Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346% generated by GAPDoc2LaTeX from XML source (Frank Luebeck) \documentclass[a4paper,11pt]{report} \usepackage{a4wide} \sloppy \pagestyle{myheadings} \usepackage{amssymb} \usepackage[utf8]{inputenc} \usepackage{makeidx} \makeindex \usepackage{color} \definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083} \definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179} \definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894} \definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894} \definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000} \definecolor{Black}{rgb}{0.0,0.0,0.0} \definecolor{linkColor}{rgb}{0.0,0.0,0.554} \definecolor{citeColor}{rgb}{0.0,0.0,0.554} \definecolor{fileColor}{rgb}{0.0,0.0,0.554} \definecolor{urlColor}{rgb}{0.0,0.0,0.554} \definecolor{promptColor}{rgb}{0.0,0.0,0.589} \definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0} \definecolor{gapinputColor}{rgb}{0.589,0.0,0.0} \definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0} %% for a long time these were red and blue by default, %% now black, but keep variables to overwrite \definecolor{FuncColor}{rgb}{0.0,0.0,0.0} %% strange name because of pdflatex bug: \definecolor{Chapter }{rgb}{0.0,0.0,0.0} \definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064} \usepackage{fancyvrb} \usepackage{mathptmx,helvet} \usepackage[T1]{fontenc} \usepackage{textcomp} \usepackage[ pdftex=true, bookmarks=true, a4paper=true, pdftitle={Written with GAPDoc}, pdfcreator={LaTeX with hyperref package / GAPDoc}, colorlinks=true, backref=page, breaklinks=true, linkcolor=linkColor, citecolor=citeColor, filecolor=fileColor, urlcolor=urlColor, pdfpagemode={UseNone}, ]{hyperref} \newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont} % write page numbers to a .pnr log file for online help \newwrite\pagenrlog \immediate\openout\pagenrlog =\jobname.pnr \immediate\write\pagenrlog{PAGENRS := [} \newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}} %% were never documented, give conflicts with some additional packages \newcommand{\GAP}{\textsf{GAP}} %% nicer description environments, allows long labels \usepackage{enumitem} \setdescription{style=nextline} %% depth of toc \setcounter{tocdepth}{1} %% command for ColorPrompt style examples \newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}} \newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}} \newcommand{\gapinput}[1]{\color{gapinputColor}{#1}} \begin{document} \logpage{[ 0, 0, 0 ]} \begin{titlepage} \mbox{}\vfill \begin{center}{\maintitlesize \textbf{\textsf{Convex}\mbox{}}}\\ \vfill \hypersetup{pdftitle=\textsf{Convex}} \markright{\scriptsize \mbox{}\hfill \textsf{Convex} \hfill\mbox{}} {\Huge \textbf{A \textsf{GAP} package for handling convex objects.\mbox{}}}\\ \vfill {\Huge Version 2012.03.15\mbox{}}\\[1cm] {Januar 2012\mbox{}}\\[1cm] \mbox{}\\[2cm] {\Large \textbf{Sebastian Gutsche\\ \mbox{}}}\\ \hypersetup{pdfauthor=Sebastian Gutsche\\ } \mbox{}\\[2cm] \begin{minipage}{12cm}\noindent (\emph{this manual is still under construction}) \\ \\ This manual is best viewed as an \textsc{HTML} document. An \textsc{offline} version should be included in the documentation subfolder of the package. \\ \\ \end{minipage} \end{center}\vfill \mbox{}\\ {\mbox{}\\ \small \noindent \textbf{Sebastian Gutsche\\ } Email: \href{mailto://[email protected]} {\texttt{[email protected]}}\\ Homepage: \href{http://wwwb.math.rwth-aachen.de/~gutsche} {\texttt{http://wwwb.math.rwth-aachen.de/\texttt{\symbol{126}}gutsche}}\\ Address: \begin{minipage}[t]{8cm}\noindent Lehrstuhl B f{\"u}r Mathematik, RWTH Aachen, Templergraben 64, 52056 Aachen, Germany \end{minipage} }\\ \end{titlepage} \newpage\setcounter{page}{2} {\small \section*{Copyright} \logpage{[ 0, 0, 1 ]} {\copyright} 2011-2012 by Sebastian Gutsche This package may be distributed under the terms and conditions of the GNU Public License Version 2. \mbox{}}\\[1cm] {\small \section*{Acknowledgements} \logpage{[ 0, 0, 2 ]} \mbox{}}\\[1cm] \newpage \def\contentsname{Contents\logpage{[ 0, 0, 3 ]}} \tableofcontents \newpage \index{\textsf{Convex}} \chapter{\textcolor{Chapter }{Introduction}}\label{intro} \logpage{[ 1, 0, 0 ]} \hyperdef{L}{X7DFB63A97E67C0A1}{} { \section{\textcolor{Chapter }{What is the goal of the \textsf{ToricVarieties} package?