CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
1
% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
2
\documentclass[a4paper,11pt]{report}
3
4
\usepackage{a4wide}
5
\sloppy
6
\pagestyle{myheadings}
7
\usepackage{amssymb}
8
\usepackage[utf8]{inputenc}
9
\usepackage{makeidx}
10
\makeindex
11
\usepackage{color}
12
\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
13
\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
14
\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
15
\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
16
\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
17
\definecolor{Black}{rgb}{0.0,0.0,0.0}
18
19
\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
20
\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
21
\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
22
\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
23
\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
24
\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
25
\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
26
\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}
27
28
%% for a long time these were red and blue by default,
29
%% now black, but keep variables to overwrite
30
\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
31
%% strange name because of pdflatex bug:
32
\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
33
\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}
34
35
36
\usepackage{fancyvrb}
37
38
\usepackage{mathptmx,helvet}
39
\usepackage[T1]{fontenc}
40
\usepackage{textcomp}
41
42
43
\usepackage[
44
pdftex=true,
45
bookmarks=true,
46
a4paper=true,
47
pdftitle={Written with GAPDoc},
48
pdfcreator={LaTeX with hyperref package / GAPDoc},
49
colorlinks=true,
50
backref=page,
51
breaklinks=true,
52
linkcolor=linkColor,
53
citecolor=citeColor,
54
filecolor=fileColor,
55
urlcolor=urlColor,
56
pdfpagemode={UseNone},
57
]{hyperref}
58
59
\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}
60
61
% write page numbers to a .pnr log file for online help
62
\newwrite\pagenrlog
63
\immediate\openout\pagenrlog =\jobname.pnr
64
\immediate\write\pagenrlog{PAGENRS := [}
65
\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
66
%% were never documented, give conflicts with some additional packages
67
68
\newcommand{\GAP}{\textsf{GAP}}
69
70
%% nicer description environments, allows long labels
71
\usepackage{enumitem}
72
\setdescription{style=nextline}
73
74
%% depth of toc
75
\setcounter{tocdepth}{1}
76
77
78
79
80
81
%% command for ColorPrompt style examples
82
\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
83
\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
84
\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}
85
86
87
\begin{document}
88
89
\logpage{[ 0, 0, 0 ]}
90
\begin{titlepage}
91
\mbox{}\vfill
92
93
\begin{center}{\maintitlesize \textbf{\textsf{Convex}\mbox{}}}\\
94
\vfill
95
96
\hypersetup{pdftitle=\textsf{Convex}}
97
\markright{\scriptsize \mbox{}\hfill \textsf{Convex} \hfill\mbox{}}
98
{\Huge \textbf{A \textsf{GAP} package for handling convex objects.\mbox{}}}\\
99
\vfill
100
101
{\Huge Version 2013.12.05\mbox{}}\\[1cm]
102
{August 2012\mbox{}}\\[1cm]
103
\mbox{}\\[2cm]
104
{\Large \textbf{Sebastian Gutsche\\
105
\mbox{}}}\\
106
\hypersetup{pdfauthor=Sebastian Gutsche\\
107
}
108
\mbox{}\\[2cm]
109
\begin{minipage}{12cm}\noindent
110
\\
111
\\
112
This manual is best viewed as an \textsc{HTML} document. An \textsc{offline} version should be included in the documentation subfolder of the package. \\
113
\\
114
\end{minipage}
115
116
\end{center}\vfill
117
118
\mbox{}\\
119
{\mbox{}\\
120
\small \noindent \textbf{Sebastian Gutsche\\
121
} Email: \href{mailto://sebastian.gutsche@rwth-aachen.de} {\texttt{sebastian.gutsche@rwth-aachen.de}}\\
122
Homepage: \href{http://wwwb.math.rwth-aachen.de/~gutsche} {\texttt{http://wwwb.math.rwth-aachen.de/\texttt{\symbol{126}}gutsche}}\\
123
Address: \begin{minipage}[t]{8cm}\noindent
124
Lehrstuhl B f{\"u}r Mathematik, RWTH Aachen, Templergraben 64, 52056 Aachen,
125
Germany \end{minipage}
126
}\\
127
\end{titlepage}
128
129
\newpage\setcounter{page}{2}
130
{\small
131
\section*{Copyright}
132
\logpage{[ 0, 0, 1 ]}
133
{\copyright} 2011-2012 by Sebastian Gutsche
134
135
This package may be distributed under the terms and conditions of the GNU
136
Public License Version 2. \mbox{}}\\[1cm]
137
{\small
138
\section*{Acknowledgements}
139
\logpage{[ 0, 0, 2 ]}
140
\mbox{}}\\[1cm]
141
\newpage
142
143
\def\contentsname{Contents\logpage{[ 0, 0, 3 ]}}
144
145
\tableofcontents
146
\newpage
147
148
\index{\textsf{Convex}}
149
\chapter{\textcolor{Chapter }{Introduction}}\label{intro}
150
\logpage{[ 1, 0, 0 ]}
151
\hyperdef{L}{X7DFB63A97E67C0A1}{}
152
{
153
154
\section{\textcolor{Chapter }{What is the goal of the \textsf{Convex} package?}}\label{WhyToricVarieties}
155
\logpage{[ 1, 1, 0 ]}
156
\hyperdef{L}{X7B061C0C87A36AD1}{}
157
{
158
\textsf{Convex} provides structures and algorithms for convex geometry. It can handle convex,
159
fans and polytopes. Not only the structures are provided, but also a
160
collection of algorithms to handle those objects. Basically, it provides
161
convex geometry to \textsf{GAP}. It is capable of communicating with the CAS polymake via the package \textsf{PolymakeInterface} and also provides several methods by itself. }
162
163
}
164
165
166
\chapter{\textcolor{Chapter }{Installation of the \textsf{Convex} Package}}\label{install}
167
\logpage{[ 2, 0, 0 ]}
168
\hyperdef{L}{X781CA2768080E873}{}
169
{
170
To install this package just extract the package's archive file to the \textsf{GAP} \texttt{pkg} directory.
171
172
By default the \textsf{Convex} package is not automatically loaded by \textsf{GAP} when it is installed. You must load the package with \\
173
\\
174
\texttt{LoadPackage}( "Convex" ); \\
175
\\
176
before its functions become available.
177
178
Please, send me an e-mail if you have any questions, remarks, suggestions,
179
etc. concerning this package. Also, I would be pleased to hear about
180
applications of this package and about any suggestions for new methods to add
181
to the package. \\
182
\\
183
\\
184
Sebastian Gutsche }
185
186
187
\chapter{\textcolor{Chapter }{Convex Objects}}\label{ConvexObject}
188
\logpage{[ 3, 0, 0 ]}
189
\hyperdef{L}{X8359268B7FDA6AEC}{}
190
{
191
Convex objects are the main structure of \textsf{Convex}. All other structures, namely fans, cones, and polytopes are derived from
192
this structure. So all methods of this structure also apply to the other data
193
types.
