Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 4183461[1X6 [33X[0;0YUniversal Objects[133X[101X234[1X6.1 [33X[0;0YKernel[133X[101X56[33X[0;0YFor a given morphism [23X\alpha: A \rightarrow B[123X, a kernel of [23X\alpha[123X consists of7three parts:[133X89[30X [33X[0;6Yan object [23XK[123X,[133X1011[30X [33X[0;6Ya morphism [23X\iota: K \rightarrow A[123X such that [23X\alpha \circ \iota12\sim_{K,B} 0[123X,[133X1314[30X [33X[0;6Ya dependent function [23Xu[123X mapping each morphism [23X\tau: T \rightarrow A[123X15satisfying [23X\alpha \circ \tau \sim_{T,B} 0[123X to a morphism [23Xu(\tau): T16\rightarrow K[123X such that [23X\iota \circ u( \tau ) \sim_{T,A} \tau[123X.[133X1718[33X[0;0YThe triple [23X( K, \iota, u )[123X is called a [13Xkernel[113X of [23X\alpha[123X if the morphisms [23Xu(19\tau )[123X are uniquely determined up to congruence of morphisms. We denote the20object [23XK[123X of such a triple by [23X\mathrm{KernelObject}(\alpha)[123X. We say that the21morphism [23Xu(\tau)[123X is induced by the [13Xuniversal property of the kernel[113X. [23X\\ [123X22[23X\mathrm{KernelObject}[123X is a functorial operation. This means: for [23X\mu: A23\rightarrow A'[123X, [23X\nu: B \rightarrow B'[123X, [23X\alpha: A \rightarrow B[123X, [23X\alpha': A'24\rightarrow B'[123X such that [23X\nu \circ \alpha \sim_{A,B'} \alpha' \circ \mu[123X, we25obtain a morphism [23X\mathrm{KernelObject}( \alpha ) \rightarrow26\mathrm{KernelObject}( \alpha' )[123X.[133X2728[1X6.1-1 KernelObject[101X2930[29X[2XKernelObject[102X( [3Xalpha[103X ) [32X attribute31[6XReturns:[106X [33X[0;10Yan object[133X3233[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the kernel [23XK[123X of [23X\alpha[123X.[133X3435[1X6.1-2 KernelEmbedding[101X3637[29X[2XKernelEmbedding[102X( [3Xalpha[103X ) [32X attribute38[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{KernelObject}(\alpha),A)[123X[133X3940[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the kernel41embedding [23X\iota: \mathrm{KernelObject}(\alpha) \rightarrow A[123X.[133X4243[1X6.1-3 KernelEmbeddingWithGivenKernelObject[101X4445[29X[2XKernelEmbeddingWithGivenKernelObject[102X( [3Xalpha[103X, [3XK[103X ) [32X operation46[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(K,A)[123X[133X4748[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and an object [23XK =49\mathrm{KernelObject}(\alpha)[123X. The output is the kernel embedding [23X\iota: K50\rightarrow A[123X.[133X5152[1X6.1-4 KernelLift[101X5354[29X[2XKernelLift[102X( [3Xalpha[103X, [3Xtau[103X ) [32X operation55[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T,\mathrm{KernelObject}(\alpha))[123X[133X5657[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and a test morphism58[23X\tau: T \rightarrow A[123X satisfying [23X\alpha \circ \tau \sim_{T,B} 0[123X. The output59is the morphism [23Xu(\tau): T \rightarrow \mathrm{KernelObject}(\alpha)[123X given60by the universal property of the kernel.[133X6162[1X6.1-5 KernelLiftWithGivenKernelObject[101X6364[29X[2XKernelLiftWithGivenKernelObject[102X( [3Xalpha[103X, [3Xtau[103X, [3XK[103X ) [32X operation65[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T,K)[123X[133X6667[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X, a test morphism [23X\tau:68T \rightarrow A[123X satisfying [23X\alpha \circ \tau \sim_{T,B} 0[123X, and an object [23XK =69\mathrm{KernelObject}(\alpha)[123X. The output is the morphism [23Xu(\tau): T70\rightarrow K[123X given by the universal property of the kernel.[133X7172[1X6.1-6 AddKernelObject[101X7374[29X[2XAddKernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation75[6XReturns:[106X [33X[0;10Ynothing[133X7677[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the78given function [23XF[123X to the category for the basic operation [10XKernelObject[110X. [23XF:79\alpha \mapsto \mathrm{KernelObject}(\alpha)[123X.[133X8081[1X6.1-7 AddKernelEmbedding[101X8283[29X[2XAddKernelEmbedding[102X( [3XC[103X, [3XF[103X ) [32X operation84[6XReturns:[106X [33X[0;10Ynothing[133X8586[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the87given function [23XF[123X to the category for the basic operation [10XKernelEmbedding[110X. [23XF:88\alpha \mapsto \iota[123X.[133X8990[1X6.1-8 AddKernelEmbeddingWithGivenKernelObject[101X9192[29X[2XAddKernelEmbeddingWithGivenKernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation93[6XReturns:[106X [33X[0;10Ynothing[133X9495[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the96given function [23XF[123X to the category for the basic operation97[10XKernelEmbeddingWithGivenKernelObject[110X. [23XF: (\alpha, K) \mapsto \iota[123X.[133X9899[1X6.1-9 AddKernelLift[101X100101[29X[2XAddKernelLift[102X( [3XC[103X, [3XF[103X ) [32X operation102[6XReturns:[106X [33X[0;10Ynothing[133X103104[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the105given function [23XF[123X to the category for the basic operation [10XKernelLift[110X. [23XF:106(\alpha, \tau) \mapsto u(\tau)[123X.[133X107108[1X6.1-10 AddKernelLiftWithGivenKernelObject[101X109110[29X[2XAddKernelLiftWithGivenKernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation111[6XReturns:[106X [33X[0;10Ynothing[133X112113[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the114given function [23XF[123X to the category for the basic operation115[10XKernelLiftWithGivenKernelObject[110X. [23XF: (\alpha, \tau, K) \mapsto u[123X.[133X116117[1X6.1-11 KernelObjectFunctorial[101X118119[29X[2XKernelObjectFunctorial[102X( [3XL[103X ) [32X operation120[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{KernelObject}( \alpha ),121\mathrm{KernelObject}( \alpha' ) )[123X[133X122123[33X[0;0YThe argument is a list [23XL = [ \alpha: A \rightarrow B, [ \mu: A \rightarrow124A', \nu: B \rightarrow B' ], \alpha': A' \rightarrow B' ][123X of morphisms. The125output is the morphism [23X\mathrm{KernelObject}( \alpha ) \rightarrow126\mathrm{KernelObject}( \alpha' )[123X given by the functorality of the kernel.[133X127128[1X6.1-12 KernelObjectFunctorial[101X129130[29X[2XKernelObjectFunctorial[102X( [3Xalpha[103X, [3Xmu[103X, [3Xalpha_prime[103X ) [32X operation131[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{KernelObject}( \alpha ),132\mathrm{KernelObject}( \alpha' ) )[123X[133X133134[33X[0;0YThe arguments are three morphisms [23X\alpha: A \rightarrow B[123X, [23X\mu: A135\rightarrow A'[123X, [23X\alpha': A' \rightarrow B'[123X. The output is the morphism136[23X\mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' )[123X137given by the functorality of the kernel.[133X138139[1X6.1-13 KernelObjectFunctorialWithGivenKernelObjects[101X140141[29X[2XKernelObjectFunctorialWithGivenKernelObjects[102X( [3Xs[103X, [3Xalpha[103X, [3Xmu[103X, [3Xalpha_prime[103X, [3Xr[103X ) [32X operation142[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X143144[33X[0;0YThe arguments are an object [23Xs = \mathrm{KernelObject}( \alpha )[123X, three145morphisms [23X\alpha: A \rightarrow B[123X, [23X\mu: A \rightarrow A'[123X, [23X\alpha': A'146\rightarrow B'[123X, and an object [23Xr = \mathrm{KernelObject}( \alpha' )[123X. The147output is the morphism [23X\mathrm{KernelObject}( \alpha ) \rightarrow148\mathrm{KernelObject}( \alpha' )[123X given by the functorality of the kernel.[133X149150[1X6.1-14 AddKernelObjectFunctorialWithGivenKernelObjects[101X151152[29X[2XAddKernelObjectFunctorialWithGivenKernelObjects[102X( [3XC[103X, [3XF[103X ) [32X operation153[6XReturns:[106X [33X[0;10Ynothing[133X154155[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the156given function [23XF[123X to the category for the basic operation157[10XKernelObjectFunctorialWithGivenKernelObjects[110X. [23XF: (\mathrm{KernelObject}(158\alpha ), \alpha, \mu, \alpha', \mathrm{KernelObject}( \alpha' )) \mapsto159(\mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha'160))[123X.[133X161162163[1X6.2 [33X[0;0YCokernel[133X[101X164165[33X[0;0YFor a given morphism [23X\alpha: A \rightarrow B[123X, a cokernel of [23X\alpha[123X consists166of three parts:[133X167168[30X [33X[0;6Yan object [23XK[123X,[133X169170[30X [33X[0;6Ya morphism [23X\epsilon: B \rightarrow K[123X such that [23X\epsilon \circ \alpha171\sim_{A,K} 0[123X,[133X172173[30X [33X[0;6Ya dependent function [23Xu[123X mapping each [23X\tau: B \rightarrow T[123X satisfying174[23X\tau \circ \alpha \sim_{A, T} 0[123X to a morphism [23Xu(\tau):K \rightarrow T[123X175such that [23Xu(\tau) \circ \epsilon \sim_{B,T} \tau[123X.[133X176177[33X[0;0YThe triple [23X( K, \epsilon, u )[123X is called a [13Xcokernel[113X of [23X\alpha[123X if the178morphisms [23Xu( \tau )[123X are uniquely determined up to congruence of morphisms.179We denote the object [23XK[123X of such a triple by [23X\mathrm{CokernelObject}(\alpha)[123X.180We say that the morphism [23Xu(\tau)[123X is induced by the [13Xuniversal property of the181cokernel[113X. [23X\\ [123X [23X\mathrm{CokernelObject}[123X is a functorial operation. This means:182for [23X\mu: A \rightarrow A'[123X, [23X\nu: B \rightarrow B'[123X, [23X\alpha: A \rightarrow B[123X,183[23X\alpha': A' \rightarrow B'[123X such that [23X\nu \circ \alpha \sim_{A,B'} \alpha'184\circ \mu[123X, we obtain a morphism [23X\mathrm{CokernelObject}( \alpha )185\rightarrow \mathrm{CokernelObject}( \alpha' )[123X.[133X186187[1X6.2-1 CokernelObject[101X188189[29X[2XCokernelObject[102X( [3Xalpha[103X ) [32X attribute190[6XReturns:[106X [33X[0;10Yan object[133X191192[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the193cokernel [23XK[123X of [23X\alpha[123X.[133X194195[1X6.2-2 CokernelProjection[101X196197[29X[2XCokernelProjection[102X( [3Xalpha[103X ) [32X attribute198[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(B, \mathrm{CokernelObject}( \alpha ))[123X[133X199200[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the201cokernel projection [23X\epsilon: B \rightarrow \mathrm{CokernelObject}( \alpha202)[123X.[133X203204[1X6.2-3 CokernelProjectionWithGivenCokernelObject[101X205206[29X[2XCokernelProjectionWithGivenCokernelObject[102X( [3Xalpha[103X, [3XK[103X ) [32X operation207[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(B, K)[123X[133X208209[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and an object [23XK =210\mathrm{CokernelObject}(\alpha)[123X. The output is the cokernel projection211[23X\epsilon: B \rightarrow \mathrm{CokernelObject}( \alpha )[123X.[133X212213[1X6.2-4 CokernelColift[101X214215[29X[2XCokernelColift[102X( [3Xalpha[103X, [3Xtau[103X ) [32X operation216[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{CokernelObject}(\alpha),T)[123X[133X217218[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and a test morphism219[23X\tau: B \rightarrow T[123X satisfying [23X\tau \circ \alpha \sim_{A, T} 0[123X. The output220is the morphism [23Xu(\tau): \mathrm{CokernelObject}(\alpha) \rightarrow T[123X given221by the universal property of the cokernel.[133X222223[1X6.2-5 CokernelColiftWithGivenCokernelObject[101X224225[29X[2XCokernelColiftWithGivenCokernelObject[102X( [3Xalpha[103X, [3Xtau[103X, [3XK[103X ) [32X operation226[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(K,T)[123X[133X227228[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X, a test morphism [23X\tau:229B \rightarrow T[123X satisfying [23X\tau \circ \alpha \sim_{A, T} 0[123X, and an object [23XK230= \mathrm{CokernelObject}(\alpha)[123X. The output is the morphism [23Xu(\tau): K231\rightarrow T[123X given by the universal property of the cokernel.[133X232233[1X6.2-6 AddCokernelObject[101X234235[29X[2XAddCokernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation236[6XReturns:[106X [33X[0;10Ynothing[133X237238[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the239given function [23XF[123X to the category for the basic operation [10XCokernelObject[110X. [23XF:240\alpha \mapsto K[123X.[133X241242[1X6.2-7 AddCokernelProjection[101X243244[29X[2XAddCokernelProjection[102X( [3XC[103X, [3XF[103X ) [32X operation245[6XReturns:[106X [33X[0;10Ynothing[133X246247[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the248given function [23XF[123X to the category for the basic operation [10XCokernelProjection[110X.249[23XF: \alpha \mapsto \epsilon[123X.[133X250251[1X6.2-8 AddCokernelProjectionWithGivenCokernelObject[101X252253[29X[2XAddCokernelProjectionWithGivenCokernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation254[6XReturns:[106X [33X[0;10Ynothing[133X255256[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the257given function [23XF[123X to the category for the basic operation [10XCokernelProjection[110X.258[23XF: (\alpha, K) \mapsto \epsilon[123X.[133X259260[1X6.2-9 AddCokernelColift[101X261262[29X[2XAddCokernelColift[102X( [3XC[103X, [3XF[103X ) [32X operation263[6XReturns:[106X [33X[0;10Ynothing[133X264265[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the266given function [23XF[123X to the category for the basic operation [10XCokernelProjection[110X.267[23XF: (\alpha, \tau) \mapsto u(\tau)[123X.[133X268269[1X6.2-10 AddCokernelColiftWithGivenCokernelObject[101X270271[29X[2XAddCokernelColiftWithGivenCokernelObject[102X( [3XC[103X, [3XF[103X ) [32X operation272[6XReturns:[106X [33X[0;10Ynothing[133X273274[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the275given function [23XF[123X to the category for the basic operation [10XCokernelProjection[110X.276[23XF: (\alpha, \tau, K) \mapsto u(\tau)[123X.[133X277278[1X6.2-11 CokernelObjectFunctorial[101X279280[29X[2XCokernelObjectFunctorial[102X( [3XL[103X ) [32X operation281[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{CokernelObject}( \alpha ),282\mathrm{CokernelObject}( \alpha' ))[123X[133X283284[33X[0;0YThe argument is a list [23XL = [ \alpha: A \rightarrow B, [ \mu:A \rightarrow285A', \nu: B \rightarrow B' ], \alpha': A' \rightarrow B' ][123X. The output is the286morphism [23X\mathrm{CokernelObject}( \alpha ) \rightarrow287\mathrm{CokernelObject}( \alpha' )[123X given by the functorality of the288cokernel.[133X289290[1X6.2-12 CokernelObjectFunctorial[101X291292[29X[2XCokernelObjectFunctorial[102X( [3Xalpha[103X, [3Xnu[103X, [3Xalpha_prime[103X ) [32X operation293[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{CokernelObject}( \alpha ),294\mathrm{CokernelObject}( \alpha' ))[123X[133X295296[33X[0;0YThe arguments are three morphisms [23X\alpha: A \rightarrow B, \nu: B297\rightarrow B', \alpha': A' \rightarrow B'[123X. The output is the morphism298[23X\mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}(299\alpha' )[123X given by the functorality of the cokernel.[133X300301[1X6.2-13 CokernelObjectFunctorialWithGivenCokernelObjects[101X302303[29X[2XCokernelObjectFunctorialWithGivenCokernelObjects[102X( [3Xs[103X, [3Xalpha[103X, [3Xnu[103X, [3Xalpha_prime[103X, [3Xr[103X ) [32X operation304[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(s, r)[123X[133X305306[33X[0;0YThe arguments are an object [23Xs = \mathrm{CokernelObject}( \alpha )[123X, three307morphisms [23X\alpha: A \rightarrow B, \nu: B \rightarrow B', \alpha': A'308\rightarrow B'[123X, and an object [23Xr = \mathrm{CokernelObject}( \alpha' )[123X. The309output is the morphism [23X\mathrm{CokernelObject}( \alpha ) \rightarrow310\mathrm{CokernelObject}( \alpha' )[123X given by the functorality of the311cokernel.[133X312313[1X6.2-14 AddCokernelObjectFunctorialWithGivenCokernelObjects[101X314315[29X[2XAddCokernelObjectFunctorialWithGivenCokernelObjects[102X( [3XC[103X, [3XF[103X ) [32X operation316[6XReturns:[106X [33X[0;10Ynothing[133X317318[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the319given function [23XF[123X to the category for the basic operation320[10XCokernelObjectFunctorialWithGivenCokernelObjects[110X. [23XF:321(\mathrm{CokernelObject}( \alpha ), \alpha, \nu, \alpha',322\mathrm{CokernelObject}( \alpha' )) \mapsto (\mathrm{CokernelObject}( \alpha323) \rightarrow \mathrm{CokernelObject}( \alpha' ))[123X.[133X324325326[1X6.3 [33X[0;0YZero Object[133X[101X327328[33X[0;0YA zero object consists of three parts:[133X329330[30X [33X[0;6Yan object [23XZ[123X,[133X331332[30X [33X[0;6Ya function [23Xu_{\mathrm{in}}[123X mapping each object [23XA[123X to a morphism333[23Xu_{\mathrm{in}}(A): A \rightarrow Z[123X,[133X334335[30X [33X[0;6Ya function [23Xu_{\mathrm{out}}[123X mapping each object [23XA[123X to a morphism336[23Xu_{\mathrm{out}}(A): Z \rightarrow A[123X.[133X337338[33X[0;0YThe triple [23X(Z, u_{\mathrm{in}}, u_{\mathrm{out}})[123X is called a [13Xzero object[113X if339the morphisms [23Xu_{\mathrm{in}}(A)[123X, [23Xu_{\mathrm{out}}(A)[123X are uniquely340determined up to congruence of morphisms. We denote the object [23XZ[123X of such a341triple by [23X\mathrm{ZeroObject}[123X. We say that the morphisms [23Xu_{\mathrm{in}}(A)[123X342and [23Xu_{\mathrm{out}}(A)[123X are induced by the [13Xuniversal property of the zero343object[113X.