Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346<?xml version="1.0" encoding="UTF-8"?>12<!-- This is an automatically generated file. -->3<Chapter Label="Chapter_4ti2_functions">4<Heading>4ti2 functions</Heading>56<Section Label="Chapter_4ti2_functions_Section_Groebner">7<Heading>Groebner</Heading>89These are wrappers of some use cases of 4ti2s groebner command.10<ManSection>11<Func Arg="matrix[,ordering]" Name="4ti2Interface_groebner_matrix" />12<Returns>A list of vectors13</Returns>14<Description>15This launches the 4ti2 groebner command with the16argument as matrix input. The output will be the17the Groebner basis of the binomial ideal18generated by the left kernel of the input matrix.19Note that this is different from 4ti2's convention20which takes the right kernel.21It returns the output of the groebner command22as a list of lists.23The second argument can be a vector to specify a24monomial ordering, in the way that x^m > x^n if25ordering*m > ordering*n26</Description>27</ManSection>282930<ManSection>31<Func Arg="basis[,ordering]" Name="4ti2Interface_groebner_basis" />32<Returns>A list of vectors33</Returns>34<Description>35This launches the 4ti2 groebner command with the36argument as matrix input.37The outpur will be the Groebner basis of the binomial38ideal generated by the rows of the input matrix.39It returns the output of the groebner command40as a list of lists.41The second argument is like before.42</Description>43</ManSection>444546<#Include Label="Groebner1">47</Section>484950<Section Label="Chapter_4ti2_functions_Section_Hilbert">51<Heading>Hilbert</Heading>5253These are wrappers of some use cases of 4ti2s hilbert command.54<ManSection Label="for_inequalities">55<Func Arg="A" Name="4ti2Interface_hilbert_inequalities" />56<Func Arg="A" Name="4ti2Interface_hilbert_inequalities_in_positive_orthant" />57<Returns>a list of vectors58</Returns>59<Description>60This function produces the hilbert basis of the cone C given61by <A>A</A>x >= 0 for all x in C. For the second function also62x >= 0 is assumed.63<P/>64</Description>65</ManSection>666768<ManSection>69<Func Arg="A" Name="4ti2Interface_hilbert_equalities_in_positive_orthant" />70<Returns>a list of vectors71</Returns>72<Description>73This function produces the hilbert basis of the cone C given by74the equations <A>A</A>x = 0 in the positive orthant of the coordinate system.75</Description>76</ManSection>777879<ManSection Label="for_equalities_and_inequalities">80<Func Arg="A, B" Name="4ti2Interface_hilbert_equalities_and_inequalities" />81<Func Arg="A, B" Name="4ti2Interface_hilbert_equalities_and_inequalities_in_positive_orthant" />82<Returns>a list of vectors83</Returns>84<Description>85This function produces the hilbert basis of the cone C given by86the equations <A>A</A>x = 0 and the inequations <A>B</A>x >= 0.87For the second function x>=0 is assumed.88<P/>89</Description>90</ManSection>919293<#Include Label="HilbertBasis">94<#Include Label="HilbertBasis2">95</Section>969798<Section Label="Chapter_4ti2_functions_Section_ZSolve">99<Heading>ZSolve</Heading>100101<ManSection Label="zsolve">102<Func Arg="eqs,eqs_rhs,ineqs,ineqs_rhs[,signs]" Name="4ti2Interface_zsolve_equalities_and_inequalities" />103<Func Arg="eqs,eqs_rhs,ineqs,ineqs_rhs" Name="4ti2Interface_zsolve_equalities_and_inequalities_in_positive_orthant" />104<Returns>a list of three matrices105</Returns>106<Description>107This function produces a basis of the system <A>eqs</A> = <A>eqs_rhs</A>108and <A>ineqs</A> >= <A>ineqs_rhs</A>. It outputs a list containing three matrices.109The first one is a list of points in a polytope, the second is the hilbert basis110of a cone. The set of solutions is then the minkowski sum of the polytope111generated by the points in the first list and the cone generated by the hilbert112basis in the second matrix. The third one is the free part of the solution polyhedron.113The optional argument <A>signs</A> must be a list of zeros and ones which length is114the number of variables. If the ith entry is one, the ith variable must be >= 0.115If the entry is 0, the number is arbitraty. Default is all zero.116It is also possible to set the option precision to 32, 64 or gmp.117The default, if no option is given, 32 is used.118Please note that a higher precision leads to slower computation.119For the second function xi >= 0 for all variables is assumed.120</Description>121</ManSection>122123124</Section>125126127<Section Label="Chapter_4ti2_functions_Section_Graver">128<Heading>Graver</Heading>129130<ManSection Label="graver">131<Func Arg="eqs[,signs]" Name="4ti2Interface_graver_equalities" />132<Func Arg="eqs" Name="4ti2Interface_graver_equalities_in_positive_orthant" />133<Returns>a matrix134</Returns>135<Description>136This calls the function graver with the equalities <A>eqs</A> = 0.137It outputs one list containing the138graver basis of the system.139the optional argument <A>signs</A> is used like in zsolve.140The second command assumes <M>x_i \geq 0</M>.141</Description>142</ManSection>143144145</Section>146147148</Chapter>149150151152