194
\section{\textcolor{Chapter }{Convex Objects: Category and Representations}}\label{ConvexObject:Category}
195
\logpage{[ 3, 1, 0 ]}
196
\hyperdef{L}{X82E0DD13824DC2C1}{}
197
{
198
199
200
\subsection{\textcolor{Chapter }{IsConvexObject}}
201
\logpage{[ 3, 1, 1 ]}\nobreak
202
\hyperdef{L}{X83ACD3DC7C1BE5F8}{}
203
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsConvexObject({\mdseries\slshape M})\index{IsConvexObject@\texttt{IsConvexObject}}
204
\label{IsConvexObject}
205
}\hfill{\scriptsize (Category)}}\\
206
\textbf{\indent Returns:\ }
207
\texttt{true} or \texttt{false}
208
209
210
211
The \textsf{GAP} category of convex objects, the main category of this package. }
212
213
}
214
215
216
\section{\textcolor{Chapter }{Convex objects: Properties}}\label{ConvexObject:Properties}
217
\logpage{[ 3, 2, 0 ]}
218
\hyperdef{L}{X85454292847AEBD5}{}
219
{
220
221
222
\subsection{\textcolor{Chapter }{IsFullDimensional}}
223
\logpage{[ 3, 2, 1 ]}\nobreak
224
\hyperdef{L}{X7A8A4EF182D275CA}{}
225
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsFullDimensional({\mdseries\slshape conv})\index{IsFullDimensional@\texttt{IsFullDimensional}}
226
\label{IsFullDimensional}
227
}\hfill{\scriptsize (property)}}\\
228
\textbf{\indent Returns:\ }
229
\texttt{true} or \texttt{false}
230
231
232
233
Checks if the combinatorial dimension of the convex object \mbox{\texttt{\mdseries\slshape conv}} is the same as the dimension of the ambient space. }
234
235
}
236
237
238
\section{\textcolor{Chapter }{Convex objects: Attributes}}\label{ConvexObject:Attributes}
239
\logpage{[ 3, 3, 0 ]}
240
\hyperdef{L}{X7E20C8697EA9490E}{}
241
{
242
243
244
\subsection{\textcolor{Chapter }{Dimension}}
245
\logpage{[ 3, 3, 1 ]}\nobreak
246
\hyperdef{L}{X7E6926C6850E7C4E}{}
247
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Dimension({\mdseries\slshape conv})\index{Dimension@\texttt{Dimension}}
248
\label{Dimension}
249
}\hfill{\scriptsize (attribute)}}\\
250
\textbf{\indent Returns:\ }
251
an integer
252
253
254
255
Returns the combinatorial dimension of the convex object \mbox{\texttt{\mdseries\slshape conv}}. This is the dimension of the smallest space i which \mbox{\texttt{\mdseries\slshape conv}} can be embedded. }
256
257
258
259
\subsection{\textcolor{Chapter }{AmbientSpaceDimension}}
260
\logpage{[ 3, 3, 2 ]}\nobreak
261
\hyperdef{L}{X791629C67F481601}{}
262
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientSpaceDimension({\mdseries\slshape conv})\index{AmbientSpaceDimension@\texttt{AmbientSpaceDimension}}
263
\label{AmbientSpaceDimension}
264
}\hfill{\scriptsize (attribute)}}\\
265
\textbf{\indent Returns:\ }
266
an integer
267
268
269
270
Returns the dimension of the ambient space of the object \mbox{\texttt{\mdseries\slshape conv}}. }
271
272
273
274
\subsection{\textcolor{Chapter }{ContainingGrid}}
275
\logpage{[ 3, 3, 3 ]}\nobreak
276
\hyperdef{L}{X7C4692E0794B126E}{}
277
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ContainingGrid({\mdseries\slshape conv})\index{ContainingGrid@\texttt{ContainingGrid}}
278
\label{ContainingGrid}
279
}\hfill{\scriptsize (attribute)}}\\
280
\textbf{\indent Returns:\ }
281
a homalg module
282
283
284
285
Returns the ambient space of the object \mbox{\texttt{\mdseries\slshape conv}} as a homalg module. }
286
287
}
288
289
290
\section{\textcolor{Chapter }{Convex objects: Methods}}\label{ConvexObject:Methods}
291
\logpage{[ 3, 4, 0 ]}
292
\hyperdef{L}{X7D7E0B658234B893}{}
293
{
294
295
296
\subsection{\textcolor{Chapter }{DrawObject}}
297
\logpage{[ 3, 4, 1 ]}\nobreak
298
\hyperdef{L}{X83FA826678EE4C1C}{}
299
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DrawObject({\mdseries\slshape conv})\index{DrawObject@\texttt{DrawObject}}
300
\label{DrawObject}
301
}\hfill{\scriptsize (operation)}}\\
302
\textbf{\indent Returns:\ }
303
0
304
305
306
307
Draws a nice picture of the object \mbox{\texttt{\mdseries\slshape conv}}, if your computer supports Java. As a side effect, you might not be able to
308
exit \textsf{GAP} anymore. }
309
310
311
312
\subsection{\textcolor{Chapter }{WeakPointerToExternalObject}}
313
\logpage{[ 3, 4, 2 ]}\nobreak
314
\hyperdef{L}{X807B4DE27F6BF439}{}
315
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{WeakPointerToExternalObject({\mdseries\slshape conv})\index{WeakPointerToExternalObject@\texttt{WeakPointerToExternalObject}}
316
\label{WeakPointerToExternalObject}
317
}\hfill{\scriptsize (operation)}}\\
318
\textbf{\indent Returns:\ }
319
a pointer
320
321
322
323
Returns a pointer to an external object which is the basis of \mbox{\texttt{\mdseries\slshape conv}}. This method is not used any more. }
324
325
}
326
327
}
328
329
330
\chapter{\textcolor{Chapter }{Fan}}\label{Fan}
331
\logpage{[ 4, 0, 0 ]}
332
\hyperdef{L}{X80D0196B80DC94F3}{}
333
{
334
335
\section{\textcolor{Chapter }{Fan: Category and Representations}}\label{Fan:Category}
336
\logpage{[ 4, 1, 0 ]}
337
\hyperdef{L}{X7F4C80A1855F619C}{}
338
{
339
340
341
\subsection{\textcolor{Chapter }{IsFan}}
342
\logpage{[ 4, 1, 1 ]}\nobreak
343
\hyperdef{L}{X80B4C7D87A5ECDBF}{}
344
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsFan({\mdseries\slshape M})\index{IsFan@\texttt{IsFan}}
345
\label{IsFan}
346
}\hfill{\scriptsize (Category)}}\\
347
\textbf{\indent Returns:\ }
348
\texttt{true} or \texttt{false}
349
350
351
352
The \textsf{GAP} category of a fan. Every fan is a convex object. }
353
354
Remember: Every fan is a convex object. }