[133X344345[1X6.3-1 ZeroObject[101X346347[29X[2XZeroObject[102X( [3XC[103X ) [32X attribute348[6XReturns:[106X [33X[0;10Yan object[133X349350[33X[0;0YThe argument is a category [23XC[123X. The output is a zero object [23XZ[123X of [23XC[123X.[133X351352[1X6.3-2 ZeroObject[101X353354[29X[2XZeroObject[102X( [3Xc[103X ) [32X attribute355[6XReturns:[106X [33X[0;10Yan object[133X356357[33X[0;0YThis is a convenience method. The argument is a cell [23Xc[123X. The output is a zero358object [23XZ[123X of the category [23XC[123X for which [23Xc \in C[123X.[133X359360[1X6.3-3 MorphismFromZeroObject[101X361362[29X[2XMorphismFromZeroObject[102X( [3XA[103X ) [32X attribute363[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{ZeroObject}, A)[123X[133X364365[33X[0;0YThis is a convenience method. The argument is an object [23XA[123X. It calls366[23X\mathrm{UniversalMorphismFromZeroObject}[123X on [23XA[123X.[133X367368[1X6.3-4 MorphismIntoZeroObject[101X369370[29X[2XMorphismIntoZeroObject[102X( [3XA[103X ) [32X attribute371[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, \mathrm{ZeroObject})[123X[133X372373[33X[0;0YThis is a convenience method. The argument is an object [23XA[123X. It calls374[23X\mathrm{UniversalMorphismIntoZeroObject}[123X on [23XA[123X.[133X375376[1X6.3-5 UniversalMorphismFromZeroObject[101X377378[29X[2XUniversalMorphismFromZeroObject[102X( [3XA[103X ) [32X attribute379[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{ZeroObject}, A)[123X[133X380381[33X[0;0YThe argument is an object [23XA[123X. The output is the universal morphism382[23Xu_{\mathrm{out}}: \mathrm{ZeroObject} \rightarrow A[123X.[133X383384[1X6.3-6 UniversalMorphismFromZeroObjectWithGivenZeroObject[101X385386[29X[2XUniversalMorphismFromZeroObjectWithGivenZeroObject[102X( [3XA[103X, [3XZ[103X ) [32X operation387[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(Z, A)[123X[133X388389[33X[0;0YThe arguments are an object [23XA[123X, and a zero object [23XZ = \mathrm{ZeroObject}[123X.390The output is the universal morphism [23Xu_{\mathrm{out}}: Z \rightarrow A[123X.[133X391392[1X6.3-7 UniversalMorphismIntoZeroObject[101X393394[29X[2XUniversalMorphismIntoZeroObject[102X( [3XA[103X ) [32X attribute395[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, \mathrm{ZeroObject})[123X[133X396397[33X[0;0YThe argument is an object [23XA[123X. The output is the universal morphism398[23Xu_{\mathrm{in}}: A \rightarrow \mathrm{ZeroObject}[123X.[133X399400[1X6.3-8 UniversalMorphismIntoZeroObjectWithGivenZeroObject[101X401402[29X[2XUniversalMorphismIntoZeroObjectWithGivenZeroObject[102X( [3XA[103X, [3XZ[103X ) [32X operation403[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, Z)[123X[133X404405[33X[0;0YThe arguments are an object [23XA[123X, and a zero object [23XZ = \mathrm{ZeroObject}[123X.406The output is the universal morphism [23Xu_{\mathrm{in}}: A \rightarrow Z[123X.[133X407408[1X6.3-9 IsomorphismFromZeroObjectToInitialObject[101X409410[29X[2XIsomorphismFromZeroObjectToInitialObject[102X( [3XC[103X ) [32X attribute411[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{ZeroObject},412\mathrm{InitialObject})[123X[133X413414[33X[0;0YThe argument is a category [23XC[123X. The output is the unique isomorphism415[23X\mathrm{ZeroObject} \rightarrow \mathrm{InitialObject}[123X.[133X416417[1X6.3-10 IsomorphismFromInitialObjectToZeroObject[101X418419[29X[2XIsomorphismFromInitialObjectToZeroObject[102X( [3XC[103X ) [32X attribute420[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{InitialObject},421\mathrm{ZeroObject})[123X[133X422423[33X[0;0YThe argument is a category [23XC[123X. The output is the unique isomorphism424[23X\mathrm{InitialObject} \rightarrow \mathrm{ZeroObject}[123X.[133X425426[1X6.3-11 IsomorphismFromZeroObjectToTerminalObject[101X427428[29X[2XIsomorphismFromZeroObjectToTerminalObject[102X( [3XC[103X ) [32X attribute429[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{ZeroObject},430\mathrm{TerminalObject})[123X[133X431432[33X[0;0YThe argument is a category [23XC[123X. The output is the unique isomorphism433[23X\mathrm{ZeroObject} \rightarrow \mathrm{TerminalObject}[123X.[133X434435[1X6.3-12 IsomorphismFromTerminalObjectToZeroObject[101X436437[29X[2XIsomorphismFromTerminalObjectToZeroObject[102X( [3XC[103X ) [32X attribute438[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{TerminalObject},439\mathrm{ZeroObject})[123X[133X440441[33X[0;0YThe argument is a category [23XC[123X. The output is the unique isomorphism442[23X\mathrm{TerminalObject} \rightarrow \mathrm{ZeroObject}[123X.[133X443444[1X6.3-13 AddZeroObject[101X445446[29X[2XAddZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation447[6XReturns:[106X [33X[0;10Ynothing[133X448449[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the450given function [23XF[123X to the category for the basic operation [10XZeroObject[110X. [23XF: ()451\mapsto \mathrm{ZeroObject}[123X.[133X452453[1X6.3-14 AddUniversalMorphismIntoZeroObject[101X454455[29X[2XAddUniversalMorphismIntoZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation456[6XReturns:[106X [33X[0;10Ynothing[133X457458[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the459given function [23XF[123X to the category for the basic operation460[10XUniversalMorphismIntoZeroObject[110X. [23XF: A \mapsto u_{\mathrm{in}}(A)[123X.[133X461462[1X6.3-15 AddUniversalMorphismIntoZeroObjectWithGivenZeroObject[101X463464[29X[2XAddUniversalMorphismIntoZeroObjectWithGivenZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation465[6XReturns:[106X [33X[0;10Ynothing[133X466467[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the468given function [23XF[123X to the category for the basic operation469[10XUniversalMorphismIntoZeroObjectWithGivenZeroObject[110X. [23XF: (A, Z) \mapsto470u_{\mathrm{in}}(A)[123X.[133X471472[1X6.3-16 AddUniversalMorphismFromZeroObject[101X473474[29X[2XAddUniversalMorphismFromZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation475[6XReturns:[106X [33X[0;10Ynothing[133X476477[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the478given function [23XF[123X to the category for the basic operation479[10XUniversalMorphismFromZeroObject[110X. [23XF: A \mapsto u_{\mathrm{out}}(A)[123X.[133X480481[1X6.3-17 AddUniversalMorphismFromZeroObjectWithGivenZeroObject[101X482483[29X[2XAddUniversalMorphismFromZeroObjectWithGivenZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation484[6XReturns:[106X [33X[0;10Ynothing[133X485486[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the487given function [23XF[123X to the category for the basic operation488[10XUniversalMorphismFromZeroObjectWithGivenZeroObject[110X. [23XF: (A,Z) \mapsto489u_{\mathrm{out}}(A)[123X.[133X490491[1X6.3-18 AddIsomorphismFromZeroObjectToInitialObject[101X492493[29X[2XAddIsomorphismFromZeroObjectToInitialObject[102X( [3XC[103X, [3XF[103X ) [32X operation494[6XReturns:[106X [33X[0;10Ynothing[133X495496[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the497given function [23XF[123X to the category for the basic operation498[10XIsomorphismFromZeroObjectToInitialObject[110X. [23XF: () \mapsto (\mathrm{ZeroObject}499\rightarrow \mathrm{InitialObject})[123X.[133X500501[1X6.3-19 AddIsomorphismFromInitialObjectToZeroObject[101X502503[29X[2XAddIsomorphismFromInitialObjectToZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation504[6XReturns:[106X [33X[0;10Ynothing[133X505506[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the507given function [23XF[123X to the category for the basic operation508[10XIsomorphismFromInitialObjectToZeroObject[110X. [23XF: () \mapsto (509\mathrm{InitialObject} \rightarrow \mathrm{ZeroObject})[123X.[133X510511[1X6.3-20 AddIsomorphismFromZeroObjectToTerminalObject[101X512513[29X[2XAddIsomorphismFromZeroObjectToTerminalObject[102X( [3XC[103X, [3XF[103X ) [32X operation514[6XReturns:[106X [33X[0;10Ynothing[133X515516[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the517given function [23XF[123X to the category for the basic operation518[10XIsomorphismFromZeroObjectToTerminalObject[110X. [23XF: () \mapsto519(\mathrm{ZeroObject} \rightarrow \mathrm{TerminalObject})[123X.[133X520521[1X6.3-21 AddIsomorphismFromTerminalObjectToZeroObject[101X522523[29X[2XAddIsomorphismFromTerminalObjectToZeroObject[102X( [3XC[103X, [3XF[103X ) [32X operation524[6XReturns:[106X [33X[0;10Ynothing[133X525526[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the527given function [23XF[123X to the category for the basic operation528[10XIsomorphismFromTerminalObjectToZeroObject[110X. [23XF: () \mapsto (529\mathrm{TerminalObject} \rightarrow \mathrm{ZeroObject})[123X.[133X530531[1X6.3-22 ZeroObjectFunctorial[101X532533[29X[2XZeroObjectFunctorial[102X( [3XC[103X ) [32X attribute534[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{ZeroObject},535\mathrm{ZeroObject} )[123X[133X536537[33X[0;0YThe argument is a category [23XC[123X. The output is the unique morphism538[23X\mathrm{ZeroObject} \rightarrow \mathrm{ZeroObject}[123X.[133X539540[1X6.3-23 AddZeroObjectFunctorial[101X541542[29X[2XAddZeroObjectFunctorial[102X( [3XC[103X, [3XF[103X ) [32X operation543[6XReturns:[106X [33X[0;10Ynothing[133X544545[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the546given function [23XF[123X to the category for the basic operation547[10XZeroObjectFunctorial[110X. [23XF: () \mapsto (T \rightarrow T)[123X.[133X548549550[1X6.4 [33X[0;0YTerminal Object[133X[101X551552[33X[0;0YA terminal object consists of two parts:[133X553554[30X [33X[0;6Yan object [23XT[123X,[133X555556[30X [33X[0;6Ya function [23Xu[123X mapping each object [23XA[123X to a morphism [23Xu( A ): A \rightarrow557T[123X.[133X558559[33X[0;0YThe pair [23X( T, u )[123X is called a [13Xterminal object[113X if the morphisms [23Xu( A )[123X are560uniquely determined up to congruence of morphisms. We denote the object [23XT[123X of561such a pair by [23X\mathrm{TerminalObject}[123X. We say that the morphism [23Xu( A )[123X is562induced by the [13Xuniversal property of the terminal object[113X. [23X\\ [123X563[23X\mathrm{TerminalObject}[123X is a functorial operation. This just means: There564exists a unique morphism [23XT \rightarrow T[123X.[133X565566[1X6.4-1 TerminalObject[101X567568[29X[2XTerminalObject[102X( [3XC[103X ) [32X attribute569[6XReturns:[106X [33X[0;10Yan object[133X570571[33X[0;0YThe argument is a category [23XC[123X. The output is a terminal object [23XT[123X of [23XC[123X.[133X572573[1X6.4-2 TerminalObject[101X574575[29X[2XTerminalObject[102X( [3Xc[103X ) [32X attribute576[6XReturns:[106X [33X[0;10Yan object[133X577578[33X[0;0YThis is a convenience method. The argument is a cell [23Xc[123X. The output is a579terminal object [23XT[123X of the category [23XC[123X for which [23Xc \in C[123X.[133X580581[1X6.4-3 UniversalMorphismIntoTerminalObject[101X582583[29X[2XUniversalMorphismIntoTerminalObject[102X( [3XA[103X ) [32X attribute584[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( A, \mathrm{TerminalObject} )[123X[133X585586[33X[0;0YThe argument is an object [23XA[123X. The output is the universal morphism [23Xu(A): A587\rightarrow \mathrm{TerminalObject}[123X.[133X588589[1X6.4-4 UniversalMorphismIntoTerminalObjectWithGivenTerminalObject[101X590591[29X[2XUniversalMorphismIntoTerminalObjectWithGivenTerminalObject[102X( [3XA[103X, [3XT[103X ) [32X operation592[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( A, T )[123X[133X593594[33X[0;0YThe argument are an object [23XA[123X, and an object [23XT = \mathrm{TerminalObject}[123X. The595output is the universal morphism [23Xu(A): A \rightarrow T[123X.[133X596597[1X6.4-5 AddTerminalObject[101X598599[29X[2XAddTerminalObject[102X( [3XC[103X, [3XF[103X ) [32X operation600[6XReturns:[106X [33X[0;10Ynothing[133X601602[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the603given function [23XF[123X to the category for the basic operation [10XTerminalObject[110X. [23XF:604() \mapsto T[123X.[133X605606[1X6.4-6 AddUniversalMorphismIntoTerminalObject[101X607608[29X[2XAddUniversalMorphismIntoTerminalObject[102X( [3XC[103X, [3XF[103X ) [32X operation609[6XReturns:[106X [33X[0;10Ynothing[133X610611[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the612given function [23XF[123X to the category for the basic operation613[10XUniversalMorphismIntoTerminalObject[110X. [23XF: A \mapsto u(A)[123X.[133X614615[1X6.4-7 AddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject[101X616617[29X[2XAddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject[102X( [3XC[103X, [3XF[103X ) [32X operation618[6XReturns:[106X [33X[0;10Ynothing[133X619620[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the621given function [23XF[123X to the category for the basic operation622[10XUniversalMorphismIntoTerminalObjectWithGivenTerminalObject[110X. [23XF: (A,T) \mapsto623u(A)[123X.[133X624625[1X6.4-8 TerminalObjectFunctorial[101X626627[29X[2XTerminalObjectFunctorial[102X( [3XC[103X ) [32X attribute628[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{TerminalObject},629\mathrm{TerminalObject} )[123X[133X630631[33X[0;0YThe argument is a category [23XC[123X. The output is the unique morphism632[23X\mathrm{TerminalObject} \rightarrow \mathrm{TerminalObject}[123X.[133X633634[1X6.4-9 AddTerminalObjectFunctorial[101X635636[29X[2XAddTerminalObjectFunctorial[102X( [3XC[103X, [3XF[103X ) [32X operation637[6XReturns:[106X [33X[0;10Ynothing[133X638639[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the640given function [23XF[123X to the category for the basic operation641[10XTerminalObjectFunctorial[110X. [23XF: () \mapsto (T \rightarrow T)[123X.[133X642643644[1X6.5 [33X[0;0YInitial Object[133X[101X645646[33X[0;0YAn initial object consists of two parts:[133X647648[30X [33X[0;6Yan object [23XI[123X,[133X649650[30X [33X[0;6Ya function [23Xu[123X mapping each object [23XA[123X to a morphism [23Xu( A ): I \rightarrow651A[123X.[133X652653[33X[0;0YThe pair [23X(I,u)[123X is called a [13Xinitial object[113X if the morphisms [23Xu(A)[123X are uniquely654determined up to congruence of morphisms. We denote the object [23XI[123X of such a655triple by [23X\mathrm{InitialObject}[123X. We say that the morphism [23Xu( A )[123X is induced656by the [13Xuniversal property of the initial object[113X. [23X\\ [123X [23X\mathrm{InitialObject}[123X657is a functorial operation. This just means: There exists a unique morphisms658[23XI \rightarrow I[123X.[133X659660[1X6.5-1 InitialObject[101X661662[29X[2XInitialObject[102X( [3XC[103X ) [32X attribute663[6XReturns:[106X [33X[0;10Yan object[133X664665[33X[0;0YThe argument is a category [23XC[123X. The output is an initial object [23XI[123X of [23XC[123X.[133X666667[1X6.5-2 InitialObject[101X668669[29X[2XInitialObject[102X( [3Xc[103X ) [32X attribute670[6XReturns:[106X [33X[0;10Yan object[133X671672[33X[0;0YThis is a convenience method. The argument is a cell [23Xc[123X. The output is an673initial object [23XI[123X of the category [23XC[123X for which [23Xc \in C[123X.[133X674675[1X6.5-3 UniversalMorphismFromInitialObject[101X676677[29X[2XUniversalMorphismFromInitialObject[102X( [3XA[103X ) [32X attribute678[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{InitialObject} \rightarrow A)[123X.[133X679680[33X[0;0YThe argument is an object [23XA[123X. The output is the universal morphism [23Xu(A):681\mathrm{InitialObject} \rightarrow A[123X.[133X682683[1X6.5-4 UniversalMorphismFromInitialObjectWithGivenInitialObject[101X684685[29X[2XUniversalMorphismFromInitialObjectWithGivenInitialObject[102X( [3XA[103X, [3XI[103X ) [32X operation686[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{InitialObject} \rightarrow A)[123X.[133X687688[33X[0;0YThe arguments are an object [23XA[123X, and an object [23XI = \mathrm{InitialObject}[123X. The689output is the universal morphism [23Xu(A): \mathrm{InitialObject} \rightarrow A[123X.[133X690691[1X6.5-5 AddInitialObject[101X692693[29X[2XAddInitialObject[102X( [3XC[103X, [3XF[103X ) [32X operation694[6XReturns:[106X [33X[0;10Ynothing[133X695696[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the697given function [23XF[123X to the category for the basic operation [10XInitialObject[110X. [23XF:698() \mapsto I[123X.[133X699700[1X6.5-6 AddUniversalMorphismFromInitialObject[101X701702[29X[2XAddUniversalMorphismFromInitialObject[102X( [3XC[103X, [3XF[103X ) [32X operation703[6XReturns:[106X [33X[0;10Ynothing[133X704705[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the706given function [23XF[123X to the category for the basic operation707[10XUniversalMorphismFromInitialObject[110X. [23XF: A \mapsto u(A)[123X.