}}\label{WhyToricVarieties} \logpage{[ 1, 1, 0 ]} \hyperdef{L}{X82D29B587A1E08FF}{} { } } \chapter{\textcolor{Chapter }{Installation of the \textsf{Convex} Package}}\label{install} \logpage{[ 2, 0, 0 ]} \hyperdef{L}{X781CA2768080E873}{} { To install this package just extract the package's archive file to the \textsf{GAP} \texttt{pkg} directory. By default the \textsf{Convex} package is not automatically loaded by \textsf{GAP} when it is installed. You must load the package with \\ \\ \texttt{LoadPackage}( "Convex" ); \\ \\ before its functions become available. Please, send me an e-mail if you have any questions, remarks, suggestions, etc. concerning this package. Also, I would be pleased to hear about applications of this package and about any suggestions for new methods to add to the package. \\ \\ \\ Sebastian Gutsche } \chapter{\textcolor{Chapter }{Convex Objects}}\label{ConvexObject} \logpage{[ 3, 0, 0 ]} \hyperdef{L}{X8359268B7FDA6AEC}{} { \section{\textcolor{Chapter }{Convex Objects: Category and Representations}}\label{ConvexObject:Category} \logpage{[ 3, 1, 0 ]} \hyperdef{L}{X82E0DD13824DC2C1}{} { \subsection{\textcolor{Chapter }{IsConvexObject}} \logpage{[ 3, 1, 1 ]}\nobreak \hyperdef{L}{X83ACD3DC7C1BE5F8}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsConvexObject({\mdseries\slshape M})\index{IsConvexObject@\texttt{IsConvexObject}} \label{IsConvexObject} }\hfill{\scriptsize (Category)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} The \textsf{GAP} category of convex objects, the main category of this package. } } \section{\textcolor{Chapter }{Convex objects: Properties}}\label{ConvexObject:Properties} \logpage{[ 3, 2, 0 ]} \hyperdef{L}{X85454292847AEBD5}{} { \subsection{\textcolor{Chapter }{IsFullDimensional}} \logpage{[ 3, 2, 1 ]}\nobreak \hyperdef{L}{X7A8A4EF182D275CA}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsFullDimensional({\mdseries\slshape conv})\index{IsFullDimensional@\texttt{IsFullDimensional}} \label{IsFullDimensional} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the combinatorical dimension of the convex object \mbox{\texttt{\mdseries\slshape conv}} is the same as the dimension of the ambient space. } } \section{\textcolor{Chapter }{Convex objects: Attributes}}\label{ConvexObject:Attributes} \logpage{[ 3, 3, 0 ]} \hyperdef{L}{X7E20C8697EA9490E}{} { \subsection{\textcolor{Chapter }{Dimension}} \logpage{[ 3, 3, 1 ]}\nobreak \hyperdef{L}{X7E6926C6850E7C4E}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Dimension({\mdseries\slshape conv})\index{Dimension@\texttt{Dimension}} \label{Dimension} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } an integer Returns the combinatorical dimension of the convex object \mbox{\texttt{\mdseries\slshape conv}}. This is the dimension of the smallest space i which \mbox{\texttt{\mdseries\slshape conv}} can be embedded. } \subsection{\textcolor{Chapter }{AmbientSpaceDimension}} \logpage{[ 3, 3, 2 ]}\nobreak \hyperdef{L}{X791629C67F481601}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AmbientSpaceDimension({\mdseries\slshape conv})\index{AmbientSpaceDimension@\texttt{AmbientSpaceDimension}} \label{AmbientSpaceDimension} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } an integer Returns the dimension of the ambient space of the object \mbox{\texttt{\mdseries\slshape conv}}. } \subsection{\textcolor{Chapter }{ContainingGrid}} \logpage{[ 3, 3, 3 ]}\nobreak \hyperdef{L}{X7C4692E0794B126E}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{ContainingGrid({\mdseries\slshape conv})\index{ContainingGrid@\texttt{ContainingGrid}} \label{ContainingGrid} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a homalg module Returns the ambient space of the object \mbox{\texttt{\mdseries\slshape conv}} as a homalg module. } } \section{\textcolor{Chapter }{Convex objects: Methods}}\label{ConvexObject:Methods} \logpage{[ 3, 4, 0 ]} \hyperdef{L}{X7D7E0B658234B893}{} { \subsection{\textcolor{Chapter }{DrawObject}} \logpage{[ 3, 4, 1 ]}\nobreak \hyperdef{L}{X83FA826678EE4C1C}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DrawObject({\mdseries\slshape