) ],605[ ( 0(2), 1(4) ), ( 1(4), 0(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 4(6) ) ],606[ ( 0(2), 3(4) ), ( 3(4), 2(6) ) ], [ ( 0(2), 3(4) ), ( 3(4), 0(6) ) ],607[ ( 1(2), 2(6) ), ( 3(4), 2(6) ) ], [ ( 1(2), 2(6) ), ( 1(4), 2(6) ) ],608[ ( 1(2), 4(6) ), ( 3(4), 4(6) ) ], [ ( 1(2), 4(6) ), ( 1(4), 4(6) ) ],609[ ( 1(2), 0(6) ), ( 1(4), 0(6) ) ], [ ( 1(2), 0(6) ), ( 3(4), 0(6) ) ],610[ ( 0(2), 1(6) ), ( 2(4), 1(6) ) ], [ ( 0(2), 1(6) ), ( 0(4), 1(6) ) ],611[ ( 0(2), 3(6) ), ( 2(4), 3(6) ) ], [ ( 0(2), 3(6) ), ( 0(4), 3(6) ) ],612[ ( 0(2), 5(6) ), ( 2(4), 5(6) ) ], [ ( 0(2), 5(6) ), ( 0(4), 5(6) ) ]613]614]]>615</Example>616</Description>617</ManSection>618619</Section>620621<!-- #################################################################### -->622623</Chapter>624625<!-- #################################################################### -->626627628