[133X708709[1X6.5-7 AddUniversalMorphismFromInitialObjectWithGivenInitialObject[101X710711[29X[2XAddUniversalMorphismFromInitialObjectWithGivenInitialObject[102X( [3XC[103X, [3XF[103X ) [32X operation712[6XReturns:[106X [33X[0;10Ynothing[133X713714[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the715given function [23XF[123X to the category for the basic operation716[10XUniversalMorphismFromInitialObjectWithGivenInitialObject[110X. [23XF: (A,I) \mapsto717u(A)[123X.[133X718719[1X6.5-8 InitialObjectFunctorial[101X720721[29X[2XInitialObjectFunctorial[102X( [3XC[103X ) [32X attribute722[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{InitialObject},723\mathrm{InitialObject} )[123X[133X724725[33X[0;0YThe argument is a category [23XC[123X. The output is the unique morphism726[23X\mathrm{InitialObject} \rightarrow \mathrm{InitialObject}[123X.[133X727728[1X6.5-9 AddInitialObjectFunctorial[101X729730[29X[2XAddInitialObjectFunctorial[102X( [3XC[103X, [3XF[103X ) [32X operation731[6XReturns:[106X [33X[0;10Ynothing[133X732733[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the734given function [23XF[123X to the category for the basic operation735[10XInitialObjectFunctorial[110X. [23XF: () \rightarrow ( I \rightarrow I )[123X.[133X736737738[1X6.6 [33X[0;0YDirect Sum[133X[101X739740[33X[0;0YFor a given list [23XD = (S_1, \dots, S_n)[123X in an Ab-category, a direct sum741consists of five parts:[133X742743[30X [33X[0;6Yan object [23XS[123X,[133X744745[30X [33X[0;6Ya list of morphisms [23X\pi = (\pi_i: S \rightarrow S_i)_{i = 1 \dots n}[123X,[133X746747[30X [33X[0;6Ya list of morphisms [23X\iota = (\iota_i: S_i \rightarrow S)_{i = 1 \dots748n}[123X,[133X749750[30X [33X[0;6Ya dependent function [23Xu_{\mathrm{in}}[123X mapping every list [23X\tau = (751\tau_i: T \rightarrow S_i )_{i = 1 \dots n}[123X to a morphism752[23Xu_{\mathrm{in}}(\tau): T \rightarrow S[123X such that [23X\pi_i \circ753u_{\mathrm{in}}(\tau) \sim_{T,S_i} \tau_i[123X for all [23Xi = 1, \dots, n[123X.[133X754755[30X [33X[0;6Ya dependent function [23Xu_{\mathrm{out}}[123X mapping every list [23X\tau = (756\tau_i: S_i \rightarrow T )_{i = 1 \dots n}[123X to a morphism757[23Xu_{\mathrm{out}}(\tau): S \rightarrow T[123X such that758[23Xu_{\mathrm{out}}(\tau) \circ \iota_i \sim_{S_i, T} \tau_i[123X for all [23Xi =7591, \dots, n[123X,[133X760761[33X[0;0Ysuch that[133X762763[30X [33X[0;6Y[23X\sum_{i=1}^{n} \iota_i \circ \pi_i = \mathrm{id}_S[123X,[133X764765[30X [33X[0;6Y[23X\pi_j \circ \iota_i = \delta_{i,j}[123X,[133X766767[33X[0;0Ywhere [23X\delta_{i,j} \in \mathrm{Hom}( S_i, S_j )[123X is the identity if [23Xi=j[123X, and768[23X0[123X otherwise. The [23X5[123X-tuple [23X(S, \pi, \iota, u_{\mathrm{in}}, u_{\mathrm{out}})[123X769is called a [13Xdirect sum[113X of [23XD[123X. We denote the object [23XS[123X of such a [23X5[123X-tuple by770[23X\bigoplus_{i=1}^n S_i[123X. We say that the morphisms [23Xu_{\mathrm{in}}(\tau),771u_{\mathrm{out}}(\tau)[123X are induced by the [13Xuniversal property of the direct772sum[113X. [23X\\ [123X [23X\mathrm{DirectSum}[123X is a functorial operation. This means: For773[23X(\mu_i: S_i \rightarrow S'_i)_{i=1\dots n}[123X, we obtain a morphism774[23X\bigoplus_{i=1}^n S_i \rightarrow \bigoplus_{i=1}^n S_i'[123X.[133X775776[1X6.6-1 DirectSumOp[101X777778[29X[2XDirectSumOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation779[6XReturns:[106X [33X[0;10Yan object[133X780781[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X and an object for782method selection. The output is the direct sum [23X\bigoplus_{i=1}^n S_i[123X.[133X783784[1X6.6-2 ProjectionInFactorOfDirectSum[101X785786[29X[2XProjectionInFactorOfDirectSum[102X( [3XD[103X, [3Xk[103X ) [32X operation787[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i, S_k )[123X[133X788789[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X and an integer [23Xk[123X.790The output is the [23Xk[123X-th projection [23X\pi_k: \bigoplus_{i=1}^n S_i \rightarrow791S_k[123X.[133X792793[1X6.6-3 ProjectionInFactorOfDirectSumOp[101X794795[29X[2XProjectionInFactorOfDirectSumOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_object[103X ) [32X operation796[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i, S_k )[123X[133X797798[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, an integer [23Xk[123X, and799an object for method selection. The output is the [23Xk[123X-th projection [23X\pi_k:800\bigoplus_{i=1}^n S_i \rightarrow S_k[123X.[133X801802[1X6.6-4 ProjectionInFactorOfDirectSumWithGivenDirectSum[101X803804[29X[2XProjectionInFactorOfDirectSumWithGivenDirectSum[102X( [3XD[103X, [3Xk[103X, [3XS[103X ) [32X operation805[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( S, S_k )[123X[133X806807[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, an integer [23Xk[123X, and808an object [23XS = \bigoplus_{i=1}^n S_i[123X. The output is the [23Xk[123X-th projection809[23X\pi_k: S \rightarrow S_k[123X.[133X810811[1X6.6-5 InjectionOfCofactorOfDirectSum[101X812813[29X[2XInjectionOfCofactorOfDirectSum[102X( [3XD[103X, [3Xk[103X ) [32X operation814[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( S_k, \bigoplus_{i=1}^n S_i )[123X[133X815816[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X and an integer [23Xk[123X.817The output is the [23Xk[123X-th injection [23X\iota_k: S_k \rightarrow \bigoplus_{i=1}^n818S_i[123X.[133X819820[1X6.6-6 InjectionOfCofactorOfDirectSumOp[101X821822[29X[2XInjectionOfCofactorOfDirectSumOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_object[103X ) [32X operation823[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( S_k, \bigoplus_{i=1}^n S_i )[123X[133X824825[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, an integer [23Xk[123X, and826an object for method selection. The output is the [23Xk[123X-th injection [23X\iota_k:827S_k \rightarrow \bigoplus_{i=1}^n S_i[123X.[133X828829[1X6.6-7 InjectionOfCofactorOfDirectSumWithGivenDirectSum[101X830831[29X[2XInjectionOfCofactorOfDirectSumWithGivenDirectSum[102X( [3XD[103X, [3Xk[103X, [3XS[103X ) [32X operation832[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( S_k, S )[123X[133X833834[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, an integer [23Xk[123X, and835an object [23XS = \bigoplus_{i=1}^n S_i[123X. The output is the [23Xk[123X-th injection836[23X\iota_k: S_k \rightarrow S[123X.[133X837838[1X6.6-8 UniversalMorphismIntoDirectSum[101X839840[29X[2XUniversalMorphismIntoDirectSum[102X( [3Xarg[103X ) [32X function841[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \bigoplus_{i=1}^n S_i)[123X[133X842843[33X[0;0YThis is a convenience method. There are three different ways to use this844method:[133X845846[30X [33X[0;6YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X and a list847of morphisms [23X\tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}[123X.[133X848849[30X [33X[0;6YThe argument is a list of morphisms [23X\tau = ( \tau_i: T \rightarrow S_i850)_{i = 1 \dots n}[123X.[133X851852[30X [33X[0;6YThe arguments are morphisms [23X\tau_1: T \rightarrow S_1, \dots, \tau_n:853T \rightarrow S_n[123X.[133X854855[33X[0;0YThe output is the morphism [23Xu_{\mathrm{in}}(\tau): T \rightarrow856\bigoplus_{i=1}^n S_i[123X given by the universal property of the direct sum.[133X857858[1X6.6-9 UniversalMorphismIntoDirectSumOp[101X859860[29X[2XUniversalMorphismIntoDirectSumOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_object[103X ) [32X operation861[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \bigoplus_{i=1}^n S_i)[123X[133X862863[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, a list of864morphisms [23X\tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}[123X, and an865object for method selection. The output is the morphism866[23Xu_{\mathrm{in}}(\tau): T \rightarrow \bigoplus_{i=1}^n S_i[123X given by the867universal property of the direct sum.[133X868869[1X6.6-10 UniversalMorphismIntoDirectSumWithGivenDirectSum[101X870871[29X[2XUniversalMorphismIntoDirectSumWithGivenDirectSum[102X( [3XD[103X, [3Xtau[103X, [3XS[103X ) [32X operation872[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, S)[123X[133X873874[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, a list of875morphisms [23X\tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}[123X, and an876object [23XS = \bigoplus_{i=1}^n S_i[123X. The output is the morphism877[23Xu_{\mathrm{in}}(\tau): T \rightarrow S[123X given by the universal property of878the direct sum.[133X879880[1X6.6-11 UniversalMorphismFromDirectSum[101X881882[29X[2XUniversalMorphismFromDirectSum[102X( [3Xarg[103X ) [32X function883[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigoplus_{i=1}^n S_i, T)[123X[133X884885[33X[0;0YThis is a convenience method. There are three different ways to use this886method:[133X887888[30X [33X[0;6YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X and a list889of morphisms [23X\tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}[123X.[133X890891[30X [33X[0;6YThe argument is a list of morphisms [23X\tau = ( \tau_i: S_i \rightarrow T892)_{i = 1 \dots n}[123X.[133X893894[30X [33X[0;6YThe arguments are morphisms [23XS_1 \rightarrow T, \dots, S_n \rightarrow895T[123X.[133X896897[33X[0;0YThe output is the morphism [23Xu_{\mathrm{out}}(\tau): \bigoplus_{i=1}^n S_i898\rightarrow T[123X given by the universal property of the direct sum.[133X899900[1X6.6-12 UniversalMorphismFromDirectSumOp[101X901902[29X[2XUniversalMorphismFromDirectSumOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_object[103X ) [32X operation903[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigoplus_{i=1}^n S_i, T)[123X[133X904905[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, a list of906morphisms [23X\tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}[123X, and an907object for method selection. The output is the morphism908[23Xu_{\mathrm{out}}(\tau): \bigoplus_{i=1}^n S_i \rightarrow T[123X given by the909universal property of the direct sum.[133X910911[1X6.6-13 UniversalMorphismFromDirectSumWithGivenDirectSum[101X912913[29X[2XUniversalMorphismFromDirectSumWithGivenDirectSum[102X( [3XD[103X, [3Xtau[103X, [3XS[103X ) [32X operation914[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(S, T)[123X[133X915916[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X, a list of917morphisms [23X\tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}[123X, and an918object [23XS = \bigoplus_{i=1}^n S_i[123X. The output is the morphism919[23Xu_{\mathrm{out}}(\tau): S \rightarrow T[123X given by the universal property of920the direct sum.[133X921922[1X6.6-14 IsomorphismFromDirectSumToDirectProduct[101X923924[29X[2XIsomorphismFromDirectSumToDirectProduct[102X( [3XD[103X ) [32X operation925[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i,926\prod_{i=1}^{n}S_i )[123X[133X927928[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X. The output is the929canonical isomorphism [23X\bigoplus_{i=1}^n S_i \rightarrow \prod_{i=1}^{n}S_i[123X.[133X930931[1X6.6-15 IsomorphismFromDirectSumToDirectProductOp[101X932933[29X[2XIsomorphismFromDirectSumToDirectProductOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation934[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i,935\prod_{i=1}^{n}S_i )[123X[133X936937[33X[0;0YThe arguments are a list of objects [23XD = (S_1, \dots, S_n)[123X and an object for938method selection. The output is the canonical isomorphism [23X\bigoplus_{i=1}^n939S_i \rightarrow \prod_{i=1}^{n}S_i[123X.[133X940941[1X6.6-16 IsomorphismFromDirectProductToDirectSum[101X942943[29X[2XIsomorphismFromDirectProductToDirectSum[102X( [3XD[103X ) [32X operation944[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \prod_{i=1}^{n}S_i, \bigoplus_{i=1}^n945S_i )[123X[133X946947[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X. The output is the948canonical isomorphism [23X\prod_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i[123X.[133X949950[1X6.6-17 IsomorphismFromDirectProductToDirectSumOp[101X951952[29X[2XIsomorphismFromDirectProductToDirectSumOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation953[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \prod_{i=1}^{n}S_i, \bigoplus_{i=1}^n954S_i )[123X[133X955956[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X and an object for957method selection. The output is the canonical isomorphism [23X\prod_{i=1}^{n}S_i958\rightarrow \bigoplus_{i=1}^n S_i[123X.[133X959960[1X6.6-18 IsomorphismFromDirectSumToCoproduct[101X961962[29X[2XIsomorphismFromDirectSumToCoproduct[102X( [3XD[103X ) [32X operation963[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i,964\bigsqcup_{i=1}^{n}S_i )[123X[133X965966[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X. The output is the967canonical isomorphism [23X\bigoplus_{i=1}^n S_i \rightarrow968\bigsqcup_{i=1}^{n}S_i[123X.[133X969970[1X6.6-19 IsomorphismFromDirectSumToCoproductOp[101X971972[29X[2XIsomorphismFromDirectSumToCoproductOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation973[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i,974\bigsqcup_{i=1}^{n}S_i )[123X[133X975976[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X and an object for977method selection. The output is the canonical isomorphism [23X\bigoplus_{i=1}^n978S_i \rightarrow \bigsqcup_{i=1}^{n}S_i[123X.[133X979980[1X6.6-20 IsomorphismFromCoproductToDirectSum[101X981982[29X[2XIsomorphismFromCoproductToDirectSum[102X( [3XD[103X ) [32X operation983[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigsqcup_{i=1}^{n}S_i,984\bigoplus_{i=1}^n S_i )[123X[133X985986[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X. The output is the987canonical isomorphism [23X\bigsqcup_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n988S_i[123X.[133X989990[1X6.6-21 IsomorphismFromCoproductToDirectSumOp[101X991992[29X[2XIsomorphismFromCoproductToDirectSumOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation993[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigsqcup_{i=1}^{n}S_i,994\bigoplus_{i=1}^n S_i )[123X[133X995996[33X[0;0YThe argument is a list of objects [23XD = (S_1, \dots, S_n)[123X and an object for997method selection. The output is the canonical isomorphism998[23X\bigsqcup_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i[123X.[133X9991000[1X6.6-22 MorphismBetweenDirectSums[101X10011002[29X[2XMorphismBetweenDirectSums[102X( [3XM[103X ) [32X operation1003[29X[2XMorphismBetweenDirectSums[102X( [3XS[103X, [3XM[103X, [3XT[103X ) [32X operation1004[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigoplus_{i=1}^{m}A_i,1005\bigoplus_{j=1}^n B_j)[123X[133X10061007[33X[0;0YThe argument [23XM = ( ( \phi_{i,j}: A_i \rightarrow B_j )_{j = 1 \dots n} )_{i1008= 1 \dots m}[123X is a list of lists of morphisms. The output is the morphism1009[23X\bigoplus_{i=1}^{m}A_i \rightarrow \bigoplus_{j=1}^n B_j[123X defined by the1010matrix [23XM[123X. The extra arguments [23XS = \bigoplus_{i=1}^{m}A_i[123X and [23XT =1011\bigoplus_{j=1}^n B_j[123X are source and target of the output, respectively.1012They must be provided in case [23XM[123X is an empty list or a list of empty lists.[133X10131014[1X6.6-23 MorphismBetweenDirectSumsOp[101X10151016[29X[2XMorphismBetweenDirectSumsOp[102X( [3XM[103X, [3Xm[103X, [3Xn[103X, [3Xmethod_selection_morphism[103X ) [32X operation1017[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigoplus_{i=1}^{m}A_i,1018\bigoplus_{j=1}^n B_j)[123X[133X10191020[33X[0;0YThe arguments are a list [23XM = ( \phi_{1,1}, \phi_{1,2}, \dots, \phi_{1,n},1021\phi_{2,1}, \dots, \phi_{m,n} )[123X of morphisms [23X\phi_{i,j}: A_i \rightarrow1022B_j[123X, an integer [23Xm[123X, an integer [23Xn[123X, and a method selection morphism. The output1023is the morphism [23X\bigoplus_{i=1}^{m}A_i \rightarrow \bigoplus_{j=1}^n B_j[123X1024defined by the list [23XM[123X regarded as a matrix of dimension [23Xm \times n[123X.[133X10251026[1X6.6-24 AddProjectionInFactorOfDirectSum[101X10271028[29X[2XAddProjectionInFactorOfDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1029[6XReturns:[106X [33X[0;10Ynothing[133X10301031[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1032given function [23XF[123X to the category for the basic operation1033[10XProjectionInFactorOfDirectSum[110X. [23XF: (D,k) \mapsto \pi_{k}[123X.[133X10341035[1X6.6-25 AddProjectionInFactorOfDirectSumWithGivenDirectSum[101X10361037[29X[2XAddProjectionInFactorOfDirectSumWithGivenDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1038[6XReturns:[106X [33X[0;10Ynothing[133X10391040[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1041given function [23XF[123X to the category for the basic operation1042[10XProjectionInFactorOfDirectSumWithGivenDirectSum[110X. [23XF: (D,k,S) \mapsto \pi_{k}[123X.