355
356
357
\section{\textcolor{Chapter }{Fan: Properties}}\label{Fan:Properties}
358
\logpage{[ 4, 2, 0 ]}
359
\hyperdef{L}{X7A83743785C9E8F1}{}
360
{
361
362
363
\subsection{\textcolor{Chapter }{IsComplete}}
364
\logpage{[ 4, 2, 1 ]}\nobreak
365
\hyperdef{L}{X7D689F21828A4278}{}
366
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsComplete({\mdseries\slshape fan})\index{IsComplete@\texttt{IsComplete}}
367
\label{IsComplete}
368
}\hfill{\scriptsize (property)}}\\
369
\textbf{\indent Returns:\ }
370
\texttt{true} or \texttt{false}
371
372
373
374
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is complete, i. e. if it's support is the whole space. }
375
376
377
378
\subsection{\textcolor{Chapter }{IsPointed}}
379
\logpage{[ 4, 2, 2 ]}\nobreak
380
\hyperdef{L}{X843A31A57EAB734C}{}
381
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPointed({\mdseries\slshape fan})\index{IsPointed@\texttt{IsPointed}}
382
\label{IsPointed}
383
}\hfill{\scriptsize (property)}}\\
384
\textbf{\indent Returns:\ }
385
\texttt{true} or \texttt{false}
386
387
388
389
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is pointed, which means that every cone it contains is strictly convex. }
390
391
392
393
\subsection{\textcolor{Chapter }{IsSmooth}}
394
\logpage{[ 4, 2, 3 ]}\nobreak
395
\hyperdef{L}{X86CBF5497EC15CFC}{}
396
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSmooth({\mdseries\slshape fan})\index{IsSmooth@\texttt{IsSmooth}}
397
\label{IsSmooth}
398
}\hfill{\scriptsize (property)}}\\
399
\textbf{\indent Returns:\ }
400
\texttt{true} or \texttt{false}
401
402
403
404
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is smooth, i. e. if every cone in the fan is smooth. }
405
406
407
408
\subsection{\textcolor{Chapter }{IsRegularFan}}
409
\logpage{[ 4, 2, 4 ]}\nobreak
410
\hyperdef{L}{X7838A553848AD380}{}
411
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsRegularFan({\mdseries\slshape fan})\index{IsRegularFan@\texttt{IsRegularFan}}
412
\label{IsRegularFan}
413
}\hfill{\scriptsize (property)}}\\
414
\textbf{\indent Returns:\ }
415
\texttt{true} or \texttt{false}
416
417
418
419
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is regular, i. e. if it is the normal fan of a polytope. }
420
421
422
423
\subsection{\textcolor{Chapter }{IsSimplicial (for a fan)}}
424
\logpage{[ 4, 2, 5 ]}\nobreak
425
\hyperdef{L}{X863CBF607A2AD000}{}
426
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplicial({\mdseries\slshape fan})\index{IsSimplicial@\texttt{IsSimplicial}!for a fan}
427
\label{IsSimplicial:for a fan}
428
}\hfill{\scriptsize (property)}}\\
429
\textbf{\indent Returns:\ }
430
\texttt{true} or \texttt{false}
431
432
433
434
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is simplicial, i. e. if every cone in the fan is simplicial. }
435
436
437
438
\subsection{\textcolor{Chapter }{HasConvexSupport}}
439
\logpage{[ 4, 2, 6 ]}\nobreak
440
\hyperdef{L}{X8258DA9E820B9CF5}{}
441
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasConvexSupport({\mdseries\slshape fan})\index{HasConvexSupport@\texttt{HasConvexSupport}}
442
\label{HasConvexSupport}
443
}\hfill{\scriptsize (property)}}\\
444
\textbf{\indent Returns:\ }
445
\texttt{true} or \texttt{false}
446
447
448
449
Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is simplicial, i. e. if every cone in the fan is simplicial. }
450
451
}
452
453
454
\section{\textcolor{Chapter }{Fan: Attributes}}\label{Fan:Attributes}
455
\logpage{[ 4, 3, 0 ]}
456
\hyperdef{L}{X81E6FECC824A7C06}{}
457
{
458
459
460
\subsection{\textcolor{Chapter }{Rays}}
461
\logpage{[ 4, 3, 1 ]}\nobreak
462
\hyperdef{L}{X831FB73F86E6E4E9}{}
463
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Rays({\mdseries\slshape fan})\index{Rays@\texttt{Rays}}
464
\label{Rays}
465
}\hfill{\scriptsize (attribute)}}\\
466
\textbf{\indent Returns:\ }
467
a list
468
469
470
471
Returns the rays of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of cones. }
472
473
474
475
\subsection{\textcolor{Chapter }{RayGenerators}}
476
\logpage{[ 4, 3, 2 ]}\nobreak
477
\hyperdef{L}{X7CC22C4A85B6B51B}{}
478
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RayGenerators({\mdseries\slshape fan})\index{RayGenerators@\texttt{RayGenerators}}
479
\label{RayGenerators}
480
}\hfill{\scriptsize (attribute)}}\\
481
\textbf{\indent Returns:\ }
482
a list
483
484
485
486
Returns the generators rays of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of of list of integers. }
487
488
489
490
\subsection{\textcolor{Chapter }{RaysInMaximalCones}}
491
\logpage{[ 4, 3, 3 ]}\nobreak
492
\hyperdef{L}{X80472C677CB77C5B}{}
493
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RaysInMaximalCones({\mdseries\slshape fan})\index{RaysInMaximalCones@\texttt{RaysInMaximalCones}}
494
\label{RaysInMaximalCones}
495
}\hfill{\scriptsize (attribute)}}\\
496
\textbf{\indent Returns:\ }
497
a list
498
499
500
501
Returns a list of lists, which represent an incidence matrix for the
502
correspondence of the rays and the maximal cones of the fan \mbox{\texttt{\mdseries\slshape fan}}. The ith list in the result represents the ith maximal cone of \mbox{\texttt{\mdseries\slshape fan}}. In such a list, the jth entry is 1 if the jth ray is in the cone, 0
503
otherwise. }
504
505
506
507
\subsection{\textcolor{Chapter }{MaximalCones}}
508
\logpage{[ 4, 3, 4 ]}\nobreak
509
\hyperdef{L}{X8549BF0C78C9193B}{}
510