conv})\index{DrawObject@\texttt{DrawObject}} \label{DrawObject} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } 0 Draws a nice picture of the object \mbox{\texttt{\mdseries\slshape conv}}, if your computer supports java. As a side effect, you might not be able to exit \textsf{GAP} anymore. } \subsection{\textcolor{Chapter }{WeakPointerToExternalObject}} \logpage{[ 3, 4, 2 ]}\nobreak \hyperdef{L}{X807B4DE27F6BF439}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{WeakPointerToExternalObject({\mdseries\slshape conv})\index{WeakPointerToExternalObject@\texttt{WeakPointerToExternalObject}} \label{WeakPointerToExternalObject} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a pointer Returns a pointer to an external object which is the basis of \mbox{\texttt{\mdseries\slshape conv}}. This method is not used any more. } } } \chapter{\textcolor{Chapter }{Fan}}\label{Fan} \logpage{[ 4, 0, 0 ]} \hyperdef{L}{X80D0196B80DC94F3}{} { \section{\textcolor{Chapter }{Fan: Category and Representations}}\label{Fan:Category} \logpage{[ 4, 1, 0 ]} \hyperdef{L}{X7F4C80A1855F619C}{} { \subsection{\textcolor{Chapter }{IsFan}} \logpage{[ 4, 1, 1 ]}\nobreak \hyperdef{L}{X80B4C7D87A5ECDBF}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsFan({\mdseries\slshape M})\index{IsFan@\texttt{IsFan}} \label{IsFan} }\hfill{\scriptsize (Category)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} The \textsf{GAP} category of a fan. Every fan is a convex object. } Remember: Every fan is a convex object. } \section{\textcolor{Chapter }{Fan: Properties}}\label{Fan:Properties} \logpage{[ 4, 2, 0 ]} \hyperdef{L}{X7A83743785C9E8F1}{} { \subsection{\textcolor{Chapter }{IsComplete}} \logpage{[ 4, 2, 1 ]}\nobreak \hyperdef{L}{X7D689F21828A4278}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsComplete({\mdseries\slshape fan})\index{IsComplete@\texttt{IsComplete}} \label{IsComplete} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is complete, i. e. if it's support is the whole space. } \subsection{\textcolor{Chapter }{IsPointed}} \logpage{[ 4, 2, 2 ]}\nobreak \hyperdef{L}{X843A31A57EAB734C}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPointed({\mdseries\slshape fan})\index{IsPointed@\texttt{IsPointed}} \label{IsPointed} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is pointed, which means that every cone it contains is strictly convex. } \subsection{\textcolor{Chapter }{IsSmooth}} \logpage{[ 4, 2, 3 ]}\nobreak \hyperdef{L}{X86CBF5497EC15CFC}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSmooth({\mdseries\slshape fan})\index{IsSmooth@\texttt{IsSmooth}} \label{IsSmooth} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is smooth, i. e. if every cone in the fan is smooth. } \subsection{\textcolor{Chapter }{IsRegularFan}} \logpage{[ 4, 2, 4 ]}\nobreak \hyperdef{L}{X7838A553848AD380}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsRegularFan({\mdseries\slshape fan})\index{IsRegularFan@\texttt{IsRegularFan}} \label{IsRegularFan} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is regular, i. e. if it is the normal fan of a polytope. } \subsection{\textcolor{Chapter }{IsSimplicial}} \logpage{[ 4, 2, 5 ]}\nobreak \hyperdef{L}{X87403A3586CAAEC0}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplicial({\mdseries\slshape poly})\index{IsSimplicial@\texttt{IsSimplicial}} \label{IsSimplicial} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is simplicial. } \subsection{\textcolor{Chapter }{HasConvexSupport}} \logpage{[ 4, 2, 6 ]}\nobreak \hyperdef{L}{X8258DA9E820B9CF5}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{HasConvexSupport({\mdseries\slshape fan})\index{HasConvexSupport@\texttt{HasConvexSupport}} \label{HasConvexSupport} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the fan \mbox{\texttt{\mdseries\slshape fan}} is simplicial, i. e. if every cone in the fan is simplicial. } } \section{\textcolor{Chapter }{Fan: Attributes}}\label{Fan:Attributes} \logpage{[ 4, 3, 0 ]} \hyperdef{L}{X81E6FECC824A7C06}{} { \subsection{\textcolor{Chapter }{Rays}} \logpage{[ 4, 3, 1 ]}\nobreak \hyperdef{L}{X831FB73F86E6E4E9}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Rays({\mdseries\slshape