[133X10431044[1X6.6-26 AddInjectionOfCofactorOfDirectSum[101X10451046[29X[2XAddInjectionOfCofactorOfDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1047[6XReturns:[106X [33X[0;10Ynothing[133X10481049[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1050given function [23XF[123X to the category for the basic operation1051[10XInjectionOfCofactorOfDirectSum[110X. [23XF: (D,k) \mapsto \iota_{k}[123X.[133X10521053[1X6.6-27 AddInjectionOfCofactorOfDirectSumWithGivenDirectSum[101X10541055[29X[2XAddInjectionOfCofactorOfDirectSumWithGivenDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1056[6XReturns:[106X [33X[0;10Ynothing[133X10571058[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1059given function [23XF[123X to the category for the basic operation1060[10XInjectionOfCofactorOfDirectSumWithGivenDirectSum[110X. [23XF: (D,k,S) \mapsto1061\iota_{k}[123X.[133X10621063[1X6.6-28 AddUniversalMorphismIntoDirectSum[101X10641065[29X[2XAddUniversalMorphismIntoDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1066[6XReturns:[106X [33X[0;10Ynothing[133X10671068[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1069given function [23XF[123X to the category for the basic operation1070[10XUniversalMorphismIntoDirectSum[110X. [23XF: (D,\tau) \mapsto u_{\mathrm{in}}(\tau)[123X.[133X10711072[1X6.6-29 AddUniversalMorphismIntoDirectSumWithGivenDirectSum[101X10731074[29X[2XAddUniversalMorphismIntoDirectSumWithGivenDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1075[6XReturns:[106X [33X[0;10Ynothing[133X10761077[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1078given function [23XF[123X to the category for the basic operation1079[10XUniversalMorphismIntoDirectSumWithGivenDirectSum[110X. [23XF: (D,\tau,S) \mapsto1080u_{\mathrm{in}}(\tau)[123X.[133X10811082[1X6.6-30 AddUniversalMorphismFromDirectSum[101X10831084[29X[2XAddUniversalMorphismFromDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1085[6XReturns:[106X [33X[0;10Ynothing[133X10861087[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1088given function [23XF[123X to the category for the basic operation1089[10XUniversalMorphismFromDirectSum[110X. [23XF: (D,\tau) \mapsto u_{\mathrm{out}}(\tau)[123X.[133X10901091[1X6.6-31 AddUniversalMorphismFromDirectSumWithGivenDirectSum[101X10921093[29X[2XAddUniversalMorphismFromDirectSumWithGivenDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1094[6XReturns:[106X [33X[0;10Ynothing[133X10951096[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1097given function [23XF[123X to the category for the basic operation1098[10XUniversalMorphismFromDirectSumWithGivenDirectSum[110X. [23XF: (D,\tau,S) \mapsto1099u_{\mathrm{out}}(\tau)[123X.[133X11001101[1X6.6-32 AddIsomorphismFromDirectSumToDirectProduct[101X11021103[29X[2XAddIsomorphismFromDirectSumToDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1104[6XReturns:[106X [33X[0;10Ynothing[133X11051106[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1107given function [23XF[123X to the category for the basic operation1108[10XIsomorphismFromDirectSumToDirectProduct[110X. [23XF: D \mapsto (\bigoplus_{i=1}^n S_i1109\rightarrow \prod_{i=1}^{n}S_i)[123X.[133X11101111[1X6.6-33 AddIsomorphismFromDirectProductToDirectSum[101X11121113[29X[2XAddIsomorphismFromDirectProductToDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1114[6XReturns:[106X [33X[0;10Ynothing[133X11151116[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1117given function [23XF[123X to the category for the basic operation1118[10XIsomorphismFromDirectProductToDirectSum[110X. [23XF: D \mapsto ( \prod_{i=1}^{n}S_i1119\rightarrow \bigoplus_{i=1}^n S_i )[123X.[133X11201121[1X6.6-34 AddIsomorphismFromDirectSumToCoproduct[101X11221123[29X[2XAddIsomorphismFromDirectSumToCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1124[6XReturns:[106X [33X[0;10Ynothing[133X11251126[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1127given function [23XF[123X to the category for the basic operation1128[10XIsomorphismFromDirectSumToCoproduct[110X. [23XF: D \mapsto ( \bigoplus_{i=1}^n S_i1129\rightarrow \bigsqcup_{i=1}^{n}S_i )[123X.[133X11301131[1X6.6-35 AddIsomorphismFromCoproductToDirectSum[101X11321133[29X[2XAddIsomorphismFromCoproductToDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1134[6XReturns:[106X [33X[0;10Ynothing[133X11351136[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1137given function [23XF[123X to the category for the basic operation1138[10XIsomorphismFromCoproductToDirectSum[110X. [23XF: D \mapsto ( \bigsqcup_{i=1}^{n}S_i1139\rightarrow \bigoplus_{i=1}^n S_i )[123X.[133X11401141[1X6.6-36 AddDirectSum[101X11421143[29X[2XAddDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1144[6XReturns:[106X [33X[0;10Ynothing[133X11451146[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1147given function [23XF[123X to the category for the basic operation [10XDirectSum[110X. [23XF: D1148\mapsto \bigoplus_{i=1}^n S_i[123X.[133X11491150[1X6.6-37 DirectSumFunctorial[101X11511152[29X[2XDirectSumFunctorial[102X( [3XL[103X ) [32X operation1153[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n S_i,1154\bigoplus_{i=1}^n S_i' )[123X[133X11551156[33X[0;0YThe argument is a list of morphisms [23XL = ( \mu_1: S_1 \rightarrow S_1',1157\dots, \mu_n: S_n \rightarrow S_n' )[123X. The output is a morphism1158[23X\bigoplus_{i=1}^n S_i \rightarrow \bigoplus_{i=1}^n S_i'[123X given by the1159functorality of the direct sum.[133X11601161[1X6.6-38 DirectSumFunctorialWithGivenDirectSums[101X11621163[29X[2XDirectSumFunctorialWithGivenDirectSums[102X( [3Xd_1[103X, [3XL[103X, [3Xd_2[103X ) [32X operation1164[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( d_1, d_2 )[123X[133X11651166[33X[0;0YThe arguments are an object [23Xd_1 = \bigoplus_{i=1}^n S_i[123X, a list of morphisms1167[23XL = ( \mu_1: S_1 \rightarrow S_1', \dots, \mu_n: S_n \rightarrow S_n' )[123X, and1168an object [23Xd_2 = \bigoplus_{i=1}^n S_i'[123X. The output is a morphism [23Xd_11169\rightarrow d_2[123X given by the functorality of the direct sum.[133X11701171[1X6.6-39 AddDirectSumFunctorialWithGivenDirectSums[101X11721173[29X[2XAddDirectSumFunctorialWithGivenDirectSums[102X( [3XC[103X, [3XF[103X ) [32X operation1174[6XReturns:[106X [33X[0;10Ynothing[133X11751176[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1177given function [23XF[123X to the category for the basic operation1178[10XDirectSumFunctorialWithGivenDirectSums[110X. [23XF: (\bigoplus_{i=1}^n S_i, ( \mu_1,1179\dots, \mu_n ), \bigoplus_{i=1}^n S_i') \mapsto (\bigoplus_{i=1}^n S_i1180\rightarrow \bigoplus_{i=1}^n S_i')[123X.[133X118111821183[1X6.7 [33X[0;0YCoproduct[133X[101X11841185[33X[0;0YFor a given list of objects [23XD = ( I_1, \dots, I_n )[123X, a coproduct of [23XD[123X1186consists of three parts:[133X11871188[30X [33X[0;6Yan object [23XI[123X,[133X11891190[30X [33X[0;6Ya list of morphisms [23X\iota = ( \iota_i: I_i \rightarrow I )_{i = 11191\dots n}[123X[133X11921193[30X [33X[0;6Ya dependent function [23Xu[123X mapping each list of morphisms [23X\tau = ( \tau_i:1194I_i \rightarrow T )[123X to a morphism [23Xu( \tau ): I \rightarrow T[123X such that1195[23Xu( \tau ) \circ \iota_i \sim_{I_i, T} \tau_i[123X for all [23Xi = 1, \dots, n[123X.[133X11961197[33X[0;0YThe triple [23X( I, \iota, u )[123X is called a [13Xcoproduct[113X of [23XD[123X if the morphisms [23Xu(1198\tau )[123X are uniquely determined up to congruence of morphisms. We denote the1199object [23XI[123X of such a triple by [23X\bigsqcup_{i=1}^n I_i[123X. We say that the morphism1200[23Xu( \tau )[123X is induced by the [13Xuniversal property of the coproduct[113X. [23X\\ [123X1201[23X\mathrm{Coproduct}[123X is a functorial operation. This means: For [23X(\mu_i: I_i1202\rightarrow I'_i)_{i=1\dots n}[123X, we obtain a morphism [23X\bigsqcup_{i=1}^n I_i1203\rightarrow \bigsqcup_{i=1}^n I_i'[123X.[133X12041205[1X6.7-1 Coproduct[101X12061207[29X[2XCoproduct[102X( [3XD[103X ) [32X attribute1208[6XReturns:[106X [33X[0;10Yan object[133X12091210[33X[0;0YThe argument is a list of objects [23XD = ( I_1, \dots, I_n )[123X. The output is the1211coproduct [23X\bigsqcup_{i=1}^n I_i[123X.[133X12121213[1X6.7-2 Coproduct[101X12141215[29X[2XCoproduct[102X( [3XI1[103X, [3XI2[103X ) [32X operation1216[6XReturns:[106X [33X[0;10Yan object[133X12171218[33X[0;0YThis is a convenience method. The arguments are two objects [23XI_1, I_2[123X. The1219output is the coproduct [23XI_1 \bigsqcup I_2[123X.[133X12201221[1X6.7-3 Coproduct[101X12221223[29X[2XCoproduct[102X( [3XI1[103X, [3XI2[103X ) [32X operation1224[6XReturns:[106X [33X[0;10Yan object[133X12251226[33X[0;0YThis is a convenience method. The arguments are three objects [23XI_1, I_2, I_3[123X.1227The output is the coproduct [23XI_1 \bigsqcup I_2 \bigsqcup I_3[123X.[133X12281229[1X6.7-4 CoproductOp[101X12301231[29X[2XCoproductOp[102X( [3XD[103X, [3Xmethod_selection_object[103X ) [32X operation1232[6XReturns:[106X [33X[0;10Yan object[133X12331234[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X and a method1235selection object. The output is the coproduct [23X\bigsqcup_{i=1}^n I_i[123X.[133X12361237[1X6.7-5 InjectionOfCofactorOfCoproduct[101X12381239[29X[2XInjectionOfCofactorOfCoproduct[102X( [3XD[103X, [3Xk[103X ) [32X operation1240[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I_k, \bigsqcup_{i=1}^n I_i)[123X[133X12411242[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X and an integer1243[23Xk[123X. The output is the [23Xk[123X-th injection [23X\iota_k: I_k \rightarrow1244\bigsqcup_{i=1}^n I_i[123X.[133X12451246[1X6.7-6 InjectionOfCofactorOfCoproductOp[101X12471248[29X[2XInjectionOfCofactorOfCoproductOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_object[103X ) [32X operation1249[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I_k, \bigsqcup_{i=1}^n I_i)[123X[133X12501251[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X, an integer [23Xk[123X,1252and a method selection object. The output is the [23Xk[123X-th injection [23X\iota_k: I_k1253\rightarrow \bigsqcup_{i=1}^n I_i[123X.[133X12541255[1X6.7-7 InjectionOfCofactorOfCoproductWithGivenCoproduct[101X12561257[29X[2XInjectionOfCofactorOfCoproductWithGivenCoproduct[102X( [3XD[103X, [3Xk[103X, [3XI[103X ) [32X operation1258[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I_k, I)[123X[133X12591260[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X, an integer [23Xk[123X,1261and an object [23XI = \bigsqcup_{i=1}^n I_i[123X. The output is the [23Xk[123X-th injection1262[23X\iota_k: I_k \rightarrow I[123X.[133X12631264[1X6.7-8 UniversalMorphismFromCoproduct[101X12651266[29X[2XUniversalMorphismFromCoproduct[102X( [3Xarg[103X ) [32X function1267[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigsqcup_{i=1}^n I_i, T)[123X[133X12681269[33X[0;0YThis is a convenience method. There are three different ways to use this1270method.[133X12711272[30X [33X[0;6YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X, a list of1273morphisms [23X\tau = ( \tau_i: I_i \rightarrow T )[123X.[133X12741275[30X [33X[0;6YThe argument is a list of morphisms [23X\tau = ( \tau_i: I_i \rightarrow T1276)[123X.[133X12771278[30X [33X[0;6YThe arguments are morphisms [23X\tau_1: I_1 \rightarrow T, \dots, \tau_n:1279I_n \rightarrow T[123X[133X12801281[33X[0;0YThe output is the morphism [23Xu( \tau ): \bigsqcup_{i=1}^n I_i \rightarrow T[123X1282given by the universal property of the coproduct.[133X12831284[1X6.7-9 UniversalMorphismFromCoproductOp[101X12851286[29X[2XUniversalMorphismFromCoproductOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_object[103X ) [32X operation1287[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigsqcup_{i=1}^n I_i, T)[123X[133X12881289[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X, a list of1290morphisms [23X\tau = ( \tau_i: I_i \rightarrow T )[123X, and a method selection1291object. The output is the morphism [23Xu( \tau ): \bigsqcup_{i=1}^n I_i1292\rightarrow T[123X given by the universal property of the coproduct.[133X12931294[1X6.7-10 UniversalMorphismFromCoproductWithGivenCoproduct[101X12951296[29X[2XUniversalMorphismFromCoproductWithGivenCoproduct[102X( [3XD[103X, [3Xtau[103X, [3XI[103X ) [32X operation1297[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I, T)[123X[133X12981299[33X[0;0YThe arguments are a list of objects [23XD = ( I_1, \dots, I_n )[123X, a list of1300morphisms [23X\tau = ( \tau_i: I_i \rightarrow T )[123X, and an object [23XI =1301\bigsqcup_{i=1}^n I_i[123X. The output is the morphism [23Xu( \tau ): I \rightarrow T[123X1302given by the universal property of the coproduct.[133X13031304[1X6.7-11 AddCoproduct[101X13051306[29X[2XAddCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1307[6XReturns:[106X [33X[0;10Ynothing[133X13081309[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1310given function [23XF[123X to the category for the basic operation [10XCoproduct[110X. [23XF: (1311(I_1, \dots, I_n) ) \mapsto I[123X.[133X13121313[1X6.7-12 AddInjectionOfCofactorOfCoproduct[101X13141315[29X[2XAddInjectionOfCofactorOfCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1316[6XReturns:[106X [33X[0;10Ynothing[133X13171318[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1319given function [23XF[123X to the category for the basic operation1320[10XInjectionOfCofactorOfCoproduct[110X. [23XF: ( (I_1, \dots, I_n), i ) \mapsto \iota_i[123X.[133X13211322[1X6.7-13 AddInjectionOfCofactorOfCoproductWithGivenCoproduct[101X13231324[29X[2XAddInjectionOfCofactorOfCoproductWithGivenCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1325[6XReturns:[106X [33X[0;10Ynothing[133X13261327[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1328given function [23XF[123X to the category for the basic operation1329[10XInjectionOfCofactorOfCoproductWithGivenCoproduct[110X. [23XF: ( (I_1, \dots, I_n), i,1330I ) \mapsto \iota_i[123X.[133X13311332[1X6.7-14 AddUniversalMorphismFromCoproduct[101X13331334[29X[2XAddUniversalMorphismFromCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1335[6XReturns:[106X [33X[0;10Ynothing[133X13361337[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1338given function [23XF[123X to the category for the basic operation1339[10XUniversalMorphismFromCoproduct[110X. [23XF: ( (I_1, \dots, I_n), \tau ) \mapsto u(1340\tau )[123X.[133X13411342[1X6.7-15 AddUniversalMorphismFromCoproductWithGivenCoproduct[101X13431344[29X[2XAddUniversalMorphismFromCoproductWithGivenCoproduct[102X( [3XC[103X, [3XF[103X ) [32X operation1345[6XReturns:[106X [33X[0;10Ynothing[133X13461347[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1348given function [23XF[123X to the category for the basic operation1349[10XUniversalMorphismFromCoproductWithGivenCoproduct[110X. [23XF: ( (I_1, \dots, I_n),1350\tau, I ) \mapsto u( \tau )[123X.[133X13511352[1X6.7-16 CoproductFunctorial[101X13531354[29X[2XCoproductFunctorial[102X( [3XL[103X ) [32X operation1355[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\bigsqcup_{i=1}^n I_i,1356\bigsqcup_{i=1}^n I_i')[123X[133X13571358[33X[0;0YThe argument is a list [23XL = ( \mu_1: I_1 \rightarrow I_1', \dots, \mu_n: I_n1359\rightarrow I_n' )[123X. The output is a morphism [23X\bigsqcup_{i=1}^n I_i1360\rightarrow \bigsqcup_{i=1}^n I_i'[123X given by the functorality of the1361coproduct.[133X13621363[1X6.7-17 CoproductFunctorialWithGivenCoproducts[101X13641365[29X[2XCoproductFunctorialWithGivenCoproducts[102X( [3Xs[103X, [3XL[103X, [3Xr[103X ) [32X operation1366[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(s, r)[123X[133X13671368[33X[0;0YThe arguments are an object [23Xs = \bigsqcup_{i=1}^n I_i[123X, a list [23XL = ( \mu_1:1369I_1 \rightarrow I_1', \dots, \mu_n: I_n \rightarrow I_n' )[123X, and an object [23Xr1370= \bigsqcup_{i=1}^n I_i'[123X. The output is a morphism [23X\bigsqcup_{i=1}^n I_i1371\rightarrow \bigsqcup_{i=1}^n I_i'[123X given by the functorality of the1372coproduct.[133X13731374[1X6.7-18 AddCoproductFunctorialWithGivenCoproducts[101X13751376[29X[2XAddCoproductFunctorialWithGivenCoproducts[102X( [3XC[103X, [3XF[103X ) [32X operation1377[6XReturns:[106X [33X[0;10Ynothing[133X13781379[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1380given function [23XF[123X to the category for the basic operation1381[10XCoproductFunctorialWithGivenCoproducts[110X. [23XF: (\bigsqcup_{i=1}^n I_i, (\mu_1,1382\dots, \mu_n), \bigsqcup_{i=1}^n I_i') \rightarrow (\bigsqcup_{i=1}^n I_i1383\rightarrow \bigsqcup_{i=1}^n I_i')[123X.