Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346############################################################################# ## ## Polyhedron.gi Convex package Sebastian Gutsche ## ## Copyright 2011 Lehrstuhl B für Mathematik, RWTH Aachen ## ## Polyhedrons for Convex. ## ############################################################################# DeclareRepresentation( "IsExternalPolyhedronRep", IsPolyhedron and IsExternalConvexObjectRep, [ ] ); #################################### ## ## Types and Families ## #################################### BindGlobal( "TheFamilyOfPolyhedrons", NewFamily( "TheFamilyOfPolyhedrons" , IsPolyhedron ) ); BindGlobal( "TheTypeExternalPolyhedron", NewType( TheFamilyOfPolyhedrons, IsPolyhedron and IsExternalPolyhedronRep ) ); ##################################### ## ## Structural Elements ## ##################################### ## InstallMethod( ContainingGrid, "for polyhedrons", [ IsPolyhedron ], function( polyhedron ) if HasTailCone( polyhedron ) then return ContainingGrid( TailCone( polyhedron ) ); elif HasMainPolytope( polyhedron ) then return ContainingGrid( MainPolytope( polyhedron ) ); fi; end ); ## InstallMethod( ExternalObject, "for polyhedrons", [ IsPolyhedron and HasMainPolytope and HasTailCone ], function( polyhedron ) local verts, rays; verts := Vertices( MainPolytope( polyhedron ) ); verts := List( verts, i -> Concatenation( [ 1 ], i ) ); rays := RayGenerators( TailCone( polyhedron ) ); rays := List( rays, i -> Concatenation( [ 0 ], i ) ); polyhedron := Concatenation( rays, verts ); polyhedron := EXT_CREATE_POLYTOPE_BY_HOMOGENEOUS_POINTS( polyhedron ); return polyhedron; end ); ## InstallMethod( ExternalObject, "for polyhedrons", [ IsPolyhedron and HasHomogeneousPointsOfPolyhedron ], function( polyhedron ) return EXT_CREATE_POLYTOPE_BY_HOMOGENEOUS_POINTS( HomogeneousPointsOfPolyhedron( polyhedron ) ); end ); ## InstallMethod( ExternalObject, "for polyhedrons with inequalities", [ IsExternalPolyhedronRep ], function( polyhedron ) if IsBound( polyhedron!.inequalities ) then if IsEmpty( polyhedron!.inequalities ) then polyhedron!.inequalities := [ [ 0 ] ]; fi; return EXT_CREATE_POLYTOPE_BY_INEQUALITIES( polyhedron!.inequalities ); fi; TryNextMethod(); end ); ## InstallMethod( MainPolytope, "for polyhedrons", [ IsExternalPolyhedronRep ], function( polyhedron ) local polytope; polytope := LatticePointsGenerators( polyhedron )[ 1 ]; return Polytope( polytope ); end ); ## InstallMethod( MainPolytope, "for polyhedrons", [ IsPolyhedron and HasVerticesOfMainPolytope ], function( polyhedron ) local polytope; polytope := Polytope( VerticesOfMainPolytope( polyhedron ) ); SetContainingGrid( polytope, ContainingGrid( polyhedron ) ); return polytope; end ); ## InstallMethod( VerticesOfMainPolytope, "for polyhedrons", [ IsPolyhedron ], function( polyhedron ) return Vertices( MainPolytope( polyhedron ) ); end ); ## InstallMethod( TailCone, "for polyhedrons", [ IsPolyhedron ], function( polyhedron ) local ineqs, i; if not IsBound( polyhedron!.inequalities ) or HasExternalObject( polyhedron ) then TryNextMethod(); fi; ineqs := StructuralCopy( polyhedron!.inequalities ); for i in [ 1 .. Length( ineqs ) ] do Remove( ineqs[ i ], 1 ); od; ineqs := ConeByInequalities( ineqs ); SetContainingGrid( ineqs, ContainingGrid( polyhedron ) ); return ineqs; end ); ## InstallMethod( TailCone, "for polyhedrons", [ IsPolyhedron and HasExternalObject ], function( polyhedron ) local rays; rays := EXT_TAIL_CONE_OF_POLYTOPE( ExternalObject( polyhedron ) ); if rays = [] then rays := [ List( [ 1 .. Dimension( polyhedron ) ], i -> 0 ) ]; fi; return Cone( rays ); end ); ## InstallMethod( TailCone, "for polyhedrons", [ IsExternalPolyhedronRep ], function( polyhedron ) local generators; generators := LatticePointsGenerators( polyhedron ); generators := Concatenation( generators[ 2 ], generators[ 3 ], - generators[ 3 ] ); return Cone( generators ); end ); ## ## FIXME: DOES THIS EVEN MAKE SENSE? InstallMethod( TailCone, "for polyhedrons", [ IsPolyhedron and HasRayGeneratorsOfTailCone ], function( polyhedron ) local tail; tail := Cone( RayGeneratorsOfTailCone( polyhedron ) ); SetContainingGrid( tail, ContainingGrid( polyhedron ) ); return tail; end ); ## InstallMethod( RayGeneratorsOfTailCone, "for polyhedrons", [ IsPolyhedron ], function( polyhedron ) return RayGenerators( TailCone( polyhedron ) ); end ); ## InstallMethod( HomogeneousPointsOfPolyhedron, "for polyhedrons", [ IsPolyhedron and HasExternalObject ], function( polyhedron ) return EXT_HOMOGENEOUS_POINTS_OF_POLYTOPE( ExternalObject( polyhedron ) ); end ); ## InstallMethod( HomogeneousPointsOfPolyhedron, "for polyhedrons", [ IsPolyhedron and HasMainPolytope and HasTailCone ], function( polyhedron ) local verts, rays; verts := Vertices( MainPolytope( polyhedron ) ); verts := List( verts, i -> Concatenation( [ 1 ], i ) ); rays := RayGenerators( TailCone( polyhedron ) ); rays := List( rays, i -> Concatenation( [ 0 ], i ) ); polyhedron := Concatenation( rays, verts ); return polyhedron; end ); ## InstallMethod( LatticePointsGenerators, "for polyhedrons", [ IsExternalPolyhedronRep ], function( polyhedron ) return EXT_LATTICE_POINTS_GENERATORS( ExternalObject( polyhedron ) ); end ); ## InstallMethod( BasisOfLinealitySpace, "for ext polyhedrons", [ IsExternalPolyhedronRep ], function( polyhedron ) return LatticePointsGenerators( polyhedron )[ 3 ]; end ); ##################################### ## ## Constructors ## ##################################### ## InstallMethod( PolyhedronByInequalities, "for list of inequalities", [ IsList ], function( inequalities ) local polyhedron; polyhedron := rec(); ObjectifyWithAttributes( polyhedron, TheTypeExternalPolyhedron ); polyhedron!.inequalities := inequalities; if not IsEmpty( inequalities ) then SetAmbientSpaceDimension( polyhedron, Length( inequalities[ 1 ] ) - 1 ); else SetAmbientSpaceDimension( polyhedron, 0 ); fi; return polyhedron; end ); ## InstallMethod( Polyhedron, "for a polytope and a cone", [ IsPolytope, IsCone ], function( polytope, cone ) local polyhedron; if not IsIdenticalObj( ContainingGrid( polytope ), ContainingGrid( cone ) ) then Error( "Two objects are not comparable" ); fi; polyhedron := rec(); ObjectifyWithAttributes( polyhedron, TheTypeExternalPolyhedron, MainPolytope, polytope, TailCone, cone, ContainingGrid, ContainingGrid( polytope ), AmbientSpaceDimension, AmbientSpaceDimension( polytope ) ); return polyhedron; end ); ## InstallMethod( Polyhedron, "for a polytope and a list", [ IsPolytope, IsList ], function( polytope, cone ) local polyhedron; if Length( cone ) > 0 and Length( cone[ 1 ] ) <> AmbientSpaceDimension( polytope ) then Error( "the two objects are not comparable" ); fi; polyhedron := rec( ); ObjectifyWithAttributes( polyhedron, TheTypeExternalPolyhedron, MainPolytope, polytope, RayGeneratorsOfTailCone, cone, ContainingGrid, ContainingGrid( polytope ), AmbientSpaceDimension, AmbientSpaceDimension( polytope ) ); return polyhedron; end ); ## InstallMethod( Polyhedron, "for a polytope and a cone", [ IsList, IsCone ], function( polytope, cone ) local polyhedron; if Length( polytope ) > 0 and Length( polytope[ 1 ] ) <> AmbientSpaceDimension( cone ) then Error( "the two objects are not comparable" ); fi; polytope := Polytope( polytope ); SetContainingGrid( polytope, ContainingGrid( cone ) ); polyhedron := rec( ); ObjectifyWithAttributes( polyhedron, TheTypeExternalPolyhedron, MainPolytope, polytope, TailCone, cone, ContainingGrid, ContainingGrid( cone ), AmbientSpaceDimension, AmbientSpaceDimension( cone ) ); return polyhedron; end ); ## InstallMethod( Polyhedron, "for a polytope and a cone", [ IsList, IsList ], function( polytope, cone ) local polyhedron; if Length( polytope ) > 0 and Length( cone ) > 0 and Length( cone[ 1 ] ) <> Length( polytope[ 1 ] ) then Error( "two objects are not comparable\n" ); fi; if Length( polytope ) = 0 then Error( "no empty polytope" ); fi; if Length( cone ) = 0 then cone := [ List( [ 1 .. Length( polytope[ 1 ] ) ], i -> 0 ) ]; fi; polyhedron := rec(); ObjectifyWithAttributes( polyhedron, TheTypeExternalPolyhedron, MainPolytope, Polytope( polytope ), TailCone, Cone( cone ), AmbientSpaceDimension, Length( polytope[ 1 ] ) ); SetContainingGrid( TailCone( polyhedron ), ContainingGrid( MainPolytope( polyhedron ) ) ); SetContainingGrid( polyhedron, ContainingGrid( MainPolytope( polyhedron ) ) ); return polyhedron; end ); ############################## ## ## View & Display ## ############################## ## InstallMethod( ViewObj, "for homalg polytopes", [ IsPolyhedron ], function( polytope ) local str; Print( "<A" ); if HasIsNotEmpty( polytope ) then if IsNotEmpty( polytope ) then Print( " not empty" ); fi; fi; Print( " polyhedron in |R^" ); Print( String( AmbientSpaceDimension( polytope ) ) ); Print( ">" ); end ); ## InstallMethod( Display, "for homalg polytopes", [ IsPolyhedron ], function( polytope ) local str; Print( "A" ); if HasIsNotEmpty( polytope ) then if IsNotEmpty( polytope ) then Print( " not empty" ); fi; fi; Print( " polyhedron in |R^" ); Print( String( AmbientSpaceDimension( polytope ) ) ); Print( ".\n" ); end );