fan})\index{Rays@\texttt{Rays}} \label{Rays} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the rays of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of cones. } \subsection{\textcolor{Chapter }{RayGenerators}} \logpage{[ 4, 3, 2 ]}\nobreak \hyperdef{L}{X7CC22C4A85B6B51B}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RayGenerators({\mdseries\slshape fan})\index{RayGenerators@\texttt{RayGenerators}} \label{RayGenerators} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the generators rays of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of of list of integers. } \subsection{\textcolor{Chapter }{RaysInMaximalCones}} \logpage{[ 4, 3, 3 ]}\nobreak \hyperdef{L}{X80472C677CB77C5B}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RaysInMaximalCones({\mdseries\slshape fan})\index{RaysInMaximalCones@\texttt{RaysInMaximalCones}} \label{RaysInMaximalCones} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns a list of lists, which represent an incidence matrix for the correspondence of the rays and the maximal cones of the fan \mbox{\texttt{\mdseries\slshape fan}}. The ith list in the result represents the ith maximal cone of \mbox{\texttt{\mdseries\slshape fan}}. In such a list, the jth entry is 1 if the jth ray is in the cone, 0 otherwise. } \subsection{\textcolor{Chapter }{MaximalCones}} \logpage{[ 4, 3, 4 ]}\nobreak \hyperdef{L}{X8549BF0C78C9193B}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{MaximalCones({\mdseries\slshape fan})\index{MaximalCones@\texttt{MaximalCones}} \label{MaximalCones} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the maximal cones of the fan \mbox{\texttt{\mdseries\slshape fan}} as a list of cones. } } \section{\textcolor{Chapter }{Fan: Methods}}\label{Fan:Methods} \logpage{[ 4, 4, 0 ]} \hyperdef{L}{X8419F1C07A43ACDE}{} { \subsection{\textcolor{Chapter }{*}} \logpage{[ 4, 4, 1 ]}\nobreak \hyperdef{L}{X7857704878577048}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape polytope1, polytope2})\index{*@\texttt{*}} \label{*} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a polytope Returns the cartesian product of the polytopes \mbox{\texttt{\mdseries\slshape polytope1}} and \mbox{\texttt{\mdseries\slshape polytope2}}. } } \section{\textcolor{Chapter }{Fan: Constructors}}\label{Fan:Constructors} \logpage{[ 4, 5, 0 ]} \hyperdef{L}{X7C1E230383F32681}{} { \subsection{\textcolor{Chapter }{Fan}} \logpage{[ 4, 5, 1 ]}\nobreak \hyperdef{L}{X80D0196B80DC94F3}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Fan({\mdseries\slshape fan})\index{Fan@\texttt{Fan}} \label{Fan} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a fan Copy constructor for fans. For completeness reasons. } } } \chapter{\textcolor{Chapter }{Cone}}\label{Cone} \logpage{[ 5, 0, 0 ]} \hyperdef{L}{X822975FC7F646FE5}{} { \section{\textcolor{Chapter }{Cone: Category and Representations}}\label{Cone:Category} \logpage{[ 5, 1, 0 ]} \hyperdef{L}{X7CAD43A27DB1C2E8}{} { \subsection{\textcolor{Chapter }{IsCone}} \logpage{[ 5, 1, 1 ]}\nobreak \hyperdef{L}{X80DFE6EA8575A9B0}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsCone({\mdseries\slshape M})\index{IsCone@\texttt{IsCone}} \label{IsCone} }\hfill{\scriptsize (Category)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} The \textsf{GAP} category of a cone. } Remember: Every cone is a convex object. } \section{\textcolor{Chapter }{Cone: Properties}}\label{Cone:Properties} \logpage{[ 5, 2, 0 ]} \hyperdef{L}{X82859C047B3C8F5E}{} { \subsection{\textcolor{Chapter }{IsRay}} \logpage{[ 5, 2, 1 ]}\nobreak \hyperdef{L}{X793B0F3E86C039BC}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsRay({\mdseries\slshape cone})\index{IsRay@\texttt{IsRay}} \label{IsRay} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the cone \mbox{\texttt{\mdseries\slshape cone}} is a ray, i.e. if it has only one ray generator. } } \section{\textcolor{Chapter }{Cone: Attributes}}\label{Cone:Attributes} \logpage{[ 5, 3, 0 ]} \hyperdef{L}{X79E016FF794B28D0}{} { \subsection{\textcolor{Chapter }{DualCone}} \logpage{[ 5, 3, 1 ]}\nobreak \hyperdef{L}{X8635EC787FEBB3FD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DualCone({\mdseries\slshape