[133X138413851386[1X6.8 [33X[0;0YDirect Product[133X[101X13871388[33X[0;0YFor a given list of objects [23XD = ( P_1, \dots, P_n )[123X, a direct product of [23XD[123X1389consists of three parts:[133X13901391[30X [33X[0;6Yan object [23XP[123X,[133X13921393[30X [33X[0;6Ya list of morphisms [23X\pi = ( \pi_i: P \rightarrow P_i )_{i = 1 \dots n}[123X[133X13941395[30X [33X[0;6Ya dependent function [23Xu[123X mapping each list of morphisms [23X\tau = ( \tau_i:1396T \rightarrow P_i )_{i = 1, \dots, n}[123X to a morphism [23Xu(\tau): T1397\rightarrow P[123X such that [23X\pi_i \circ u( \tau ) \sim_{T,P_i} \tau_i[123X for1398all [23Xi = 1, \dots, n[123X.[133X13991400[33X[0;0YThe triple [23X( P, \pi, u )[123X is called a [13Xdirect product[113X of [23XD[123X if the morphisms [23Xu(1401\tau )[123X are uniquely determined up to congruence of morphisms. We denote the1402object [23XP[123X of such a triple by [23X\prod_{i=1}^n P_i[123X. We say that the morphism [23Xu(1403\tau )[123X is induced by the [13Xuniversal property of the direct product[113X. [23X\\ [123X1404[23X\mathrm{DirectProduct}[123X is a functorial operation. This means: For [23X(\mu_i:1405P_i \rightarrow P'_i)_{i=1\dots n}[123X, we obtain a morphism [23X\prod_{i=1}^n P_i1406\rightarrow \prod_{i=1}^n P_i'[123X.[133X14071408[1X6.8-1 DirectProductOp[101X14091410[29X[2XDirectProductOp[102X( [3XD[103X ) [32X operation1411[6XReturns:[106X [33X[0;10Yan object[133X14121413[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X and an object1414for method selection. The output is the direct product [23X\prod_{i=1}^n P_i[123X.[133X14151416[1X6.8-2 ProjectionInFactorOfDirectProduct[101X14171418[29X[2XProjectionInFactorOfDirectProduct[102X( [3XD[103X, [3Xk[103X ) [32X operation1419[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\prod_{i=1}^n P_i, P_k)[123X[133X14201421[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X and an integer1422[23Xk[123X. The output is the [23Xk[123X-th projection [23X\pi_k: \prod_{i=1}^n P_i \rightarrow1423P_k[123X.[133X14241425[1X6.8-3 ProjectionInFactorOfDirectProductOp[101X14261427[29X[2XProjectionInFactorOfDirectProductOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_object[103X ) [32X operation1428[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\prod_{i=1}^n P_i, P_k)[123X[133X14291430[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X, an integer [23Xk[123X,1431and an object for method selection. The output is the [23Xk[123X-th projection [23X\pi_k:1432\prod_{i=1}^n P_i \rightarrow P_k[123X.[133X14331434[1X6.8-4 ProjectionInFactorOfDirectProductWithGivenDirectProduct[101X14351436[29X[2XProjectionInFactorOfDirectProductWithGivenDirectProduct[102X( [3XD[103X, [3Xk[103X, [3XP[103X ) [32X operation1437[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(P, P_k)[123X[133X14381439[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X, an integer [23Xk[123X,1440and an object [23XP = \prod_{i=1}^n P_i[123X. The output is the [23Xk[123X-th projection1441[23X\pi_k: P \rightarrow P_k[123X.[133X14421443[1X6.8-5 UniversalMorphismIntoDirectProduct[101X14441445[29X[2XUniversalMorphismIntoDirectProduct[102X( [3Xarg[103X ) [32X function1446[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \prod_{i=1}^n P_i)[123X[133X14471448[33X[0;0YThis is a convenience method. There are three different ways to use this1449method.[133X14501451[30X [33X[0;6YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X and a list1452of morphisms [23X\tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}[123X.[133X14531454[30X [33X[0;6YThe argument is a list of morphisms [23X\tau = ( \tau_i: T \rightarrow P_i1455)_{i = 1, \dots, n}[123X.[133X14561457[30X [33X[0;6YThe arguments are morphisms [23X\tau_1: T \rightarrow P_1, \dots, \tau_n:1458T \rightarrow P_n[123X.[133X14591460[33X[0;0YThe output is the morphism [23Xu(\tau): T \rightarrow \prod_{i=1}^n P_i[123X given by1461the universal property of the direct product.[133X14621463[1X6.8-6 UniversalMorphismIntoDirectProductOp[101X14641465[29X[2XUniversalMorphismIntoDirectProductOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_object[103X ) [32X operation1466[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \prod_{i=1}^n P_i)[123X[133X14671468[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X, a list of1469morphisms [23X\tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}[123X, and an1470object for method selection. The output is the morphism [23Xu(\tau): T1471\rightarrow \prod_{i=1}^n P_i[123X given by the universal property of the direct1472product.[133X14731474[1X6.8-7 UniversalMorphismIntoDirectProductWithGivenDirectProduct[101X14751476[29X[2XUniversalMorphismIntoDirectProductWithGivenDirectProduct[102X( [3XD[103X, [3Xtau[103X, [3XP[103X ) [32X operation1477[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \prod_{i=1}^n P_i)[123X[133X14781479[33X[0;0YThe arguments are a list of objects [23XD = ( P_1, \dots, P_n )[123X, a list of1480morphisms [23X\tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}[123X, and an1481object [23XP = \prod_{i=1}^n P_i[123X. The output is the morphism [23Xu(\tau): T1482\rightarrow \prod_{i=1}^n P_i[123X given by the universal property of the direct1483product.[133X14841485[1X6.8-8 AddDirectProduct[101X14861487[29X[2XAddDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1488[6XReturns:[106X [33X[0;10Ynothing[133X14891490[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1491given function [23XF[123X to the category for the basic operation [10XDirectProduct[110X. [23XF: (1492(P_1, \dots, P_n) ) \mapsto P[123X[133X14931494[1X6.8-9 AddProjectionInFactorOfDirectProduct[101X14951496[29X[2XAddProjectionInFactorOfDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1497[6XReturns:[106X [33X[0;10Ynothing[133X14981499[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1500given function [23XF[123X to the category for the basic operation1501[10XProjectionInFactorOfDirectProduct[110X. [23XF: ( (P_1, \dots, P_n),k ) \mapsto \pi_k[123X[133X15021503[1X6.8-10 AddProjectionInFactorOfDirectProductWithGivenDirectProduct[101X15041505[29X[2XAddProjectionInFactorOfDirectProductWithGivenDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1506[6XReturns:[106X [33X[0;10Ynothing[133X15071508[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1509given function [23XF[123X to the category for the basic operation1510[10XProjectionInFactorOfDirectProductWithGivenDirectProduct[110X. [23XF: ( (P_1, \dots,1511P_n),k,P ) \mapsto \pi_k[123X[133X15121513[1X6.8-11 AddUniversalMorphismIntoDirectProduct[101X15141515[29X[2XAddUniversalMorphismIntoDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1516[6XReturns:[106X [33X[0;10Ynothing[133X15171518[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1519given function [23XF[123X to the category for the basic operation1520[10XUniversalMorphismIntoDirectProduct[110X. [23XF: ( (P_1, \dots, P_n), \tau ) \mapsto1521u( \tau )[123X[133X15221523[1X6.8-12 AddUniversalMorphismIntoDirectProductWithGivenDirectProduct[101X15241525[29X[2XAddUniversalMorphismIntoDirectProductWithGivenDirectProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1526[6XReturns:[106X [33X[0;10Ynothing[133X15271528[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1529given function [23XF[123X to the category for the basic operation1530[10XUniversalMorphismIntoDirectProductWithGivenDirectProduct[110X. [23XF: ( (P_1, \dots,1531P_n), \tau, P ) \mapsto u( \tau )[123X[133X15321533[1X6.8-13 DirectProductFunctorial[101X15341535[29X[2XDirectProductFunctorial[102X( [3XL[103X ) [32X operation1536[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \prod_{i=1}^n P_i, \prod_{i=1}^n P_i'1537)[123X[133X15381539[33X[0;0YThe argument is a list of morphisms [23XL = (\mu_i: P_i \rightarrow1540P'_i)_{i=1\dots n}[123X. The output is a morphism [23X\prod_{i=1}^n P_i \rightarrow1541\prod_{i=1}^n P_i'[123X given by the functorality of the direct product.[133X15421543[1X6.8-14 DirectProductFunctorialWithGivenDirectProducts[101X15441545[29X[2XDirectProductFunctorialWithGivenDirectProducts[102X( [3Xs[103X, [3XL[103X, [3Xr[103X ) [32X operation1546[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( s, r )[123X[133X15471548[33X[0;0YThe arguments are an object [23Xs = \prod_{i=1}^n P_i[123X, a list of morphisms [23XL =1549(\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}[123X, and an object [23Xr = \prod_{i=1}^n1550P_i'[123X. The output is a morphism [23X\prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n1551P_i'[123X given by the functorality of the direct product.[133X15521553[1X6.8-15 AddDirectProductFunctorialWithGivenDirectProducts[101X15541555[29X[2XAddDirectProductFunctorialWithGivenDirectProducts[102X( [3XC[103X, [3XF[103X ) [32X operation1556[6XReturns:[106X [33X[0;10Ynothing[133X15571558[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1559given function [23XF[123X to the category for the basic operation1560[10XDirectProductFunctorialWithGivenDirectProducts[110X. [23XF: ( \prod_{i=1}^n P_i,1561(\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}, \prod_{i=1}^n P_i' ) \mapsto1562(\prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n P_i')[123X[133X156315641565[1X6.9 [33X[0;0YFiber Product[133X[101X15661567[33X[0;0YFor a given list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i = 11568\dots n}[123X, a fiber product of [23XD[123X consists of three parts:[133X15691570[30X [33X[0;6Yan object [23XP[123X,[133X15711572[30X [33X[0;6Ya list of morphisms [23X\pi = ( \pi_i: P \rightarrow P_i )_{i = 1 \dots n}[123X1573such that [23X\beta_i \circ \pi_i \sim_{P, B} \beta_j \circ \pi_j[123X for all1574pairs [23Xi,j[123X.[133X15751576[30X [33X[0;6Ya dependent function [23Xu[123X mapping each list of morphisms [23X\tau = ( \tau_i:1577T \rightarrow P_i )[123X such that [23X\beta_i \circ \tau_i \sim_{T, B} \beta_j1578\circ \tau_j[123X for all pairs [23Xi,j[123X to a morphism [23Xu( \tau ): T \rightarrow1579P[123X such that [23X\pi_i \circ u( \tau ) \sim_{T, P_i} \tau_i[123X for all [23Xi = 1,1580\dots, n[123X.[133X15811582[33X[0;0YThe triple [23X( P, \pi, u )[123X is called a [13Xfiber product[113X of [23XD[123X if the morphisms [23Xu(1583\tau )[123X are uniquely determined up to congruence of morphisms. We denote the1584object [23XP[123X of such a triple by [23X\mathrm{FiberProduct}(D)[123X. We say that the1585morphism [23Xu( \tau )[123X is induced by the [13Xuniversal property of the fiber1586product[113X. [23X\\ [123X [23X\mathrm{FiberProduct}[123X is a functorial operation. This means:1587For a second diagram [23XD' = (\beta_i': P_i' \rightarrow B')_{i = 1 \dots n}[123X1588and a natural morphism between pullback diagrams (i.e., a collection of1589morphisms [23X(\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}[123X and [23X\beta: B1590\rightarrow B'[123X such that [23X\beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ1591\beta_i[123X for [23Xi = 1, \dots, n[123X) we obtain a morphism [23X\mathrm{FiberProduct}( D )1592\rightarrow \mathrm{FiberProduct}( D' )[123X.[133X15931594[1X6.9-1 IsomorphismFromFiberProductToKernelOfDiagonalDifference[101X15951596[29X[2XIsomorphismFromFiberProductToKernelOfDiagonalDifference[102X( [3XD[103X ) [32X operation1597[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{FiberProduct}(D), \Delta)[123X[133X15981599[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16001 \dots n}[123X. The output is a morphism [23X\mathrm{FiberProduct}(D) \rightarrow1601\Delta[123X, where [23X\Delta[123X denotes the kernel object equalizing the morphisms1602[23X\beta_i[123X.[133X16031604[1X6.9-2 IsomorphismFromFiberProductToKernelOfDiagonalDifferenceOp[101X16051606[29X[2XIsomorphismFromFiberProductToKernelOfDiagonalDifferenceOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1607[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{FiberProduct}(D), \Delta)[123X[133X16081609[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1610= 1 \dots n}[123X and a morphism for method selection. The output is a morphism1611[23X\mathrm{FiberProduct}(D) \rightarrow \Delta[123X, where [23X\Delta[123X denotes the kernel1612object equalizing the morphisms [23X\beta_i[123X.[133X16131614[1X6.9-3 AddIsomorphismFromFiberProductToKernelOfDiagonalDifference[101X16151616[29X[2XAddIsomorphismFromFiberProductToKernelOfDiagonalDifference[102X( [3XC[103X, [3XF[103X ) [32X operation1617[6XReturns:[106X [33X[0;10Ynothing[133X16181619[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1620given function [23XF[123X to the category for the basic operation1621[10XIsomorphismFromFiberProductToKernelOfDiagonalDifference[110X. [23XF: ( ( \beta_i: P_i1622\rightarrow B )_{i = 1 \dots n} ) \mapsto \mathrm{FiberProduct}(D)1623\rightarrow \Delta[123X[133X16241625[1X6.9-4 IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct[101X16261627[29X[2XIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct[102X( [3XD[103X ) [32X operation1628[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\Delta, \mathrm{FiberProduct}(D))[123X[133X16291630[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16311 \dots n}[123X. The output is a morphism [23X\Delta \rightarrow1632\mathrm{FiberProduct}(D)[123X, where [23X\Delta[123X denotes the kernel object equalizing1633the morphisms [23X\beta_i[123X.[133X16341635[1X6.9-5 IsomorphismFromKernelOfDiagonalDifferenceToFiberProductOp[101X16361637[29X[2XIsomorphismFromKernelOfDiagonalDifferenceToFiberProductOp[102X( [3XD[103X ) [32X operation1638[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\Delta, \mathrm{FiberProduct}(D))[123X[133X16391640[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16411 \dots n}[123X and a morphism for method selection. The output is a morphism1642[23X\Delta \rightarrow \mathrm{FiberProduct}(D)[123X, where [23X\Delta[123X denotes the kernel1643object equalizing the morphisms [23X\beta_i[123X.[133X16441645[1X6.9-6 AddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct[101X16461647[29X[2XAddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1648[6XReturns:[106X [33X[0;10Ynothing[133X16491650[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1651given function [23XF[123X to the category for the basic operation1652[10XIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct[110X. [23XF: ( ( \beta_i: P_i1653\rightarrow B )_{i = 1 \dots n} ) \mapsto \Delta \rightarrow1654\mathrm{FiberProduct}(D)[123X[133X16551656[1X6.9-7 DirectSumDiagonalDifference[101X16571658[29X[2XDirectSumDiagonalDifference[102X( [3XD[103X ) [32X operation1659[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n P_i, B )[123X[133X16601661[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16621 \dots n}[123X. The output is a morphism [23X\bigoplus_{i=1}^n P_i \rightarrow B[123X1663such that its kernel equalizes the [23X\beta_i[123X.[133X16641665[1X6.9-8 DirectSumDiagonalDifferenceOp[101X16661667[29X[2XDirectSumDiagonalDifferenceOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1668[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n P_i, B )[123X[133X16691670[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16711 \dots n}[123X and a morphism for method selection. The output is a morphism1672[23X\bigoplus_{i=1}^n P_i \rightarrow B[123X such that its kernel equalizes the1673[23X\beta_i[123X.[133X16741675[1X6.9-9 AddDirectSumDiagonalDifference[101X16761677[29X[2XAddDirectSumDiagonalDifference[102X( [3XC[103X, [3XF[103X ) [32X operation1678[6XReturns:[106X [33X[0;10Ynothing[133X16791680[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1681given function [23XF[123X to the category for the basic operation1682[10XDirectSumDiagonalDifference[110X. [23XF: ( D ) \mapsto1683\mathrm{DirectSumDiagonalDifference}(D)[123X[133X16841685[1X6.9-10 FiberProductEmbeddingInDirectSum[101X16861687[29X[2XFiberProductEmbeddingInDirectSum[102X( [3XD[103X ) [32X operation1688[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{FiberProduct}(D),1689\bigoplus_{i=1}^n P_i )[123X[133X16901691[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =16921 \dots n}[123X. The output is the natural embedding [23X\mathrm{FiberProduct}(D)1693\rightarrow \bigoplus_{i=1}^n P_i[123X.[133X16941695[1X6.9-11 FiberProductEmbeddingInDirectSumOp[101X16961697[29X[2XFiberProductEmbeddingInDirectSumOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1698[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{FiberProduct}(D),1699\bigoplus_{i=1}^n P_i )[123X[133X17001701[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i =17021 \dots n}[123X and a morphism for method selection. The output is the natural1703embedding [23X\mathrm{FiberProduct}(D) \rightarrow \bigoplus_{i=1}^n P_i[123X.