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MaximalCones({\mdseries\slshape fan})\index{MaximalCones@\texttt{MaximalCones}}
511
\label{MaximalCones}
512
}\hfill{\scriptsize (attribute)}}\\
513
\textbf{\indent Returns:\ }
514
a list
515
516
517
518
Returns the maximal cones of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of cones. }
519
520
}
521
522
523
\section{\textcolor{Chapter }{Fan: Methods}}\label{Fan:Methods}
524
\logpage{[ 4, 4, 0 ]}
525
\hyperdef{L}{X8419F1C07A43ACDE}{}
526
{
527
528
529
\subsection{\textcolor{Chapter }{* (for fans)}}
530
\logpage{[ 4, 4, 1 ]}\nobreak
531
\hyperdef{L}{X846E545D78D769B8}{}
532
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape fan1, fan2})\index{*@\texttt{*}!for fans}
533
\label{*:for fans}
534
}\hfill{\scriptsize (operation)}}\\
535
\textbf{\indent Returns:\ }
536
a fan
537
538
539
540
Returns the product of the fans \mbox{\texttt{\mdseries\slshape fan1}} and \mbox{\texttt{\mdseries\slshape fan2}}. }
541
542
}
543
544
545
\section{\textcolor{Chapter }{Fan: Constructors}}\label{Fan:Constructors}
546
\logpage{[ 4, 5, 0 ]}
547
\hyperdef{L}{X7C1E230383F32681}{}
548
{
549
550
551
\subsection{\textcolor{Chapter }{Fan (For Fans)}}
552
\logpage{[ 4, 5, 1 ]}\nobreak
553
\hyperdef{L}{X7C3F2E73846549A2}{}
554
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Fan({\mdseries\slshape fan})\index{Fan@\texttt{Fan}!For Fans}
555
\label{Fan:For Fans}
556
}\hfill{\scriptsize (operation)}}\\
557
\textbf{\indent Returns:\ }
558
a fan
559
560
561
562
Copy constructor for fans. For completeness reasons. }
563
564
565
566
\subsection{\textcolor{Chapter }{Fan (For a list of rays and a list of cones)}}
567
\logpage{[ 4, 5, 2 ]}\nobreak
568
\hyperdef{L}{X79EAB2B5838C6F1A}{}
569
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Fan({\mdseries\slshape rays, cones})\index{Fan@\texttt{Fan}!For a list of rays and a list of cones}
570
\label{Fan:For a list of rays and a list of cones}
571
}\hfill{\scriptsize (operation)}}\\
572
\textbf{\indent Returns:\ }
573
a fan
574
575
576
577
Constructs the fan out of the given \mbox{\texttt{\mdseries\slshape rays}} and a list of \mbox{\texttt{\mdseries\slshape cones}} given by a lists of numbers of rays. }
578
579
}
580
581
582
\section{\textcolor{Chapter }{Fan: Examples}}\label{Fan:Examples}
583
\logpage{[ 4, 6, 0 ]}
584
\hyperdef{L}{X874C843E861EB3A6}{}
585
{
586
587
\subsection{\textcolor{Chapter }{Fan example}}\label{FanExamplePrimary}
588
\logpage{[ 4, 6, 1 ]}
589
\hyperdef{L}{X7A5BBAD884D93AD5}{}
590
{
591
592
\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]
593
!gapprompt@gap>B !gapinput@F := Fan( [[-1,5],[0,1],[1,0],[0,-1]],[[1,2],[2,3],[3,4],[4,1]] );B
594
<A fan in |R^2>
595
!gapprompt@gap>B !gapinput@RayGenerators( F );B
596
[ [ -1, 5 ], [ 0, 1 ], [ 1, 0 ], [ 0, -1 ] ]
597
!gapprompt@gap>B !gapinput@RaysInMaximalCones( F );B
598
[ [ 1, 1, 0, 0 ], [ 0, 1, 1, 0 ], [ 0, 0, 1, 1 ], [ 1, 0, 0, 1 ] ]
599
!gapprompt@gap>B !gapinput@IsRegularFan( F );B
600
true
601
!gapprompt@gap>B !gapinput@IsComplete( F );B
602
true
603
!gapprompt@gap>B !gapinput@IsSmooth( F );B
604
true
605
!gapprompt@gap>B !gapinput@F1 := MaximalCones( F )[ 1 ];B
606
<A cone in |R^2>
607
!gapprompt@gap>B !gapinput@DualCone( F1 );B
608
<A cone in |R^2>
609
!gapprompt@gap>B !gapinput@RayGenerators( F1 );B
610
[ [ -1, 5 ], [ 0, 1 ] ]
611
!gapprompt@gap>B !gapinput@F2 := StarSubdivisionOfIthMaximalCone( F, 1 );B
612
<A fan in |R^2>
613
!gapprompt@gap>B !gapinput@IsSmooth( F2 );B
614
true
615
!gapprompt@gap>B !gapinput@RayGenerators( F2 );B
616
[ [ -1, 5 ], [ -1, 6 ], [ 0, -1 ], [ 0, 1 ], [ 1, 0 ] ]
617
\end{Verbatim}
618
}
619
620
}
621
622
}
623
624
625
\chapter{\textcolor{Chapter }{Cone}}\label{Cone}
626
\logpage{[ 5, 0, 0 ]}
627
\hyperdef{L}{X822975FC7F646FE5}{}
628
{
629
630
\section{\textcolor{Chapter }{Cone: Category and Representations}}\label{Cone:Category}
631
\logpage{[ 5, 1, 0 ]}
632
\hyperdef{L}{X7CAD43A27DB1C2E8}{}
633
{
634
635
636
\subsection{\textcolor{Chapter }{IsCone}}
637
\logpage{[ 5, 1, 1 ]}\nobreak
638
\hyperdef{L}{X80DFE6EA8575A9B0}{}
639
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsCone({\mdseries\slshape M})\index{IsCone@\texttt{IsCone}}
640
\label{IsCone}
641
}\hfill{\scriptsize (Category)}}\\
642
\textbf{\indent Returns:\ }
643
\texttt{true} or \texttt{false}
644
645
646
647
The \textsf{GAP} category of a cone. }
648
649
Remember: Every cone is a convex object. }
650
651
652
\section{\textcolor{Chapter }{Cone: Properties}}\label{Cone:Properties}
653
\logpage{[ 5, 2, 0 ]}
654
\hyperdef{L}{X82859C047B3C8F5E}{}
655
{
656
657
658
\subsection{\textcolor{Chapter }{IsRay}}
659
\logpage{[ 5, 2, 1 ]}\nobreak
660
\hyperdef{L}{X793B0F3E86C039BC}{}
661
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsRay({\mdseries\slshape cone})\index{IsRay@\texttt{IsRay}}
662
\label{IsRay}
663
}\hfill{\scriptsize (property)}}\\
664
\textbf{\indent Returns:\ }
665
\texttt{true} or \texttt{false}
666
667
668
669
Checks if the cone \mbox{\texttt{\mdseries\slshape cone}} is a ray, i.e. if it has only one ray generator. }
670
671
}
672
673
674
\section{\textcolor{Chapter }{Cone: Attributes}}\label{Cone:Attributes}
675
\logpage{[ 5, 3, 0 ]}
676
\hyperdef{L}{X79E016FF794B28D0}{}
677
{
678
679
680
\subsection{\textcolor{Chapter }{DualCone}}
681
\logpage{[ 5, 3, 1 ]}\nobreak
682
\hyperdef{L}{X8635EC787FEBB3FD}{}
683
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DualCone({\mdseries\slshape cone})\index{DualCone@\texttt{DualCone}}
684
