Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418385LoadPackage( "ModulePresentationsForCAP" ); LoadPackage( "GeneralizedMorphismsForCAP" ); LoadPackage( "RingsForHomalg" ); ## Initialisation ZZ := HomalgRingOfIntegersInSingular( ); C1_eval := FreeLeftPresentation( 1, ZZ ); C1 := InDeductiveSystem( C1_eval ); C2_eval := FreeLeftPresentation( 2, ZZ ); C2 := InDeductiveSystem( C2_eval ); C3_eval := FreeLeftPresentation( 3, ZZ ); C3 := InDeductiveSystem( C3_eval ); C4_eval := FreeLeftPresentation( 3, ZZ ); C4 := InDeductiveSystem( C4_eval ); C5_eval := FreeLeftPresentation( 2, ZZ ); C5 := InDeductiveSystem( C5_eval ); C6_eval := FreeLeftPresentation( 1, ZZ ); C6 := InDeductiveSystem( C6_eval ); delta1_eval := PresentationMorphism( C1_eval, HomalgMatrix( [ [ 1, 0 ] ], ZZ ), C2_eval ); delta1 := InDeductiveSystem( delta1_eval ); delta2_eval := PresentationMorphism( C3_eval, HomalgMatrix( [ [ 0, 0 ], [ 1, 0 ], [ 0, 1 ] ], ZZ ), C2_eval ); delta2 := InDeductiveSystem( delta2_eval ); delta3_eval := PresentationMorphism( C3_eval, HomalgMatrix( [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], ZZ ), C4_eval ); delta3 := InDeductiveSystem( delta3_eval ); delta4_eval := PresentationMorphism( C5_eval, HomalgMatrix( [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], ZZ ), C4_eval ); delta4 := InDeductiveSystem( delta4_eval ); delta5_eval := PresentationMorphism( C5_eval, HomalgMatrix( [ [ 0 ], [ 1 ] ], ZZ ), C6_eval ); delta5 := InDeductiveSystem( delta5_eval ); SetIsAbelianCategory( CapCategory( delta1 ), true ); delta1_generalized := AsGeneralizedMorphism( delta1 ); delta2_generalized := AsGeneralizedMorphism( delta2 ); delta3_generalized := AsGeneralizedMorphism( delta3 ); delta4_generalized := AsGeneralizedMorphism( delta4 ); delta5_generalized := AsGeneralizedMorphism( delta5 ); connecting_morphism := delta1_generalized; connecting_morphism := PreCompose( connecting_morphism, PseudoInverse( delta2_generalized ) ); connecting_morphism := PreCompose( connecting_morphism, delta3_generalized ); connecting_morphism := PreCompose( connecting_morphism, PseudoInverse( delta4_generalized ) ); connecting_morphism := PreCompose( connecting_morphism, delta5_generalized ); c := AssociatedMorphism( connecting_morphism ); c_eval := Evaluation( c ); c_eval_less_generators := ApplyFunctor( FunctorLessGeneratorsLeft( ZZ ), c_eval ); Display( UnderlyingMatrix( c_eval_less_generators ) );