[133X17041705[1X6.9-12 AddFiberProductEmbeddingInDirectSum[101X17061707[29X[2XAddFiberProductEmbeddingInDirectSum[102X( [3XC[103X, [3XF[103X ) [32X operation1708[6XReturns:[106X [33X[0;10Ynothing[133X17091710[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1711given function [23XF[123X to the category for the basic operation1712[10XFiberProductEmbeddingInDirectSum[110X. [23XF: ( ( \beta_i: P_i \rightarrow B )_{i = 11713\dots n} ) \mapsto \mathrm{FiberProduct}(D) \rightarrow \bigoplus_{i=1}^n1714P_i[123X[133X17151716[1X6.9-13 FiberProduct[101X17171718[29X[2XFiberProduct[102X( [3Xarg[103X ) [32X function1719[6XReturns:[106X [33X[0;10Yan object[133X17201721[33X[0;0YThis is a convenience method. There are two different ways to use this1722method:[133X17231724[30X [33X[0;6YThe argument is a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B1725)_{i = 1 \dots n}[123X.[133X17261727[30X [33X[0;6YThe arguments are morphisms [23X\beta_1: P_1 \rightarrow B, \dots,1728\beta_n: P_n \rightarrow B[123X.[133X17291730[33X[0;0YThe output is the fiber product [23X\mathrm{FiberProduct}(D)[123X.[133X17311732[1X6.9-14 FiberProductOp[101X17331734[29X[2XFiberProductOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1735[6XReturns:[106X [33X[0;10Yan object[133X17361737[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1738= 1 \dots n}[123X and a morphism for method selection. The output is the fiber1739product [23X\mathrm{FiberProduct}(D)[123X.[133X17401741[1X6.9-15 ProjectionInFactorOfFiberProduct[101X17421743[29X[2XProjectionInFactorOfFiberProduct[102X( [3XD[103X, [3Xk[103X ) [32X operation1744[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{FiberProduct}(D), P_k )[123X[133X17451746[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1747= 1 \dots n}[123X and an integer [23Xk[123X. The output is the [23Xk[123X-th projection [23X\pi_{k}:1748\mathrm{FiberProduct}(D) \rightarrow P_k[123X.[133X17491750[1X6.9-16 ProjectionInFactorOfFiberProductOp[101X17511752[29X[2XProjectionInFactorOfFiberProductOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_morphism[103X ) [32X operation1753[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{FiberProduct}(D), P_k )[123X[133X17541755[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1756= 1 \dots n}[123X, an integer [23Xk[123X, and a morphism for method selection. The output1757is the [23Xk[123X-th projection [23X\pi_{k}: \mathrm{FiberProduct}(D) \rightarrow P_k[123X.[133X17581759[1X6.9-17 ProjectionInFactorOfFiberProductWithGivenFiberProduct[101X17601761[29X[2XProjectionInFactorOfFiberProductWithGivenFiberProduct[102X( [3XD[103X, [3Xk[103X, [3XP[103X ) [32X operation1762[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( P, P_k )[123X[133X17631764[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1765= 1 \dots n}[123X, an integer [23Xk[123X, and an object [23XP = \mathrm{FiberProduct}(D)[123X. The1766output is the [23Xk[123X-th projection [23X\pi_{k}: P \rightarrow P_k[123X.[133X17671768[1X6.9-18 UniversalMorphismIntoFiberProduct[101X17691770[29X[2XUniversalMorphismIntoFiberProduct[102X( [3Xarg[103X ) [32X function17711772[33X[0;0YThis is a convenience method. There are three different ways to use this1773method:[133X17741775[30X [33X[0;6YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B1776)_{i = 1 \dots n}[123X and a list of morphisms [23X\tau = ( \tau_i: T1777\rightarrow P_i )[123X such that [23X\beta_i \circ \tau_i \sim_{T, B} \beta_j1778\circ \tau_j[123X for all pairs [23Xi,j[123X. The output is the morphism [23Xu( \tau ):1779T \rightarrow \mathrm{FiberProduct}(D)[123X given by the universal property1780of the fiber product.[133X17811782[30X [33X[0;6YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B1783)_{i = 1 \dots n}[123X and morphisms [23X\tau_1: T \rightarrow P_1, \dots,1784\tau_n: T \rightarrow P_n[123X such that [23X\beta_i \circ \tau_i \sim_{T, B}1785\beta_j \circ \tau_j[123X for all pairs [23Xi,j[123X. The output is the morphism [23Xu(1786\tau ): T \rightarrow \mathrm{FiberProduct}(D)[123X given by the universal1787property of the fiber product.[133X17881789[1X6.9-19 UniversalMorphismIntoFiberProductOp[101X17901791[29X[2XUniversalMorphismIntoFiberProductOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_morphism[103X ) [32X operation1792[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( T, \mathrm{FiberProduct}(D) )[123X[133X17931794[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1795= 1 \dots n}[123X, a list of morphisms [23X\tau = ( \tau_i: T \rightarrow P_i )[123X such1796that [23X\beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j[123X for all pairs1797[23Xi,j[123X, and a morphism for method selection. The output is the morphism [23Xu( \tau1798): T \rightarrow \mathrm{FiberProduct}(D)[123X given by the universal property of1799the fiber product.[133X18001801[1X6.9-20 UniversalMorphismIntoFiberProductWithGivenFiberProduct[101X18021803[29X[2XUniversalMorphismIntoFiberProductWithGivenFiberProduct[102X( [3XD[103X, [3Xtau[103X, [3XP[103X ) [32X operation1804[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( T, P )[123X[133X18051806[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: P_i \rightarrow B )_{i1807= 1 \dots n}[123X, a list of morphisms [23X\tau = ( \tau_i: T \rightarrow P_i )[123X such1808that [23X\beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j[123X for all pairs1809[23Xi,j[123X, and an object [23XP = \mathrm{FiberProduct}(D)[123X. The output is the morphism1810[23Xu( \tau ): T \rightarrow P[123X given by the universal property of the fiber1811product.[133X18121813[1X6.9-21 AddFiberProduct[101X18141815[29X[2XAddFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1816[6XReturns:[106X [33X[0;10Ynothing[133X18171818[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1819given function [23XF[123X to the category for the basic operation [10XFiberProduct[110X. [23XF: (1820(\beta_i: P_i \rightarrow B)_{i = 1 \dots n} ) \mapsto P[123X[133X18211822[1X6.9-22 AddProjectionInFactorOfFiberProduct[101X18231824[29X[2XAddProjectionInFactorOfFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1825[6XReturns:[106X [33X[0;10Ynothing[133X18261827[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1828given function [23XF[123X to the category for the basic operation1829[10XProjectionInFactorOfFiberProduct[110X. [23XF: ( (\beta_i: P_i \rightarrow B)_{i = 11830\dots n}, k ) \mapsto \pi_k[123X[133X18311832[1X6.9-23 AddProjectionInFactorOfFiberProductWithGivenFiberProduct[101X18331834[29X[2XAddProjectionInFactorOfFiberProductWithGivenFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1835[6XReturns:[106X [33X[0;10Ynothing[133X18361837[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1838given function [23XF[123X to the category for the basic operation1839[10XProjectionInFactorOfFiberProductWithGivenFiberProduct[110X. [23XF: ( (\beta_i: P_i1840\rightarrow B)_{i = 1 \dots n}, k,P ) \mapsto \pi_k[123X[133X18411842[1X6.9-24 AddUniversalMorphismIntoFiberProduct[101X18431844[29X[2XAddUniversalMorphismIntoFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1845[6XReturns:[106X [33X[0;10Ynothing[133X18461847[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1848given function [23XF[123X to the category for the basic operation1849[10XUniversalMorphismIntoFiberProduct[110X. [23XF: ( (\beta_i: P_i \rightarrow B)_{i = 11850\dots n}, \tau ) \mapsto u(\tau)[123X[133X18511852[1X6.9-25 AddUniversalMorphismIntoFiberProductWithGivenFiberProduct[101X18531854[29X[2XAddUniversalMorphismIntoFiberProductWithGivenFiberProduct[102X( [3XC[103X, [3XF[103X ) [32X operation1855[6XReturns:[106X [33X[0;10Ynothing[133X18561857[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1858given function [23XF[123X to the category for the basic operation1859[10XUniversalMorphismIntoFiberProductWithGivenFiberProduct[110X. [23XF: ( (\beta_i: P_i1860\rightarrow B)_{i = 1 \dots n}, \tau, P ) \mapsto u(\tau)[123X[133X18611862[1X6.9-26 FiberProductFunctorial[101X18631864[29X[2XFiberProductFunctorial[102X( [3XL[103X ) [32X operation1865[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{FiberProduct}( ( \beta_i )_{i=11866\dots n} ), \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ))[123X[133X18671868[33X[0;0YThe argument is a list of triples of morphisms [23XL = ( (\beta_i: P_i1869\rightarrow B, \mu_i: P_i \rightarrow P_i', \beta_i': P_i' \rightarrow1870B')_{i = 1 \dots n} )[123X such that there exists a morphism [23X\beta: B \rightarrow1871B'[123X such that [23X\beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ \beta_i[123X for [23Xi =18721, \dots, n[123X. The output is the morphism [23X\mathrm{FiberProduct}( ( \beta_i1873)_{i=1 \dots n} ) \rightarrow \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots1874n} )[123X given by the functorality of the fiber product.[133X18751876[1X6.9-27 FiberProductFunctorialWithGivenFiberProducts[101X18771878[29X[2XFiberProductFunctorialWithGivenFiberProducts[102X( [3Xs[103X, [3XL[103X, [3Xr[103X ) [32X operation1879[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(s, r)[123X[133X18801881[33X[0;0YThe arguments are an object [23Xs = \mathrm{FiberProduct}( ( \beta_i )_{i=11882\dots n} )[123X, a list of triples of morphisms [23XL = ( (\beta_i: P_i \rightarrow1883B, \mu_i: P_i \rightarrow P_i', \beta_i': P_i' \rightarrow B')_{i = 1 \dots1884n} )[123X such that there exists a morphism [23X\beta: B \rightarrow B'[123X such that1885[23X\beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ \beta_i[123X for [23Xi = 1, \dots, n[123X,1886and an object [23Xr = \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} )[123X. The1887output is the morphism [23Xs \rightarrow r[123X given by the functorality of the1888fiber product.[133X18891890[1X6.9-28 AddFiberProductFunctorialWithGivenFiberProducts[101X18911892[29X[2XAddFiberProductFunctorialWithGivenFiberProducts[102X( [3XC[103X, [3XF[103X ) [32X operation1893[6XReturns:[106X [33X[0;10Ynothing[133X18941895[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1896given function [23XF[123X to the category for the basic operation1897[10XFiberProductFunctorialWithGivenFiberProducts[110X. [23XF: ( \mathrm{FiberProduct}( (1898\beta_i )_{i=1 \dots n} ), (\beta_i: P_i \rightarrow B, \mu_i: P_i1899\rightarrow P_i', \beta_i': P_i' \rightarrow B')_{i = 1 \dots n},1900\mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ) ) \mapsto1901(\mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ) \rightarrow1902\mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ) )[123X[133X190319041905[1X6.10 [33X[0;0YPushout[133X[101X19061907[33X[0;0YFor a given list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i = 11908\dots n}[123X, a pushout of [23XD[123X consists of three parts:[133X19091910[30X [33X[0;6Yan object [23XI[123X,[133X19111912[30X [33X[0;6Ya list of morphisms [23X\iota = ( \iota_i: I_i \rightarrow I )_{i = 11913\dots n}[123X such that [23X\iota_i \circ \beta_i \sim_{B,I} \iota_j \circ1914\beta_j[123X for all pairs [23Xi,j[123X,[133X19151916[30X [33X[0;6Ya dependent function [23Xu[123X mapping each list of morphisms [23X\tau = ( \tau_i:1917I_i \rightarrow T )_{i = 1 \dots n}[123X such that [23X\tau_i \circ \beta_i1918\sim_{B,T} \tau_j \circ \beta_j[123X to a morphism [23Xu( \tau ): I \rightarrow1919T[123X such that [23Xu( \tau ) \circ \iota_i \sim_{I_i, T} \tau_i[123X for all [23Xi =19201, \dots, n[123X.[133X19211922[33X[0;0YThe triple [23X( I, \iota, u )[123X is called a [13Xpushout[113X of [23XD[123X if the morphisms [23Xu( \tau1923)[123X are uniquely determined up to congruence of morphisms. We denote the1924object [23XI[123X of such a triple by [23X\mathrm{Pushout}(D)[123X. We say that the morphism1925[23Xu( \tau )[123X is induced by the [13Xuniversal property of the pushout[113X. [23X\\ [123X1926[23X\mathrm{Pushout}[123X is a functorial operation. This means: For a second diagram1927[23XD' = (\beta_i': B' \rightarrow I_i')_{i = 1 \dots n}[123X and a natural morphism1928between pushout diagrams (i.e., a collection of morphisms [23X(\mu_i: I_i1929\rightarrow I'_i)_{i=1\dots n}[123X and [23X\beta: B \rightarrow B'[123X such that1930[23X\beta_i' \circ \beta \sim_{B, I_i'} \mu_i \circ \beta_i[123X for [23Xi = 1, \dots n[123X)1931we obtain a morphism [23X\mathrm{Pushout}( D ) \rightarrow \mathrm{Pushout}( D'1932)[123X.[133X19331934[1X6.10-1 IsomorphismFromPushoutToCokernelOfDiagonalDifference[101X19351936[29X[2XIsomorphismFromPushoutToCokernelOfDiagonalDifference[102X( [3XD[103X ) [32X operation1937[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{Pushout}(D), \Delta)[123X[133X19381939[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =19401 \dots n}[123X. The output is a morphism [23X\mathrm{Pushout}(D) \rightarrow \Delta[123X,1941where [23X\Delta[123X denotes the cokernel object coequalizing the morphisms [23X\beta_i[123X.[133X19421943[1X6.10-2 IsomorphismFromPushoutToCokernelOfDiagonalDifferenceOp[101X19441945[29X[2XIsomorphismFromPushoutToCokernelOfDiagonalDifferenceOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1946[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{Pushout}(D), \Delta)[123X[133X19471948[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =19491 \dots n}[123X and a morphism for method selection. The output is a morphism1950[23X\mathrm{Pushout}(D) \rightarrow \Delta[123X, where [23X\Delta[123X denotes the cokernel1951object coequalizing the morphisms [23X\beta_i[123X.[133X19521953[1X6.10-3 AddIsomorphismFromPushoutToCokernelOfDiagonalDifference[101X19541955[29X[2XAddIsomorphismFromPushoutToCokernelOfDiagonalDifference[102X( [3XC[103X, [3XF[103X ) [32X operation1956[6XReturns:[106X [33X[0;10Ynothing[133X19571958[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1959given function [23XF[123X to the category for the basic operation1960[10XIsomorphismFromPushoutToCokernelOfDiagonalDifference[110X. [23XF: ( ( \beta_i: B1961\rightarrow I_i )_{i = 1 \dots n} ) \mapsto (\mathrm{Pushout}(D) \rightarrow1962\Delta)[123X[133X19631964[1X6.10-4 IsomorphismFromCokernelOfDiagonalDifferenceToPushout[101X19651966[29X[2XIsomorphismFromCokernelOfDiagonalDifferenceToPushout[102X( [3XD[103X ) [32X operation1967[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \Delta, \mathrm{Pushout}(D))[123X[133X19681969[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =19701 \dots n}[123X. The output is a morphism [23X\Delta \rightarrow \mathrm{Pushout}(D)[123X,1971where [23X\Delta[123X denotes the cokernel object coequalizing the morphisms [23X\beta_i[123X.[133X19721973[1X6.10-5 IsomorphismFromCokernelOfDiagonalDifferenceToPushoutOp[101X19741975[29X[2XIsomorphismFromCokernelOfDiagonalDifferenceToPushoutOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation1976[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \Delta, \mathrm{Pushout}(D))[123X[133X19771978[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =19791 \dots n}[123X and a morphism for method selection. The output is a morphism1980[23X\Delta \rightarrow \mathrm{Pushout}(D)[123X, where [23X\Delta[123X denotes the cokernel1981object coequalizing the morphisms [23X\beta_i[123X.[133X19821983[1X6.10-6 AddIsomorphismFromCokernelOfDiagonalDifferenceToPushout[101X19841985[29X[2XAddIsomorphismFromCokernelOfDiagonalDifferenceToPushout[102X( [3XC[103X, [3XF[103X ) [32X operation1986[6XReturns:[106X [33X[0;10Ynothing[133X19871988[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the1989given function [23XF[123X to the category for the basic operation1990[10XIsomorphismFromCokernelOfDiagonalDifferenceToPushout[110X. [23XF: ( ( \beta_i: B1991\rightarrow I_i )_{i = 1 \dots n} ) \mapsto (\Delta \rightarrow1992\mathrm{Pushout}(D))[123X[133X19931994[1X6.10-7 DirectSumCodiagonalDifference[101X19951996[29X[2XDirectSumCodiagonalDifference[102X( [3XD[103X ) [32X operation1997[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(B, \bigoplus_{i=1}^n I_i)[123X[133X19981999[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =20001 \dots n}[123X. The output is a morphism [23XB \rightarrow \bigoplus_{i=1}^n I_i[123X2001such that its cokernel coequalizes the [23X\beta_i[123X.[133X20022003[1X6.10-8 DirectSumCodiagonalDifferenceOp[101X20042005[29X[2XDirectSumCodiagonalDifferenceOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation2006[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(B, \bigoplus_{i=1}^n I_i)[123X[133X20072008[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =20091 \dots n}[123X and a morphism for method selection. The output is a morphism [23XB2010\rightarrow \bigoplus_{i=1}^n I_i[123X such that its cokernel coequalizes the2011[23X\beta_i[123X.