\label{DualCone}
685
}\hfill{\scriptsize (attribute)}}\\
686
\textbf{\indent Returns:\ }
687
a cone
688
689
690
691
Returns the dual cone of the cone \mbox{\texttt{\mdseries\slshape cone}}. }
692
693
694
695
\subsection{\textcolor{Chapter }{HilbertBasis}}
696
\logpage{[ 5, 3, 2 ]}\nobreak
697
\hyperdef{L}{X7D549E567C52DCB5}{}
698
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HilbertBasis({\mdseries\slshape cone})\index{HilbertBasis@\texttt{HilbertBasis}}
699
\label{HilbertBasis}
700
}\hfill{\scriptsize (attribute)}}\\
701
\textbf{\indent Returns:\ }
702
a list
703
704
705
706
Returns a Hilbert Basis of the cone \mbox{\texttt{\mdseries\slshape cone}}. }
707
708
709
710
\subsection{\textcolor{Chapter }{RaysInFacets}}
711
\logpage{[ 5, 3, 3 ]}\nobreak
712
\hyperdef{L}{X840385CC7ACD01C4}{}
713
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RaysInFacets({\mdseries\slshape cone})\index{RaysInFacets@\texttt{RaysInFacets}}
714
\label{RaysInFacets}
715
}\hfill{\scriptsize (attribute)}}\\
716
\textbf{\indent Returns:\ }
717
a list
718
719
720
721
Returns an incidence matrix for the rays in the facets of the cone \mbox{\texttt{\mdseries\slshape cone}}. The ith entry of the result corresponds to the ith facet, the jth entry of
722
this is 1 if the jth ray is in th ith facet, 0 otherwise. }
723
724
725
726
\subsection{\textcolor{Chapter }{Facets}}
727
\logpage{[ 5, 3, 4 ]}\nobreak
728
\hyperdef{L}{X7AFE6D2C82F73788}{}
729
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Facets({\mdseries\slshape cone})\index{Facets@\texttt{Facets}}
730
\label{Facets}
731
}\hfill{\scriptsize (attribute)}}\\
732
\textbf{\indent Returns:\ }
733
a list
734
735
736
737
Returns a list of the facets of the cone \mbox{\texttt{\mdseries\slshape cone}} as homalg cones. }
738
739
740
741
\subsection{\textcolor{Chapter }{GridGeneratedByCone}}
742
\logpage{[ 5, 3, 5 ]}\nobreak
743
\hyperdef{L}{X7885EDAB80ED7705}{}
744
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{GridGeneratedByCone({\mdseries\slshape cone})\index{GridGeneratedByCone@\texttt{GridGeneratedByCone}}
745
\label{GridGeneratedByCone}
746
}\hfill{\scriptsize (attribute)}}\\
747
\textbf{\indent Returns:\ }
748
a homalg module
749
750
751
752
Returns the grid generated by the lattice points of the cone \mbox{\texttt{\mdseries\slshape cone}} as a homalg module. }
753
754
755
756
\subsection{\textcolor{Chapter }{FactorGrid}}
757
\logpage{[ 5, 3, 6 ]}\nobreak
758
\hyperdef{L}{X7B1669747B6CBCAE}{}
759
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FactorGrid({\mdseries\slshape cone})\index{FactorGrid@\texttt{FactorGrid}}
760
\label{FactorGrid}
761
}\hfill{\scriptsize (attribute)}}\\
762
\textbf{\indent Returns:\ }
763
a homalg module
764
765
766
767
Returns the factor of the containing grid of the cone \mbox{\texttt{\mdseries\slshape cone}} and the grid generated by \mbox{\texttt{\mdseries\slshape cone}}. }
768
769
770
771
\subsection{\textcolor{Chapter }{GridGeneratedByOrthogonalCone}}
772
\logpage{[ 5, 3, 7 ]}\nobreak
773
\hyperdef{L}{X7FD62BD58783C1D6}{}
774
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{GridGeneratedByOrthogonalCone({\mdseries\slshape cone})\index{GridGeneratedByOrthogonalCone@\texttt{GridGeneratedByOrthogonalCone}}
775
\label{GridGeneratedByOrthogonalCone}
776
}\hfill{\scriptsize (attribute)}}\\
777
\textbf{\indent Returns:\ }
778
a homalg module
779
780
781
782
Returns the grid generated by the lattice points of the orthogonal cone of the
783
cone \mbox{\texttt{\mdseries\slshape cone}}. }
784
785
786
787
\subsection{\textcolor{Chapter }{DefiningInequalities}}
788
\logpage{[ 5, 3, 8 ]}\nobreak
789
\hyperdef{L}{X7CB1A6657B3B3550}{}
790
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DefiningInequalities({\mdseries\slshape cone})\index{DefiningInequalities@\texttt{DefiningInequalities}}
791
\label{DefiningInequalities}
792
}\hfill{\scriptsize (attribute)}}\\
793
\textbf{\indent Returns:\ }
794
a list
795
796
797
798
Returns a list of the defining inequalities of the cone \mbox{\texttt{\mdseries\slshape cone}}. }
799
800
801
802
\subsection{\textcolor{Chapter }{IsContainedInFan}}
803
\logpage{[ 5, 3, 9 ]}\nobreak
804
\hyperdef{L}{X857893CC7BFDE0E0}{}
805
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsContainedInFan({\mdseries\slshape cone})\index{IsContainedInFan@\texttt{IsContainedInFan}}
806
\label{IsContainedInFan}
807
}\hfill{\scriptsize (attribute)}}\\
808
\textbf{\indent Returns:\ }
809
a fan
810
811
812
813
If the cone \mbox{\texttt{\mdseries\slshape cone}} is constructed as part of a fan, this method returns the fan. }
814
815
816
817
\subsection{\textcolor{Chapter }{FactorGridMorphism}}
818
\logpage{[ 5, 3, 10 ]}\nobreak
819
\hyperdef{L}{X7AA3F8617E28E7BD}{}
820
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FactorGridMorphism({\mdseries\slshape cone})\index{FactorGridMorphism@\texttt{FactorGridMorphism}}
821
\label{FactorGridMorphism}
822
}\hfill{\scriptsize (attribute)}}\\
823
\textbf{\indent Returns:\ }
824
a morphism
825
826
827
828
Returns the morphism to the factor grid of the cone \mbox{\texttt{\mdseries\slshape cone}}. }
829
830
}
831
832
833
\section{\textcolor{Chapter }{Cone: Methods}}\label{Cone:Methods}
834
\logpage{[ 5, 4, 0 ]}
835
\hyperdef{L}{X7DD2D0EA7EE584AA}{}
836
{
837
838
839
\subsection{\textcolor{Chapter }{IntersectionOfCones}}
840
\logpage{[ 5, 4, 1 ]}\nobreak
841
\hyperdef{L}{X803F0640808F0A4A}{}
842