cone})\index{DualCone@\texttt{DualCone}} \label{DualCone} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a cone Returns the dual cone of the cone \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{DualCone}} \logpage{[ 5, 3, 2 ]}\nobreak \hyperdef{L}{X8635EC787FEBB3FD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DualCone({\mdseries\slshape cone})\index{DualCone@\texttt{DualCone}} \label{DualCone} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns a Hilbert Basis of the cone \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{RaysInFacets}} \logpage{[ 5, 3, 3 ]}\nobreak \hyperdef{L}{X840385CC7ACD01C4}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RaysInFacets({\mdseries\slshape cone})\index{RaysInFacets@\texttt{RaysInFacets}} \label{RaysInFacets} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns an incidence matrix for the rays in the facets of the cone \mbox{\texttt{\mdseries\slshape cone}}. The ith entry of the result corresponds to the ith facet, the jth entry of this is 1 iff the jth ray is in th eith facet, 0 otherwise. } \subsection{\textcolor{Chapter }{Facets}} \logpage{[ 5, 3, 4 ]}\nobreak \hyperdef{L}{X7AFE6D2C82F73788}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Facets({\mdseries\slshape cone})\index{Facets@\texttt{Facets}} \label{Facets} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns a list of the facets of the cone \mbox{\texttt{\mdseries\slshape cone}} as homalg cones. } \subsection{\textcolor{Chapter }{GridGeneratedByCone}} \logpage{[ 5, 3, 5 ]}\nobreak \hyperdef{L}{X7885EDAB80ED7705}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{GridGeneratedByCone({\mdseries\slshape cone})\index{GridGeneratedByCone@\texttt{GridGeneratedByCone}} \label{GridGeneratedByCone} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a homalg module Returns the grid generated by the lattice points of the cone \mbox{\texttt{\mdseries\slshape cone}} as a homalg module. } \subsection{\textcolor{Chapter }{FactorGrid}} \logpage{[ 5, 3, 6 ]}\nobreak \hyperdef{L}{X7B1669747B6CBCAE}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FactorGrid({\mdseries\slshape cone})\index{FactorGrid@\texttt{FactorGrid}} \label{FactorGrid} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a homalg module Returns the factor of the containing grid of the cone \mbox{\texttt{\mdseries\slshape cone}} and the grid generated by \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{GridGeneratedByOrthogonalCone}} \logpage{[ 5, 3, 7 ]}\nobreak \hyperdef{L}{X7FD62BD58783C1D6}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{GridGeneratedByOrthogonalCone({\mdseries\slshape cone})\index{GridGeneratedByOrthogonalCone@\texttt{GridGeneratedByOrthogonalCone}} \label{GridGeneratedByOrthogonalCone} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a homalg module Returns the grid generated by the lattice points of the orthogonal cone of the cone \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{DefiningInequalities}} \logpage{[ 5, 3, 8 ]}\nobreak \hyperdef{L}{X7CB1A6657B3B3550}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DefiningInequalities({\mdseries\slshape cone})\index{DefiningInequalities@\texttt{DefiningInequalities}} \label{DefiningInequalities} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns a list of the defining inequalities of the cone \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{IsContainedInFan}} \logpage{[ 5, 3, 9 ]}\nobreak \hyperdef{L}{X857893CC7BFDE0E0}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsContainedInFan({\mdseries\slshape cone})\index{IsContainedInFan@\texttt{IsContainedInFan}} \label{IsContainedInFan} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a fan If the cone \mbox{\texttt{\mdseries\slshape cone}} is constructed as part of a fan, this method returns the fan. } \subsection{\textcolor{Chapter }{FactorGridMorphism}} \logpage{[ 5, 3, 10 ]}\nobreak \hyperdef{L}{X7AA3F8617E28E7BD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FactorGridMorphism({\mdseries\slshape cone})\index{FactorGridMorphism@\texttt{FactorGridMorphism}} \label{FactorGridMorphism} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a morphism Returns the morphism to the factor grid of the cone \mbox{\texttt{\mdseries\slshape