[133X20122013[1X6.10-9 AddDirectSumCodiagonalDifference[101X20142015[29X[2XAddDirectSumCodiagonalDifference[102X( [3XC[103X, [3XF[103X ) [32X operation2016[6XReturns:[106X [33X[0;10Ynothing[133X20172018[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2019given function [23XF[123X to the category for the basic operation2020[10XDirectSumCodiagonalDifference[110X. [23XF: ( D ) \mapsto2021\mathrm{DirectSumCodiagonalDifference}(D)[123X[133X20222023[1X6.10-10 DirectSumProjectionInPushout[101X20242025[29X[2XDirectSumProjectionInPushout[102X( [3XD[103X ) [32X operation2026[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n I_i,2027\mathrm{Pushout}(D) )[123X[133X20282029[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =20301 \dots n}[123X. The output is the natural projection [23X\bigoplus_{i=1}^n I_i2031\rightarrow \mathrm{Pushout}(D)[123X.[133X20322033[1X6.10-11 DirectSumProjectionInPushoutOp[101X20342035[29X[2XDirectSumProjectionInPushoutOp[102X( [3XD[103X, [3Xmethod_selection_morphism[103X ) [32X operation2036[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \bigoplus_{i=1}^n I_i,2037\mathrm{Pushout}(D) )[123X[133X20382039[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =20401 \dots n}[123X and a morphism for method selection. The output is the natural2041projection [23X\bigoplus_{i=1}^n I_i \rightarrow \mathrm{Pushout}(D)[123X.[133X20422043[1X6.10-12 AddDirectSumProjectionInPushout[101X20442045[29X[2XAddDirectSumProjectionInPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2046[6XReturns:[106X [33X[0;10Ynothing[133X20472048[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2049given function [23XF[123X to the category for the basic operation2050[10XDirectSumProjectionInPushout[110X. [23XF: ( ( \beta_i: B \rightarrow I_i )_{i = 12051\dots n} ) \mapsto (\bigoplus_{i=1}^n I_i \rightarrow \mathrm{Pushout}(D))[123X[133X20522053[1X6.10-13 Pushout[101X20542055[29X[2XPushout[102X( [3XD[103X ) [32X operation2056[6XReturns:[106X [33X[0;10Yan object[133X20572058[33X[0;0YThe argument is a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i =20591 \dots n}[123X The output is the pushout [23X\mathrm{Pushout}(D)[123X.[133X20602061[1X6.10-14 Pushout[101X20622063[29X[2XPushout[102X( [3XD[103X ) [32X operation2064[6XReturns:[106X [33X[0;10Yan object[133X20652066[33X[0;0YThis is a convenience method. The arguments are a morphism [23X\alpha[123X and a2067morphism [23X\beta[123X. The output is the pushout [23X\mathrm{Pushout}(\alpha, \beta)[123X.[133X20682069[1X6.10-15 PushoutOp[101X20702071[29X[2XPushoutOp[102X( [3XD[103X ) [32X operation2072[6XReturns:[106X [33X[0;10Yan object[133X20732074[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2075= 1 \dots n}[123X and a morphism for method selection. The output is the pushout2076[23X\mathrm{Pushout}(D)[123X.[133X20772078[1X6.10-16 InjectionOfCofactorOfPushout[101X20792080[29X[2XInjectionOfCofactorOfPushout[102X( [3XD[103X, [3Xk[103X ) [32X operation2081[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( I_k, \mathrm{Pushout}( D ) )[123X.[133X20822083[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2084= 1 \dots n}[123X and an integer [23Xk[123X. The output is the [23Xk[123X-th injection [23X\iota_k: I_k2085\rightarrow \mathrm{Pushout}( D )[123X.[133X20862087[1X6.10-17 InjectionOfCofactorOfPushoutOp[101X20882089[29X[2XInjectionOfCofactorOfPushoutOp[102X( [3XD[103X, [3Xk[103X, [3Xmethod_selection_morphism[103X ) [32X operation2090[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( I_k, \mathrm{Pushout}( D ) )[123X.[133X20912092[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2093= 1 \dots n}[123X, an integer [23Xk[123X, and a morphism for method selection. The output2094is the [23Xk[123X-th injection [23X\iota_k: I_k \rightarrow \mathrm{Pushout}( D )[123X.[133X20952096[1X6.10-18 InjectionOfCofactorOfPushoutWithGivenPushout[101X20972098[29X[2XInjectionOfCofactorOfPushoutWithGivenPushout[102X( [3XD[103X, [3Xk[103X, [3XI[103X ) [32X operation2099[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( I_k, \mathrm{Pushout}( D ) )[123X.[133X21002101[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2102= 1 \dots n}[123X, an integer [23Xk[123X, and an object [23XI = \mathrm{Pushout}(D)[123X. The2103output is the [23Xk[123X-th injection [23X\iota_k: I_k \rightarrow \mathrm{Pushout}( D )[123X.[133X21042105[1X6.10-19 UniversalMorphismFromPushout[101X21062107[29X[2XUniversalMorphismFromPushout[102X( [3Xarg[103X ) [32X function21082109[33X[0;0YThis is a convenience method. There are three different ways to use this2110method:[133X21112112[30X [33X[0;6YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i2113)_{i = 1 \dots n}[123X and a list of morphisms [23X\tau = ( \tau_i: I_i2114\rightarrow T )_{i = 1 \dots n}[123X such that [23X\tau_i \circ \beta_i2115\sim_{B,T} \tau_j \circ \beta_j[123X. The output is the morphism [23Xu( \tau ):2116\mathrm{Pushout}(D) \rightarrow T[123X given by the universal property of2117the pushout.[133X21182119[30X [33X[0;6YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i2120)_{i = 1 \dots n}[123X and morphisms [23X\tau_1: I_1 \rightarrow T, \dots,2121\tau_n: I_n \rightarrow T[123X such that [23X\tau_i \circ \beta_i \sim_{B,T}2122\tau_j \circ \beta_j[123X. The output is the morphism [23Xu( \tau ):2123\mathrm{Pushout}(D) \rightarrow T[123X given by the universal property of2124the pushout.[133X21252126[1X6.10-20 UniversalMorphismFromPushoutOp[101X21272128[29X[2XUniversalMorphismFromPushoutOp[102X( [3XD[103X, [3Xtau[103X, [3Xmethod_selection_morphism[103X ) [32X operation2129[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{Pushout}(D), T )[123X[133X21302131[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2132= 1 \dots n}[123X, a list of morphisms [23X\tau = ( \tau_i: I_i \rightarrow T )_{i =21331 \dots n}[123X such that [23X\tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j[123X,2134and a morphism for method selection. The output is the morphism [23Xu( \tau ):2135\mathrm{Pushout}(D) \rightarrow T[123X given by the universal property of the2136pushout.[133X21372138[1X6.10-21 UniversalMorphismFromPushoutWithGivenPushout[101X21392140[29X[2XUniversalMorphismFromPushoutWithGivenPushout[102X( [3XD[103X, [3Xtau[103X, [3XI[103X ) [32X operation2141[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( I, T )[123X[133X21422143[33X[0;0YThe arguments are a list of morphisms [23XD = ( \beta_i: B \rightarrow I_i )_{i2144= 1 \dots n}[123X, a list of morphisms [23X\tau = ( \tau_i: I_i \rightarrow T )_{i =21451 \dots n}[123X such that [23X\tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j[123X,2146and an object [23XI = \mathrm{Pushout}(D)[123X. The output is the morphism [23Xu( \tau ):2147I \rightarrow T[123X given by the universal property of the pushout.[133X21482149[1X6.10-22 AddPushout[101X21502151[29X[2XAddPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2152[6XReturns:[106X [33X[0;10Ynothing[133X21532154[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2155given function [23XF[123X to the category for the basic operation [10XPushout[110X. [23XF: (2156(\beta_i: B \rightarrow I_i)_{i = 1 \dots n} ) \mapsto I[123X[133X21572158[1X6.10-23 AddInjectionOfCofactorOfPushout[101X21592160[29X[2XAddInjectionOfCofactorOfPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2161[6XReturns:[106X [33X[0;10Ynothing[133X21622163[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2164given function [23XF[123X to the category for the basic operation2165[10XInjectionOfCofactorOfPushout[110X. [23XF: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots2166n}, k ) \mapsto \iota_k[123X[133X21672168[1X6.10-24 AddInjectionOfCofactorOfPushoutWithGivenPushout[101X21692170[29X[2XAddInjectionOfCofactorOfPushoutWithGivenPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2171[6XReturns:[106X [33X[0;10Ynothing[133X21722173[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2174given function [23XF[123X to the category for the basic operation2175[10XInjectionOfCofactorOfPushoutWithGivenPushout[110X. [23XF: ( (\beta_i: B \rightarrow2176I_i)_{i = 1 \dots n}, k, I ) \mapsto \iota_k[123X[133X21772178[1X6.10-25 AddUniversalMorphismFromPushout[101X21792180[29X[2XAddUniversalMorphismFromPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2181[6XReturns:[106X [33X[0;10Ynothing[133X21822183[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2184given function [23XF[123X to the category for the basic operation2185[10XUniversalMorphismFromPushout[110X. [23XF: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots2186n}, \tau ) \mapsto u(\tau)[123X[133X21872188[1X6.10-26 AddUniversalMorphismFromPushoutWithGivenPushout[101X21892190[29X[2XAddUniversalMorphismFromPushoutWithGivenPushout[102X( [3XC[103X, [3XF[103X ) [32X operation2191[6XReturns:[106X [33X[0;10Ynothing[133X21922193[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2194given function [23XF[123X to the category for the basic operation2195[10XUniversalMorphismFromPushout[110X. [23XF: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots2196n}, \tau, I ) \mapsto u(\tau)[123X[133X21972198[1X6.10-27 PushoutFunctorial[101X21992200[29X[2XPushoutFunctorial[102X( [3XL[103X ) [32X operation2201[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{Pushout}( ( \beta_i )_{i=1}^n2202), \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ))[123X[133X22032204[33X[0;0YThe argument is a list [23XL = ( ( \beta_i: B \rightarrow I_i, \mu_i: I_i2205\rightarrow I_i', \beta_i': B' \rightarrow I_i' )_{i = 1 \dots n} )[123X such2206that there exists a morphism [23X\beta: B \rightarrow B'[123X such that [23X\beta_i'2207\circ \beta \sim_{B, I_i'} \mu_i \circ \beta_i[123X for [23Xi = 1, \dots n[123X. The2208output is the morphism [23X\mathrm{Pushout}( ( \beta_i )_{i=1}^n ) \rightarrow2209\mathrm{Pushout}( ( \beta_i' )_{i=1}^n )[123X given by the functorality of the2210pushout.[133X22112212[1X6.10-28 PushoutFunctorialWithGivenPushouts[101X22132214[29X[2XPushoutFunctorialWithGivenPushouts[102X( [3Xs[103X, [3XL[103X, [3Xr[103X ) [32X operation2215[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(s, r)[123X[133X22162217[33X[0;0YThe arguments are an object [23Xs = \mathrm{Pushout}( ( \beta_i )_{i=1}^n )[123X, a2218list [23XL = ( ( \beta_i: B \rightarrow I_i, \mu_i: I_i \rightarrow I_i',2219\beta_i': B' \rightarrow I_i' )_{i = 1 \dots n} )[123X such that there exists a2220morphism [23X\beta: B \rightarrow B'[123X such that [23X\beta_i' \circ \beta \sim_{B,2221I_i'} \mu_i \circ \beta_i[123X for [23Xi = 1, \dots n[123X, and an object [23Xr =2222\mathrm{Pushout}( ( \beta_i' )_{i=1}^n )[123X. The output is the morphism [23Xs2223\rightarrow r[123X given by the functorality of the pushout.[133X22242225[1X6.10-29 AddPushoutFunctorialWithGivenPushouts[101X22262227[29X[2XAddPushoutFunctorialWithGivenPushouts[102X( [3XC[103X, [3XF[103X ) [32X operation2228[6XReturns:[106X [33X[0;10Ynothing[133X22292230[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2231given function [23XF[123X to the category for the basic operation [10XPushoutFunctorial[110X.2232[23XF: ( \mathrm{Pushout}( ( \beta_i )_{i=1}^n ), ( \beta_i: B \rightarrow I_i,2233\mu_i: I_i \rightarrow I_i', \beta_i': B' \rightarrow I_i' )_{i = 1 \dots2234n}, \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ) ) \mapsto (\mathrm{Pushout}( (2235\beta_i )_{i=1}^n ) \rightarrow \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ) )[123X[133X223622372238[1X6.11 [33X[0;0YImage[133X[101X22392240[33X[0;0YFor a given morphism [23X\alpha: A \rightarrow B[123X, an image of [23X\alpha[123X consists of2241four parts:[133X22422243[30X [33X[0;6Yan object [23XI[123X,[133X22442245[30X [33X[0;6Ya morphism [23Xc: A \rightarrow I[123X,[133X22462247[30X [33X[0;6Ya monomorphism [23X\iota: I \hookrightarrow B[123X such that [23X\iota \circ c2248\sim_{A,B} \alpha[123X,[133X22492250[30X [33X[0;6Ya dependent function [23Xu[123X mapping each pair of morphisms [23X\tau = ( \tau_1:2251A \rightarrow T, \tau_2: T \hookrightarrow B )[123X where [23X\tau_2[123X is a2252monomorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X to a2253morphism [23Xu(\tau): I \rightarrow T[123X such that [23X\tau_2 \circ u(\tau)2254\sim_{I,B} \iota[123X and [23Xu(\tau) \circ c \sim_{A,T} \tau_1[123X.[133X22552256[33X[0;0YThe [23X4[123X-tuple [23X( I, c, \iota, u )[123X is called an [13Ximage[113X of [23X\alpha[123X if the morphisms2257[23Xu( \tau )[123X are uniquely determined up to congruence of morphisms. We denote2258the object [23XI[123X of such a [23X4[123X-tuple by [23X\mathrm{im}(\alpha)[123X. We say that the2259morphism [23Xu( \tau )[123X is induced by the [13Xuniversal property of the image[113X.[133X22602261[1X6.11-1 IsomorphismFromImageObjectToKernelOfCokernel[101X22622263[29X[2XIsomorphismFromImageObjectToKernelOfCokernel[102X( [3Xalpha[103X ) [32X attribute2264[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{im}(\alpha),2265\mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) )[123X[133X22662267[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the canonical morphism2268[23X\mathrm{im}(\alpha) \rightarrow \mathrm{KernelObject}(2269\mathrm{CokernelProjection}( \alpha ) )[123X.[133X22702271[1X6.11-2 AddIsomorphismFromImageObjectToKernelOfCokernel[101X22722273[29X[2XAddIsomorphismFromImageObjectToKernelOfCokernel[102X( [3XC[103X, [3XF[103X ) [32X operation2274[6XReturns:[106X [33X[0;10Ynothing[133X22752276[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2277given function [23XF[123X to the category for the basic operation2278[10XIsomorphismFromImageObjectToKernelOfCokernel[110X. [23XF: \alpha \mapsto (2279\mathrm{im}(\alpha) \rightarrow \mathrm{KernelObject}(2280\mathrm{CokernelProjection}( \alpha ) ) )[123X[133X22812282[1X6.11-3 IsomorphismFromKernelOfCokernelToImageObject[101X22832284[29X[2XIsomorphismFromKernelOfCokernelToImageObject[102X( [3Xalpha[103X ) [32X attribute2285[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{KernelObject}(2286\mathrm{CokernelProjection}( \alpha ) ), \mathrm{im}(\alpha) )[123X[133X22872288[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the canonical morphism2289[23X\mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) \rightarrow2290\mathrm{im}(\alpha)[123X.[133X22912292[1X6.11-4 AddIsomorphismFromKernelOfCokernelToImageObject[101X22932294[29X[2XAddIsomorphismFromKernelOfCokernelToImageObject[102X( [3XC[103X, [3XF[103X ) [32X operation2295[6XReturns:[106X [33X[0;10Ynothing[133X22962297[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2298given function [23XF[123X to the category for the basic operation2299[10XIsomorphismFromKernelOfCokernelToImageObject[110X. [23XF: \alpha \mapsto (2300\mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) \rightarrow2301\mathrm{im}(\alpha) )[123X[133X23022303[1X6.11-5 ImageObject[101X23042305[29X[2XImageObject[102X( [3Xalpha[103X ) [32X attribute2306[6XReturns:[106X [33X[0;10Yan object[133X23072308[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the image [23X\mathrm{im}(2309\alpha )[123X.[133X23102311[1X6.11-6 ImageEmbedding[101X23122313[29X[2XImageEmbedding[102X( [3Xalpha[103X ) [32X attribute2314[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{im}(\alpha), B)[123X[133X23152316[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the image2317embedding [23X\iota: \mathrm{im}(\alpha) \hookrightarrow B[123X.[133X23182319[1X6.11-7 ImageEmbeddingWithGivenImageObject[101X23202321[29X[2XImageEmbeddingWithGivenImageObject[102X( [3Xalpha[103X, [3XI[103X ) [32X operation2322[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I, B)[123X[133X23232324[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X and an object [23XI =2325\mathrm{im}( \alpha )[123X. The output is the image embedding [23X\iota: I2326\hookrightarrow B[123X.[133X23272328[1X6.11-8 CoastrictionToImage[101X23292330[29X[2XCoastrictionToImage[102X( [3Xalpha[103X ) [32X attribute2331[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, \mathrm{im}( \alpha ))[123X[133X23322333[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2334coastriction to image [23Xc: A \rightarrow \mathrm{im}( \alpha )[123X.[133X23352336[1X6.11-9 CoastrictionToImageWithGivenImageObject[101X23372338[29X[2XCoastrictionToImageWithGivenImageObject[102X( [3Xalpha[103X, [3XI[103X ) [32X operation2339[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, I)[123X[133X23402341[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X and an object [23XI =2342\mathrm{im}( \alpha )[123X. The output is the coastriction to image [23Xc: A2343\rightarrow I[123X.[133X23442345[1X6.11-10 UniversalMorphismFromImage[101X23462347[29X[2XUniversalMorphismFromImage[102X( [3Xalpha[103X, [3Xtau[103X ) [32X operation2348[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{im}(\alpha), T)[123X[133X23492350[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and a pair of morphisms2351[23X\tau = ( \tau_1: A \rightarrow T, \tau_2: T \hookrightarrow B )[123X where [23X\tau_2[123X2352is a monomorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X. The2353output is the morphism [23Xu(\tau): \mathrm{im}(\alpha) \rightarrow T[123X given by2354the universal property of the image.