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IntersectionOfCones({\mdseries\slshape cone1, cone2})\index{IntersectionOfCones@\texttt{IntersectionOfCones}}
843
\label{IntersectionOfCones}
844
}\hfill{\scriptsize (operation)}}\\
845
\textbf{\indent Returns:\ }
846
a cone
847
848
849
850
If the cones \mbox{\texttt{\mdseries\slshape cone1}} and \mbox{\texttt{\mdseries\slshape cone2}} share a face, the method returns their intersection, }
851
852
853
854
\subsection{\textcolor{Chapter }{Contains}}
855
\logpage{[ 5, 4, 2 ]}\nobreak
856
\hyperdef{L}{X851A362E8584EE03}{}
857
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Contains({\mdseries\slshape cone1, cone2})\index{Contains@\texttt{Contains}}
858
\label{Contains}
859
}\hfill{\scriptsize (operation)}}\\
860
\textbf{\indent Returns:\ }
861
\texttt{true} or \texttt{false}
862
863
864
865
Returns \texttt{true} if the cone \mbox{\texttt{\mdseries\slshape cone1}} contains the cone \mbox{\texttt{\mdseries\slshape cone2}}, \texttt{false} otherwise. }
866
867
868
869
\subsection{\textcolor{Chapter }{StarFan (for a cone)}}
870
\logpage{[ 5, 4, 3 ]}\nobreak
871
\hyperdef{L}{X7C7CF17887D7D27E}{}
872
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarFan({\mdseries\slshape cone})\index{StarFan@\texttt{StarFan}!for a cone}
873
\label{StarFan:for a cone}
874
}\hfill{\scriptsize (operation)}}\\
875
\textbf{\indent Returns:\ }
876
a fan
877
878
879
880
Returns the star fan of the cone \mbox{\texttt{\mdseries\slshape cone}}, as described in cox, 3.2.7 }
881
882
883
884
\subsection{\textcolor{Chapter }{StarFan (for a cone and a fan)}}
885
\logpage{[ 5, 4, 4 ]}\nobreak
886
\hyperdef{L}{X84CFDA0883327BB0}{}
887
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarFan({\mdseries\slshape cone, fan})\index{StarFan@\texttt{StarFan}!for a cone and a fan}
888
\label{StarFan:for a cone and a fan}
889
}\hfill{\scriptsize (operation)}}\\
890
\textbf{\indent Returns:\ }
891
a fan
892
893
894
895
Returns the star fan of the fan \mbox{\texttt{\mdseries\slshape fan}} along the cone \mbox{\texttt{\mdseries\slshape cone}}, as described in cox, 3.2.7 }
896
897
898
899
\subsection{\textcolor{Chapter }{StarSubdivisionOfIthMaximalCone}}
900
\logpage{[ 5, 4, 5 ]}\nobreak
901
\hyperdef{L}{X7E4D3AB37B384638}{}
902
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarSubdivisionOfIthMaximalCone({\mdseries\slshape fan, numb})\index{StarSubdivisionOfIthMaximalCone@\texttt{StarSubdivisionOfIthMaximalCone}}
903
\label{StarSubdivisionOfIthMaximalCone}
904
}\hfill{\scriptsize (operation)}}\\
905
\textbf{\indent Returns:\ }
906
a fan
907
908
909
910
Returns the star subdivision of the fan \mbox{\texttt{\mdseries\slshape fan}} on the \mbox{\texttt{\mdseries\slshape numb}}th maximal cone as in cox, 3.3.13. }
911
912
}
913
914
915
\section{\textcolor{Chapter }{Cone: Constructors}}\label{Cone:Constructors}
916
\logpage{[ 5, 5, 0 ]}
917
\hyperdef{L}{X7DFBB2A782DCFCCA}{}
918
{
919
920
921
\subsection{\textcolor{Chapter }{Cone (for a ray list)}}
922
\logpage{[ 5, 5, 1 ]}\nobreak
923
\hyperdef{L}{X8044339D7E71010B}{}
924
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Cone({\mdseries\slshape cone})\index{Cone@\texttt{Cone}!for a ray list}
925
\label{Cone:for a ray list}
926
}\hfill{\scriptsize (operation)}}\\
927
\textbf{\indent Returns:\ }
928
a cone
929
930
931
932
Returns a cone generated by the rays in \mbox{\texttt{\mdseries\slshape cone}}. }
933
934
}
935
936
937
\section{\textcolor{Chapter }{Cone: Examples}}\label{Cone:Examples}
938
\logpage{[ 5, 6, 0 ]}
939
\hyperdef{L}{X84BE1F7279A2C49C}{}
940
{
941
942
\subsection{\textcolor{Chapter }{Cone example}}\label{ConeExamplePrimary}
943
\logpage{[ 5, 6, 1 ]}
944
\hyperdef{L}{X81EAFA247C2687D4}{}
945
{
946
947
\begin{Verbatim}[commandchars=!@E,fontsize=\small,frame=single,label=Example]
948
!gapprompt@gap>E !gapinput@C := Cone([[1,2,3],[2,1,1],[1,0,0],[0,1,1]]);E
949
<A cone in |R^3>
950
!gapprompt@gap>E !gapinput@Length( RayGenerators( C ) );E
951
3
952
!gapprompt@gap>E !gapinput@IsSmooth( C );E
953
true
954
!gapprompt@gap>E !gapinput@Length( HilbertBasis( C ) );E
955
3
956
!gapprompt@gap>E !gapinput@IsSimplicial( C );E
957
true
958
!gapprompt@gap>E !gapinput@DC := DualCone( C );E
959
<A cone in |R^3>
960
!gapprompt@gap>E !gapinput@Length( HilbertBasis( DC ) );E
961
3
962
\end{Verbatim}
963
}
964
965
}
966
967
}
968
969
970
\chapter{\textcolor{Chapter }{Polytope}}\label{Polytope}
971
\logpage{[ 6, 0, 0 ]}
972
\hyperdef{L}{X855106007DE72898}{}
973
{
974
975
\section{\textcolor{Chapter }{Polytope: Category and Representations}}\label{Polytope:Category}
976
\logpage{[ 6, 1, 0 ]}
977
\hyperdef{L}{X86EFB7F37A7256B8}{}
978
{
979
980
981
\subsection{\textcolor{Chapter }{IsPolytope}}
982
\logpage{[ 6, 1, 1 ]}\nobreak
983
\hyperdef{L}{X81EA74AA7B4B6DDB}{}
984
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPolytope({\mdseries\slshape M})\index{IsPolytope@\texttt{IsPolytope}}
985
\label{IsPolytope}
986
}\hfill{\scriptsize (Category)}}\\
987
\textbf{\indent Returns:\ }
988
\texttt{true} or \texttt{false}
989
990
991
992
The \textsf{GAP} category of a polytope. Every polytope is a convex object. }
993
994
Remember: Every cone is a convex object. }
995
996
997
\section{\textcolor{Chapter }{Polytope: Properties}}\label{Polytope:Properties}
998
\logpage{[ 6, 2, 0 ]}
999
\hyperdef{L}{X7CBD76CF85B3DD81}{}
1000
{
1001
1002
1003
\subsection{\textcolor{Chapter }{IsNotEmpty}}
1004
\logpage{[ 6, 2, 1 ]}\nobreak
1005