cone}}. } } \section{\textcolor{Chapter }{Cone: Methods}}\label{Cone:Methods} \logpage{[ 5, 4, 0 ]} \hyperdef{L}{X7DD2D0EA7EE584AA}{} { \subsection{\textcolor{Chapter }{IntersectionOfCones}} \logpage{[ 5, 4, 1 ]}\nobreak \hyperdef{L}{X803F0640808F0A4A}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IntersectionOfCones({\mdseries\slshape cone1, cone2})\index{IntersectionOfCones@\texttt{IntersectionOfCones}} \label{IntersectionOfCones} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a cone If the cones \mbox{\texttt{\mdseries\slshape cone1}} and \mbox{\texttt{\mdseries\slshape cone2}} share a face, the method returns their intersection, } \subsection{\textcolor{Chapter }{Contains}} \logpage{[ 5, 4, 2 ]}\nobreak \hyperdef{L}{X851A362E8584EE03}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Contains({\mdseries\slshape cone1, cone2})\index{Contains@\texttt{Contains}} \label{Contains} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Returns \texttt{true} if the cone \mbox{\texttt{\mdseries\slshape cone1}} contains the cone \mbox{\texttt{\mdseries\slshape cone2}}, \texttt{false} otherwise. } \subsection{\textcolor{Chapter }{StarFan}} \logpage{[ 5, 4, 3 ]}\nobreak \hyperdef{L}{X81900E657AFCEC82}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarFan({\mdseries\slshape cone})\index{StarFan@\texttt{StarFan}} \label{StarFan} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a fan Returns the star fan of the cone \mbox{\texttt{\mdseries\slshape cone}}, as described in cox, 3.2.7 } \subsection{\textcolor{Chapter }{StarFan}} \logpage{[ 5, 4, 4 ]}\nobreak \hyperdef{L}{X81900E657AFCEC82}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarFan({\mdseries\slshape cone, fan})\index{StarFan@\texttt{StarFan}} \label{StarFan} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a fan Returns the star fan of the fan \mbox{\texttt{\mdseries\slshape fan}} along the cone \mbox{\texttt{\mdseries\slshape cone}}, as described in cox, 3.2.7 } \subsection{\textcolor{Chapter }{StarSubdivisionOfIthMaximalCone}} \logpage{[ 5, 4, 5 ]}\nobreak \hyperdef{L}{X7E4D3AB37B384638}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{StarSubdivisionOfIthMaximalCone({\mdseries\slshape fan, numb})\index{StarSubdivisionOfIthMaximalCone@\texttt{StarSubdivisionOfIthMaximalCone}} \label{StarSubdivisionOfIthMaximalCone} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a fan Returns the star subdivison of the fan \mbox{\texttt{\mdseries\slshape fan}} on the \mbox{\texttt{\mdseries\slshape numb}}th maximal cone as in cox, 3.3.13. } } \section{\textcolor{Chapter }{Cone: Constructors}}\label{Cone:Constructors} \logpage{[ 5, 5, 0 ]} \hyperdef{L}{X7DFBB2A782DCFCCA}{} { \subsection{\textcolor{Chapter }{Cone}} \logpage{[ 5, 5, 1 ]}\nobreak \hyperdef{L}{X822975FC7F646FE5}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Cone({\mdseries\slshape cone})\index{Cone@\texttt{Cone}} \label{Cone} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a cone Returns a cone generated by the rays in \mbox{\texttt{\mdseries\slshape cone}}. } } } \chapter{\textcolor{Chapter }{Polytope}}\label{Polytope} \logpage{[ 6, 0, 0 ]} \hyperdef{L}{X855106007DE72898}{} { \section{\textcolor{Chapter }{Polytope: Category and Representations}}\label{Polytope:Category} \logpage{[ 6, 1, 0 ]} \hyperdef{L}{X86EFB7F37A7256B8}{} { \subsection{\textcolor{Chapter }{IsPolytope}} \logpage{[ 6, 1, 1 ]}\nobreak \hyperdef{L}{X81EA74AA7B4B6DDB}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsPolytope({\mdseries\slshape M})\index{IsPolytope@\texttt{IsPolytope}} \label{IsPolytope} }\hfill{\scriptsize (Category)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} The \textsf{GAP} category of a polytope. Every polytope is a convex object. } Remember: Every cone is a convex object. } \section{\textcolor{Chapter }{Polytope: Properties}}\label{Polytope:Properties} \logpage{[ 6, 2, 0 ]} \hyperdef{L}{X7CBD76CF85B3DD81}{} { \subsection{\textcolor{Chapter }{IsNotEmpty}} \logpage{[ 6, 2, 1 ]}\nobreak \hyperdef{L}{X87705F6D7B129879}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNotEmpty({\mdseries\slshape poly})\index{IsNotEmpty@\texttt{IsNotEmpty}} \label{IsNotEmpty} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is