[133X23552356[1X6.11-11 UniversalMorphismFromImageWithGivenImageObject[101X23572358[29X[2XUniversalMorphismFromImageWithGivenImageObject[102X( [3Xalpha[103X, [3Xtau[103X, [3XI[103X ) [32X operation2359[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I, T)[123X[133X23602361[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X, a pair of morphisms2362[23X\tau = ( \tau_1: A \rightarrow T, \tau_2: T \hookrightarrow B )[123X where [23X\tau_2[123X2363is a monomorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X, and an2364object [23XI = \mathrm{im}( \alpha )[123X. The output is the morphism [23Xu(\tau):2365\mathrm{im}(\alpha) \rightarrow T[123X given by the universal property of the2366image.[133X23672368[1X6.11-12 AddImageObject[101X23692370[29X[2XAddImageObject[102X( [3XC[103X, [3XF[103X ) [32X operation2371[6XReturns:[106X [33X[0;10Ynothing[133X23722373[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2374given function [23XF[123X to the category for the basic operation [10XImageObject[110X. [23XF:2375\alpha \mapsto I[123X.[133X23762377[1X6.11-13 AddImageEmbedding[101X23782379[29X[2XAddImageEmbedding[102X( [3XC[103X, [3XF[103X ) [32X operation2380[6XReturns:[106X [33X[0;10Ynothing[133X23812382[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2383given function [23XF[123X to the category for the basic operation [10XImageEmbedding[110X. [23XF:2384\alpha \mapsto \iota[123X.[133X23852386[1X6.11-14 AddImageEmbeddingWithGivenImageObject[101X23872388[29X[2XAddImageEmbeddingWithGivenImageObject[102X( [3XC[103X, [3XF[103X ) [32X operation2389[6XReturns:[106X [33X[0;10Ynothing[133X23902391[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2392given function [23XF[123X to the category for the basic operation2393[10XImageEmbeddingWithGivenImageObject[110X. [23XF: (\alpha,I) \mapsto \iota[123X.[133X23942395[1X6.11-15 AddCoastrictionToImage[101X23962397[29X[2XAddCoastrictionToImage[102X( [3XC[103X, [3XF[103X ) [32X operation2398[6XReturns:[106X [33X[0;10Ynothing[133X23992400[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2401given function [23XF[123X to the category for the basic operation2402[10XCoastrictionToImage[110X. [23XF: \alpha \mapsto c[123X.[133X24032404[1X6.11-16 AddCoastrictionToImageWithGivenImageObject[101X24052406[29X[2XAddCoastrictionToImageWithGivenImageObject[102X( [3XC[103X, [3XF[103X ) [32X operation2407[6XReturns:[106X [33X[0;10Ynothing[133X24082409[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2410given function [23XF[123X to the category for the basic operation2411[10XCoastrictionToImageWithGivenImageObject[110X. [23XF: (\alpha,I) \mapsto c[123X.[133X24122413[1X6.11-17 AddUniversalMorphismFromImage[101X24142415[29X[2XAddUniversalMorphismFromImage[102X( [3XC[103X, [3XF[103X ) [32X operation2416[6XReturns:[106X [33X[0;10Ynothing[133X24172418[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2419given function [23XF[123X to the category for the basic operation2420[10XUniversalMorphismFromImage[110X. [23XF: (\alpha, \tau) \mapsto u(\tau)[123X.[133X24212422[1X6.11-18 AddUniversalMorphismFromImageWithGivenImageObject[101X24232424[29X[2XAddUniversalMorphismFromImageWithGivenImageObject[102X( [3XC[103X, [3XF[103X ) [32X operation2425[6XReturns:[106X [33X[0;10Ynothing[133X24262427[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2428given function [23XF[123X to the category for the basic operation2429[10XUniversalMorphismFromImageWithGivenImageObject[110X. [23XF: (\alpha, \tau, I) \mapsto2430u(\tau)[123X.[133X243124322433[1X6.12 [33X[0;0YCoimage[133X[101X24342435[33X[0;0YFor a given morphism [23X\alpha: A \rightarrow B[123X, a coimage of [23X\alpha[123X consists2436of four parts:[133X24372438[30X [33X[0;6Yan object [23XC[123X,[133X24392440[30X [33X[0;6Yan epimorphism [23X\pi: A \twoheadrightarrow C[123X,[133X24412442[30X [33X[0;6Ya morphism [23Xa: C \rightarrow B[123X such that [23Xa \circ \pi \sim_{A,B} \alpha[123X,[133X24432444[30X [33X[0;6Ya dependent function [23Xu[123X mapping each pair of morphisms [23X\tau = ( \tau_1:2445A \twoheadrightarrow T, \tau_2: T \rightarrow B )[123X where [23X\tau_1[123X is an2446epimorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X to a2447morphism [23Xu(\tau): T \rightarrow C[123X such that [23Xu( \tau ) \circ \tau_12448\sim_{A,C} \pi[123X and [23Xa \circ u( \tau ) \sim_{T,B} \tau_2[123X.[133X24492450[33X[0;0YThe [23X4[123X-tuple [23X( C, \pi, a, u )[123X is called a [13Xcoimage[113X of [23X\alpha[123X if the morphisms2451[23Xu( \tau )[123X are uniquely determined up to congruence of morphisms. We denote2452the object [23XC[123X of such a [23X4[123X-tuple by [23X\mathrm{coim}(\alpha)[123X. We say that the2453morphism [23Xu( \tau )[123X is induced by the [13Xuniversal property of the coimage[113X.[133X24542455[1X6.12-1 MorphismFromCoimageToImage[101X24562457[29X[2XMorphismFromCoimageToImage[102X( [3Xalpha[103X ) [32X attribute2458[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{coim}(\alpha),2459\mathrm{im}(\alpha))[123X[133X24602461[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2462canonical morphism (in a preabelian category) [23X\mathrm{coim}(\alpha)2463\rightarrow \mathrm{im}(\alpha)[123X.[133X24642465[1X6.12-2 MorphismFromCoimageToImageWithGivenObjects[101X24662467[29X[2XMorphismFromCoimageToImageWithGivenObjects[102X( [3Xalpha[103X ) [32X operation2468[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(C,I)[123X[133X24692470[33X[0;0YThe argument is an object [23XC = \mathrm{coim}(\alpha)[123X, a morphism [23X\alpha: A2471\rightarrow B[123X, and an object [23XI = \mathrm{im}(\alpha)[123X. The output is the2472canonical morphism (in a preabelian category) [23XC \rightarrow I[123X.[133X24732474[1X6.12-3 AddMorphismFromCoimageToImageWithGivenObjects[101X24752476[29X[2XAddMorphismFromCoimageToImageWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation2477[6XReturns:[106X [33X[0;10Ynothing[133X24782479[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2480given function [23XF[123X to the category for the basic operation2481[10XMorphismFromCoimageToImageWithGivenObjects[110X. [23XF: (C, \alpha, I) \mapsto ( C2482\rightarrow I )[123X.[133X24832484[1X6.12-4 InverseMorphismFromCoimageToImage[101X24852486[29X[2XInverseMorphismFromCoimageToImage[102X( [3Xalpha[103X ) [32X attribute2487[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{im}(\alpha),2488\mathrm{coim}(\alpha))[123X[133X24892490[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2491inverse of the canonical morphism (in an abelian category)2492[23X\mathrm{im}(\alpha) \rightarrow \mathrm{coim}(\alpha)[123X.[133X24932494[1X6.12-5 InverseMorphismFromCoimageToImageWithGivenObjects[101X24952496[29X[2XInverseMorphismFromCoimageToImageWithGivenObjects[102X( [3Xalpha[103X ) [32X operation2497[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(I,C)[123X[133X24982499[33X[0;0YThe argument is an object [23XC = \mathrm{coim}(\alpha)[123X, a morphism [23X\alpha: A2500\rightarrow B[123X, and an object [23XI = \mathrm{im}(\alpha)[123X. The output is the2501inverse of the canonical morphism (in an abelian category) [23XI \rightarrow C[123X.[133X25022503[1X6.12-6 AddInverseMorphismFromCoimageToImageWithGivenObjects[101X25042505[29X[2XAddInverseMorphismFromCoimageToImageWithGivenObjects[102X( [3XC[103X, [3XF[103X ) [32X operation2506[6XReturns:[106X [33X[0;10Ynothing[133X25072508[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2509given function [23XF[123X to the category for the basic operation2510[10XMorphismFromCoimageToImageWithGivenObjects[110X. [23XF: (C, \alpha, I) \mapsto ( I2511\rightarrow C )[123X.[133X25122513[1X6.12-7 IsomorphismFromCoimageToCokernelOfKernel[101X25142515[29X[2XIsomorphismFromCoimageToCokernelOfKernel[102X( [3Xalpha[103X ) [32X attribute2516[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{coim}( \alpha ),2517\mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) )[123X.[133X25182519[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2520canonical morphism [23X\mathrm{coim}( \alpha ) \rightarrow2521\mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) )[123X.[133X25222523[1X6.12-8 AddIsomorphismFromCoimageToCokernelOfKernel[101X25242525[29X[2XAddIsomorphismFromCoimageToCokernelOfKernel[102X( [3XC[103X, [3XF[103X ) [32X operation2526[6XReturns:[106X [33X[0;10Ynothing[133X25272528[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2529given function [23XF[123X to the category for the basic operation2530[10XIsomorphismFromCoimageToCokernelOfKernel[110X. [23XF: \alpha \mapsto ( \mathrm{coim}(2531\alpha ) \rightarrow \mathrm{CokernelObject}( \mathrm{KernelEmbedding}(2532\alpha ) ) )[123X.[133X25332534[1X6.12-9 IsomorphismFromCokernelOfKernelToCoimage[101X25352536[29X[2XIsomorphismFromCokernelOfKernelToCoimage[102X( [3Xalpha[103X ) [32X attribute2537[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}( \mathrm{CokernelObject}(2538\mathrm{KernelEmbedding}( \alpha ) ), \mathrm{coim}( \alpha ) )[123X.[133X25392540[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2541canonical morphism [23X\mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha2542) ) \rightarrow \mathrm{coim}( \alpha )[123X.[133X25432544[1X6.12-10 AddIsomorphismFromCokernelOfKernelToCoimage[101X25452546[29X[2XAddIsomorphismFromCokernelOfKernelToCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2547[6XReturns:[106X [33X[0;10Ynothing[133X25482549[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2550given function [23XF[123X to the category for the basic operation2551[10XIsomorphismFromCokernelOfKernelToCoimage[110X. [23XF: \alpha \mapsto (2552\mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) \rightarrow2553\mathrm{coim}( \alpha ) )[123X.[133X25542555[1X6.12-11 Coimage[101X25562557[29X[2XCoimage[102X( [3Xalpha[103X ) [32X attribute2558[6XReturns:[106X [33X[0;10Yan object[133X25592560[33X[0;0YThe argument is a morphism [23X\alpha[123X. The output is the coimage [23X\mathrm{coim}(2561\alpha )[123X.[133X25622563[1X6.12-12 CoimageProjection[101X25642565[29X[2XCoimageProjection[102X( [3XC[103X ) [32X attribute2566[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, C)[123X[133X25672568[33X[0;0YThis is a convenience method. The argument is an object [23XC[123X which was created2569as a coimage of a morphism [23X\alpha: A \rightarrow B[123X. The output is the2570coimage projection [23X\pi: A \twoheadrightarrow C[123X.[133X25712572[1X6.12-13 CoimageProjection[101X25732574[29X[2XCoimageProjection[102X( [3Xalpha[103X ) [32X attribute2575[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, \mathrm{coim}( \alpha ))[123X[133X25762577[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2578coimage projection [23X\pi: A \twoheadrightarrow \mathrm{coim}( \alpha )[123X.[133X25792580[1X6.12-14 CoimageProjectionWithGivenCoimage[101X25812582[29X[2XCoimageProjectionWithGivenCoimage[102X( [3Xalpha[103X, [3XC[103X ) [32X operation2583[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(A, C)[123X[133X25842585[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and an object [23XC =2586\mathrm{coim}(\alpha)[123X. The output is the coimage projection [23X\pi: A2587\twoheadrightarrow C[123X.[133X25882589[1X6.12-15 AstrictionToCoimage[101X25902591[29X[2XAstrictionToCoimage[102X( [3XC[103X ) [32X attribute2592[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(C,B)[123X[133X25932594[33X[0;0YThis is a convenience method. The argument is an object [23XC[123X which was created2595as a coimage of a morphism [23X\alpha: A \rightarrow B[123X. The output is the2596astriction to coimage [23Xa: C \rightarrow B[123X.[133X25972598[1X6.12-16 AstrictionToCoimage[101X25992600[29X[2XAstrictionToCoimage[102X( [3Xalpha[103X ) [32X attribute2601[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(\mathrm{coim}( \alpha ),B)[123X[133X26022603[33X[0;0YThe argument is a morphism [23X\alpha: A \rightarrow B[123X. The output is the2604astriction to coimage [23Xa: \mathrm{coim}( \alpha ) \rightarrow B[123X.[133X26052606[1X6.12-17 AstrictionToCoimageWithGivenCoimage[101X26072608[29X[2XAstrictionToCoimageWithGivenCoimage[102X( [3Xalpha[103X, [3XC[103X ) [32X operation2609[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(C,B)[123X[133X26102611[33X[0;0YThe argument are a morphism [23X\alpha: A \rightarrow B[123X and an object [23XC =2612\mathrm{coim}( \alpha )[123X. The output is the astriction to coimage [23Xa: C2613\rightarrow B[123X.[133X26142615[1X6.12-18 UniversalMorphismIntoCoimage[101X26162617[29X[2XUniversalMorphismIntoCoimage[102X( [3Xalpha[103X, [3Xtau[103X ) [32X operation2618[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, \mathrm{coim}( \alpha ))[123X[133X26192620[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X and a pair of morphisms2621[23X\tau = ( \tau_1: A \twoheadrightarrow T, \tau_2: T \rightarrow B )[123X where2622[23X\tau_1[123X is an epimorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X.2623The output is the morphism [23Xu(\tau): T \rightarrow \mathrm{coim}( \alpha )[123X2624given by the universal property of the coimage.[133X26252626[1X6.12-19 UniversalMorphismIntoCoimageWithGivenCoimage[101X26272628[29X[2XUniversalMorphismIntoCoimageWithGivenCoimage[102X( [3Xalpha[103X, [3Xtau[103X, [3XC[103X ) [32X operation2629[6XReturns:[106X [33X[0;10Ya morphism in [23X\mathrm{Hom}(T, C)[123X[133X26302631[33X[0;0YThe arguments are a morphism [23X\alpha: A \rightarrow B[123X, a pair of morphisms2632[23X\tau = ( \tau_1: A \twoheadrightarrow T, \tau_2: T \rightarrow B )[123X where2633[23X\tau_1[123X is an epimorphism such that [23X\tau_2 \circ \tau_1 \sim_{A,B} \alpha[123X,2634and an object [23XC = \mathrm{coim}( \alpha )[123X. The output is the morphism2635[23Xu(\tau): T \rightarrow C[123X given by the universal property of the coimage.[133X26362637[1X6.12-20 AddCoimage[101X26382639[29X[2XAddCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2640[6XReturns:[106X [33X[0;10Ynothing[133X26412642[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2643given function [23XF[123X to the category for the basic operation [10XCoimage[110X. [23XF: \alpha2644\mapsto C[123X[133X26452646[1X6.12-21 AddCoimageProjection[101X26472648[29X[2XAddCoimageProjection[102X( [3XC[103X, [3XF[103X ) [32X operation2649[6XReturns:[106X [33X[0;10Ynothing[133X26502651[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2652given function [23XF[123X to the category for the basic operation [10XCoimageProjection[110X.2653[23XF: \alpha \mapsto \pi[123X[133X26542655[1X6.12-22 AddCoimageProjectionWithGivenCoimage[101X26562657[29X[2XAddCoimageProjectionWithGivenCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2658[6XReturns:[106X [33X[0;10Ynothing[133X26592660[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2661given function [23XF[123X to the category for the basic operation2662[10XCoimageProjectionWithGivenCoimage[110X. [23XF: (\alpha,C) \mapsto \pi[123X[133X26632664[1X6.12-23 AddAstrictionToCoimage[101X26652666[29X[2XAddAstrictionToCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2667[6XReturns:[106X [33X[0;10Ynothing[133X26682669[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2670given function [23XF[123X to the category for the basic operation2671[10XAstrictionToCoimage[110X. [23XF: \alpha \mapsto a[123X[133X26722673[1X6.12-24 AddAstrictionToCoimageWithGivenCoimage[101X26742675[29X[2XAddAstrictionToCoimageWithGivenCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2676[6XReturns:[106X [33X[0;10Ynothing[133X26772678[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2679given function [23XF[123X to the category for the basic operation2680[10XAstrictionToCoimageWithGivenCoimage[110X. [23XF: (\alpha,C) \mapsto a[123X[133X26812682[1X6.12-25 AddUniversalMorphismIntoCoimage[101X26832684[29X[2XAddUniversalMorphismIntoCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2685[6XReturns:[106X [33X[0;10Ynothing[133X26862687[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2688given function [23XF[123X to the category for the basic operation2689[10XUniversalMorphismIntoCoimage[110X. [23XF: (\alpha, \tau) \mapsto u(\tau)[123X[133X26902691[1X6.12-26 AddUniversalMorphismIntoCoimageWithGivenCoimage[101X26922693[29X[2XAddUniversalMorphismIntoCoimageWithGivenCoimage[102X( [3XC[103X, [3XF[103X ) [32X operation2694[6XReturns:[106X [33X[0;10Ynothing[133X26952696[33X[0;0YThe arguments are a category [23XC[123X and a function [23XF[123X. This operations adds the2697given function [23XF[123X to the category for the basic operation2698[10XUniversalMorphismIntoCoimageWithGivenCoimage[110X. [23XF: (\alpha, \tau,C) \mapsto2699u(\tau)[123X[133X2700270127022703