\hyperdef{L}{X87705F6D7B129879}{}
1006
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNotEmpty({\mdseries\slshape poly})\index{IsNotEmpty@\texttt{IsNotEmpty}}
1007
\label{IsNotEmpty}
1008
}\hfill{\scriptsize (property)}}\\
1009
\textbf{\indent Returns:\ }
1010
\texttt{true} or \texttt{false}
1011
1012
1013
1014
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is not empty. }
1015
1016
1017
1018
\subsection{\textcolor{Chapter }{IsLatticePolytope}}
1019
\logpage{[ 6, 2, 2 ]}\nobreak
1020
\hyperdef{L}{X79F588238781B2C9}{}
1021
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsLatticePolytope({\mdseries\slshape poly})\index{IsLatticePolytope@\texttt{IsLatticePolytope}}
1022
\label{IsLatticePolytope}
1023
}\hfill{\scriptsize (property)}}\\
1024
\textbf{\indent Returns:\ }
1025
\texttt{true} or \texttt{false}
1026
1027
1028
1029
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is a lattice polytope, i.e. all its vertices are lattice points. }
1030
1031
1032
1033
\subsection{\textcolor{Chapter }{IsVeryAmple}}
1034
\logpage{[ 6, 2, 3 ]}\nobreak
1035
\hyperdef{L}{X80A58559802BB02E}{}
1036
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsVeryAmple({\mdseries\slshape poly})\index{IsVeryAmple@\texttt{IsVeryAmple}}
1037
\label{IsVeryAmple}
1038
}\hfill{\scriptsize (property)}}\\
1039
\textbf{\indent Returns:\ }
1040
\texttt{true} or \texttt{false}
1041
1042
1043
1044
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is very ample. }
1045
1046
1047
1048
\subsection{\textcolor{Chapter }{IsNormalPolytope}}
1049
\logpage{[ 6, 2, 4 ]}\nobreak
1050
\hyperdef{L}{X7C3C14CB83C98EFD}{}
1051
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNormalPolytope({\mdseries\slshape poly})\index{IsNormalPolytope@\texttt{IsNormalPolytope}}
1052
\label{IsNormalPolytope}
1053
}\hfill{\scriptsize (property)}}\\
1054
\textbf{\indent Returns:\ }
1055
\texttt{true} or \texttt{false}
1056
1057
1058
1059
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is normal. }
1060
1061
1062
1063
\subsection{\textcolor{Chapter }{IsSimplicial (for a polytope)}}
1064
\logpage{[ 6, 2, 5 ]}\nobreak
1065
\hyperdef{L}{X7AB9716B7DFE7CCF}{}
1066
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplicial({\mdseries\slshape poly})\index{IsSimplicial@\texttt{IsSimplicial}!for a polytope}
1067
\label{IsSimplicial:for a polytope}
1068
}\hfill{\scriptsize (property)}}\\
1069
\textbf{\indent Returns:\ }
1070
\texttt{true} or \texttt{false}
1071
1072
1073
1074
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is simplicial. }
1075
1076
1077
1078
\subsection{\textcolor{Chapter }{IsSimplePolytope}}
1079
\logpage{[ 6, 2, 6 ]}\nobreak
1080
\hyperdef{L}{X7F0DF19F82E6DEBD}{}
1081
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplePolytope({\mdseries\slshape poly})\index{IsSimplePolytope@\texttt{IsSimplePolytope}}
1082
\label{IsSimplePolytope}
1083
}\hfill{\scriptsize (property)}}\\
1084
\textbf{\indent Returns:\ }
1085
\texttt{true} or \texttt{false}
1086
1087
1088
1089
Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is simple. }
1090
1091
}
1092
1093
1094
\section{\textcolor{Chapter }{Polytope: Attributes}}\label{Polytope:Attributes}
1095
\logpage{[ 6, 3, 0 ]}
1096
\hyperdef{L}{X87D8FC34790A474E}{}
1097
{
1098
1099
1100
\subsection{\textcolor{Chapter }{Vertices}}
1101
\logpage{[ 6, 3, 1 ]}\nobreak
1102
\hyperdef{L}{X79E4BB4F849AC8A1}{}
1103
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Vertices({\mdseries\slshape poly})\index{Vertices@\texttt{Vertices}}
1104
\label{Vertices}
1105
}\hfill{\scriptsize (attribute)}}\\
1106
\textbf{\indent Returns:\ }
1107
a list
1108
1109
1110
1111
Returns the vertices of the polytope \mbox{\texttt{\mdseries\slshape poly}}. For reasons, the corresponding tester is HasVerticesOfPolytopes }
1112
1113
1114
1115
\subsection{\textcolor{Chapter }{LatticePoints}}
1116
\logpage{[ 6, 3, 2 ]}\nobreak
1117
\hyperdef{L}{X7FFECA277E47A55B}{}
1118
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{LatticePoints({\mdseries\slshape poly})\index{LatticePoints@\texttt{LatticePoints}}
1119
\label{LatticePoints}
1120
}\hfill{\scriptsize (attribute)}}\\
1121
\textbf{\indent Returns:\ }
1122
a list
1123
1124
1125
1126
Returns the lattice points of the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1127
1128
1129
1130
\subsection{\textcolor{Chapter }{FacetInequalities}}
1131
\logpage{[ 6, 3, 3 ]}\nobreak
1132
\hyperdef{L}{X78D14B178577BFB1}{}
1133
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FacetInequalities({\mdseries\slshape poly})\index{FacetInequalities@\texttt{FacetInequalities}}
1134
\label{FacetInequalities}
1135
}\hfill{\scriptsize (attribute)}}\\
1136
\textbf{\indent Returns:\ }
1137
a list
1138
1139
1140
1141
Returns the facet inequalities for the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1142
1143
1144
1145
\subsection{\textcolor{Chapter }{VerticesInFacets}}
1146
\logpage{[ 6, 3, 4 ]}\nobreak
1147
\hyperdef{L}{X7E31AE1886051099}{}
1148
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{VerticesInFacets({\mdseries\slshape poly})\index{VerticesInFacets@\texttt{VerticesInFacets}}
1149
\label{VerticesInFacets}
1150
}\hfill{\scriptsize (attribute)}}\\
1151
\textbf{\indent Returns:\ }
1152
a list
1153
1154
1155
1156
Returns the incidence matrix of vertices and facets of the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1157
1158
1159
1160
\subsection{\textcolor{Chapter }{AffineCone}}
1161
\logpage{[ 6, 3, 5 ]}\nobreak
1162