not empty. } \subsection{\textcolor{Chapter }{IsLatticePolytope}} \logpage{[ 6, 2, 2 ]}\nobreak \hyperdef{L}{X79F588238781B2C9}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsLatticePolytope({\mdseries\slshape poly})\index{IsLatticePolytope@\texttt{IsLatticePolytope}} \label{IsLatticePolytope} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is a lattice polytope, i.e. all its vertices are lattice points. } \subsection{\textcolor{Chapter }{IsVeryAmple}} \logpage{[ 6, 2, 3 ]}\nobreak \hyperdef{L}{X80A58559802BB02E}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsVeryAmple({\mdseries\slshape poly})\index{IsVeryAmple@\texttt{IsVeryAmple}} \label{IsVeryAmple} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is very ample. } \subsection{\textcolor{Chapter }{IsNormalPolytope}} \logpage{[ 6, 2, 4 ]}\nobreak \hyperdef{L}{X7C3C14CB83C98EFD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsNormalPolytope({\mdseries\slshape poly})\index{IsNormalPolytope@\texttt{IsNormalPolytope}} \label{IsNormalPolytope} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is normal. } \subsection{\textcolor{Chapter }{IsSimplicial}} \logpage{[ 6, 2, 5 ]}\nobreak \hyperdef{L}{X87403A3586CAAEC0}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplicial({\mdseries\slshape poly})\index{IsSimplicial@\texttt{IsSimplicial}} \label{IsSimplicial} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is simplicial. } \subsection{\textcolor{Chapter }{IsSimplePolytope}} \logpage{[ 6, 2, 6 ]}\nobreak \hyperdef{L}{X7F0DF19F82E6DEBD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsSimplePolytope({\mdseries\slshape poly})\index{IsSimplePolytope@\texttt{IsSimplePolytope}} \label{IsSimplePolytope} }\hfill{\scriptsize (property)}}\\ \textbf{\indent Returns:\ } \texttt{true} or \texttt{false} Checks if the polytope \mbox{\texttt{\mdseries\slshape poly}} is simple. } } \section{\textcolor{Chapter }{Polytope: Attributes}}\label{Polytope:Attributes} \logpage{[ 6, 3, 0 ]} \hyperdef{L}{X87D8FC34790A474E}{} { \subsection{\textcolor{Chapter }{Vertices}} \logpage{[ 6, 3, 1 ]}\nobreak \hyperdef{L}{X79E4BB4F849AC8A1}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Vertices({\mdseries\slshape poly})\index{Vertices@\texttt{Vertices}} \label{Vertices} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the vertices of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{LatticePoints}} \logpage{[ 6, 3, 2 ]}\nobreak \hyperdef{L}{X7FFECA277E47A55B}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{LatticePoints({\mdseries\slshape poly})\index{LatticePoints@\texttt{LatticePoints}} \label{LatticePoints} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the lattice points of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{FacetInequalities}} \logpage{[ 6, 3, 3 ]}\nobreak \hyperdef{L}{X78D14B178577BFB1}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FacetInequalities({\mdseries\slshape poly})\index{FacetInequalities@\texttt{FacetInequalities}} \label{FacetInequalities} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the facet inequalities for the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{VerticesInFacets}} \logpage{[ 6, 3, 4 ]}\nobreak \hyperdef{L}{X7E31AE1886051099}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{VerticesInFacets({\mdseries\slshape poly})\index{VerticesInFacets@\texttt{VerticesInFacets}} \label{VerticesInFacets} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the incidence matrix of vertices and facets of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{AffineCone}} \logpage{[ 6, 3, 5 ]}\nobreak \hyperdef{L}{X7C3748B8878B799A}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{AffineCone({\mdseries\slshape poly})\index{AffineCone@\texttt{AffineCone}} \label{AffineCone} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a cone Returns the affine cone of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{NormalFan}} \logpage{[ 6, 3, 6 ]}\nobreak \hyperdef{L}{X7D7E33B97A7B4039}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{NormalFan({\mdseries\slshape poly})\index{NormalFan@\texttt{NormalFan}} \label{NormalFan} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a fan Returns the normal fan of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{RelativeInteriorLatticePoints}} \logpage{[ 6, 3, 7 ]}\nobreak \hyperdef{L}{X7E82C1C483269893}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{RelativeInteriorLatticePoints({\mdseries\slshape poly})\index{RelativeInteriorLatticePoints@\texttt{RelativeInteriorLatticePoints}} \label{RelativeInteriorLatticePoints} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns the lattice points in the relative interior of the polytope \mbox{\texttt{\mdseries\slshape poly}}. } \subsection{\textcolor{Chapter }{DefiningInequalities}} \logpage{[ 6, 3, 8 ]}\nobreak \hyperdef{L}{X7CB1A6657B3B3550}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{DefiningInequalities({\mdseries\slshape cone})\index{DefiningInequalities@\texttt{DefiningInequalities}} \label{DefiningInequalities} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a list Returns a list of the defining inequalities of the cone \mbox{\texttt{\mdseries\slshape cone}}. } \subsection{\textcolor{Chapter }{IsContainedInFan}} \logpage{[ 6, 3, 9 ]}\nobreak \hyperdef{L}{X857893CC7BFDE0E0}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{IsContainedInFan({\mdseries\slshape cone})\index{IsContainedInFan@\texttt{IsContainedInFan}} \label{IsContainedInFan} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a fan If the cone \mbox{\texttt{\mdseries\slshape cone}} is constructed as part of a fan, this method returns the fan. } \subsection{\textcolor{Chapter }{FactorGridMorphism}} \logpage{[ 6, 3, 10 ]}\nobreak \hyperdef{L}{X7AA3F8617E28E7BD}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{FactorGridMorphism({\mdseries\slshape cone})\index{FactorGridMorphism@\texttt{FactorGridMorphism}} \label{FactorGridMorphism} }\hfill{\scriptsize (attribute)}}\\ \textbf{\indent Returns:\ } a morphism Returns the morphism to the factor grid of the cone \mbox{\texttt{\mdseries\slshape cone}}. } } \section{\textcolor{Chapter }{Polytope: Methods}}\label{Polytope:Methods} \logpage{[ 6, 4, 0 ]} \hyperdef{L}{X82806E0786AB09E5}{} { \subsection{\textcolor{Chapter }{*}} \logpage{[ 6, 4, 1 ]}\nobreak \hyperdef{L}{X7857704878577048}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{*({\mdseries\slshape polytope1, polytope2})\index{*@\texttt{*}} \label{*} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a polytope Returns the cartesian product of the polytopes \mbox{\texttt{\mdseries\slshape polytope1}} and \mbox{\texttt{\mdseries\slshape polytope2}}. } \subsection{\textcolor{Chapter }{\#}} \logpage{[ 6, 4, 2 ]}\nobreak \hyperdef{L}{X8123456781234567}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{\#({\mdseries\slshape polytope1, polytope2})\index{#@\texttt{\#}} \label{#} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a polytope Returns the Minkowski sum of the polytopes \mbox{\texttt{\mdseries\slshape polytope1}} and \mbox{\texttt{\mdseries\slshape polytope2}}. } } \section{\textcolor{Chapter }{Polytope: Constructors}}\label{Polytope:Constructors} \logpage{[ 6, 5, 0 ]} \hyperdef{L}{X87A9DA5083C07E1E}{} { \subsection{\textcolor{Chapter }{Polytope}} \logpage{[ 6, 5, 1 ]}\nobreak \hyperdef{L}{X855106007DE72898}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{Polytope({\mdseries\slshape points})\index{Polytope@\texttt{Polytope}} \label{Polytope} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a polytope Returns a polytope that is the convex hull of the points \mbox{\texttt{\mdseries\slshape points}}. } \subsection{\textcolor{Chapter }{PolytopeByInequalities}} \logpage{[ 6, 5, 2 ]}\nobreak \hyperdef{L}{X7E8849CF87B77402}{} {\noindent\textcolor{FuncColor}{$\triangleright$\ \ \texttt{PolytopeByInequalities({\mdseries\slshape ineqs})\index{PolytopeByInequalities@\texttt{PolytopeByInequalities}} \label{PolytopeByInequalities} }\hfill{\scriptsize (operation)}}\\ \textbf{\indent Returns:\ } a polytope Returns a polytope defined by the inequalities \mbox{\texttt{\mdseries\slshape ineqs}}. } } } \def\indexname{Index\logpage{[ "Ind", 0, 0 ]} \hyperdef{L}{X83A0356F839C696F}{} } \cleardoublepage \phantomsection \addcontentsline{toc}{chapter}{Index} \printindex \newpage \immediate\write\pagenrlog{["End"], \arabic{page}];} \immediate\closeout\pagenrlog \end{document}