\hyperdef{L}{X7C3748B8878B799A}{}
1163
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineCone({\mdseries\slshape poly})\index{AffineCone@\texttt{AffineCone}}
1164
\label{AffineCone}
1165
}\hfill{\scriptsize (attribute)}}\\
1166
\textbf{\indent Returns:\ }
1167
a cone
1168
1169
1170
1171
Returns the affine cone of the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1172
1173
1174
1175
\subsection{\textcolor{Chapter }{NormalFan}}
1176
\logpage{[ 6, 3, 6 ]}\nobreak
1177
\hyperdef{L}{X7D7E33B97A7B4039}{}
1178
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{NormalFan({\mdseries\slshape poly})\index{NormalFan@\texttt{NormalFan}}
1179
\label{NormalFan}
1180
}\hfill{\scriptsize (attribute)}}\\
1181
\textbf{\indent Returns:\ }
1182
a fan
1183
1184
1185
1186
Returns the normal fan of the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1187
1188
1189
1190
\subsection{\textcolor{Chapter }{RelativeInteriorLatticePoints}}
1191
\logpage{[ 6, 3, 7 ]}\nobreak
1192
\hyperdef{L}{X7E82C1C483269893}{}
1193
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RelativeInteriorLatticePoints({\mdseries\slshape poly})\index{RelativeInteriorLatticePoints@\texttt{RelativeInteriorLatticePoints}}
1194
\label{RelativeInteriorLatticePoints}
1195
}\hfill{\scriptsize (attribute)}}\\
1196
\textbf{\indent Returns:\ }
1197
a list
1198
1199
1200
1201
Returns the lattice points in the relative interior of the polytope \mbox{\texttt{\mdseries\slshape poly}}. }
1202
1203
}
1204
1205
1206
\section{\textcolor{Chapter }{Polytope: Methods}}\label{Polytope:Methods}
1207
\logpage{[ 6, 4, 0 ]}
1208
\hyperdef{L}{X82806E0786AB09E5}{}
1209
{
1210
1211
1212
\subsection{\textcolor{Chapter }{* (for polytopes)}}
1213
\logpage{[ 6, 4, 1 ]}\nobreak
1214
\hyperdef{L}{X87DA13AA8305F283}{}
1215
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape polytope1, polytope2})\index{*@\texttt{*}!for polytopes}
1216
\label{*:for polytopes}
1217
}\hfill{\scriptsize (operation)}}\\
1218
\textbf{\indent Returns:\ }
1219
a polytope
1220
1221
1222
1223
Returns the Cartesian product of the polytopes \mbox{\texttt{\mdseries\slshape polytope1}} and \mbox{\texttt{\mdseries\slshape polytope2}}. }
1224
1225
1226
1227
\subsection{\textcolor{Chapter }{\#}}
1228
\logpage{[ 6, 4, 2 ]}\nobreak
1229
\hyperdef{L}{X8123456781234567}{}
1230
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{\#({\mdseries\slshape polytope1, polytope2})\index{#@\texttt{\#}}
1231
\label{#}
1232
}\hfill{\scriptsize (operation)}}\\
1233
\textbf{\indent Returns:\ }
1234
a polytope
1235
1236
1237
1238
Returns the Minkowski sum of the polytopes \mbox{\texttt{\mdseries\slshape polytope1}} and \mbox{\texttt{\mdseries\slshape polytope2}}. }
1239
1240
}
1241
1242
1243
\section{\textcolor{Chapter }{Polytope: Constructors}}\label{Polytope:Constructors}
1244
\logpage{[ 6, 5, 0 ]}
1245
\hyperdef{L}{X87A9DA5083C07E1E}{}
1246
{
1247
1248
1249
\subsection{\textcolor{Chapter }{Polytope (for lists of points)}}
1250
\logpage{[ 6, 5, 1 ]}\nobreak
1251
\hyperdef{L}{X86B877E378DF5E25}{}
1252
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape points})\index{Polytope@\texttt{Polytope}!for lists of points}
1253
\label{Polytope:for lists of points}
1254
}\hfill{\scriptsize (operation)}}\\
1255
\textbf{\indent Returns:\ }
1256
a polytope
1257
1258
1259
1260
Returns a polytope that is the convex hull of the points \mbox{\texttt{\mdseries\slshape points}}. }
1261
1262
1263
1264
\subsection{\textcolor{Chapter }{PolytopeByInequalities}}
1265
\logpage{[ 6, 5, 2 ]}\nobreak
1266
\hyperdef{L}{X7E8849CF87B77402}{}
1267
{\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeByInequalities({\mdseries\slshape ineqs})\index{PolytopeByInequalities@\texttt{PolytopeByInequalities}}
1268
\label{PolytopeByInequalities}
1269
}\hfill{\scriptsize (operation)}}\\
1270
\textbf{\indent Returns:\ }
1271
a polytope
1272
1273
1274
1275
Returns a polytope defined by the inequalities \mbox{\texttt{\mdseries\slshape ineqs}}. }
1276
1277
}
1278
1279
1280
\section{\textcolor{Chapter }{Polytope: Examples}}\label{Polytope:Examples}
1281
\logpage{[ 6, 6, 0 ]}
1282
\hyperdef{L}{X854CE5FA7BD81060}{}
1283
{
1284
1285
\subsection{\textcolor{Chapter }{Polytope example}}\label{PolytopeExamplePrimary}
1286
\logpage{[ 6, 6, 1 ]}
1287
\hyperdef{L}{X83A852617A774F16}{}
1288
{
1289
1290
\begin{Verbatim}[commandchars=!@B,fontsize=\small,frame=single,label=Example]
1291
!gapprompt@gap>B !gapinput@P := Polytope( [ [ 2, 0 ], [ 0, 2 ], [ -1, -1 ] ] );B
1292
<A polytope in |R^2>
1293
!gapprompt@gap>B !gapinput@IsVeryAmple( P );B
1294
true
1295
!gapprompt@gap>B !gapinput@LatticePoints( P );B
1296
[ [ -1, -1 ], [ 0, 0 ], [ 0, 1 ],
1297
[ 0, 2 ], [ 1, 0 ], [ 1, 1 ], [ 2, 0 ] ]
1298
!gapprompt@gap>B !gapinput@NFP := NormalFan( P );B
1299
<A complete fan in |R^2>
1300
!gapprompt@gap>B !gapinput@C1 := MaximalCones( NFP )[ 1 ];B
1301
<A cone in |R^2>
1302
!gapprompt@gap>B !gapinput@RayGenerators( C1 );B
1303
[ [ -1, -1 ], [ -1, 3 ] ]
1304
!gapprompt@gap>B !gapinput@IsRegularFan( NFP );B
1305
true
1306
\end{Verbatim}
1307
}
1308
1309
}
1310
1311
}
1312
1313
\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
1314
\hyperdef{L}{X83A0356F839C696F}{}
1315
}
1316
1317
\cleardoublepage
1318
\phantomsection
1319
\addcontentsline{toc}{chapter}{Index}
1320
1321
1322
\printindex
1323
1324
\newpage
1325
\immediate\write\pagenrlog{["End"], \arabic{page}];}
1326
\immediate\closeout\pagenrlog
1327
\end{document}
1328
1329