Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346## <#GAPDoc Label="CodegreeOfPurity"> ## <Subsection Label="CodegreeOfPurity"> ## <Heading>CodegreeOfPurity</Heading> ## This is Example B.7 in <Cite Key="BaSF"/>. ## <Example><![CDATA[ ## gap> Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z"; ## Q[x,y,z] ## gap> vmat := HomalgMatrix( "[ \ ## > 0, 0, x,-z, \ ## > x*z,z^2,y,0, \ ## > x^2,x*z,0,y \ ## > ]", 3, 4, Qxyz ); ## <A 3 x 4 matrix over an external ring> ## gap> V := LeftPresentation( vmat ); ## <A non-torsion left module presented by 3 relations for 4 generators> ## gap> wmat := HomalgMatrix( "[ \ ## > 0, 0, x,-y, \ ## > x*y,y*z,z,0, \ ## > x^2,x*z,0,z \ ## > ]", 3, 4, Qxyz ); ## <A 3 x 4 matrix over an external ring> ## gap> W := LeftPresentation( wmat ); ## <A non-torsion left module presented by 3 relations for 4 generators> ## gap> Rank( V ); ## 2 ## gap> Rank( W ); ## 2 ## gap> ProjectiveDimension( V ); ## 2 ## gap> ProjectiveDimension( W ); ## 2 ## gap> DegreeOfTorsionFreeness( V ); ## 1 ## gap> DegreeOfTorsionFreeness( W ); ## 1 ## gap> CodegreeOfPurity( V ); ## [ 2 ] ## gap> CodegreeOfPurity( W ); ## [ 1, 1 ] ## gap> filtV := PurityFiltration( V ); ## <The ascending purity filtration with degrees [ -2 .. 0 ] and graded parts: ## ## 0: <A codegree-[ 2 ]-pure rank 2 left module presented by 3 relations for 4 ge\ ## nerators> ## -1: <A zero left module> ## -2: <A zero left module> ## of ## <A codegree-[ 2 ]-pure rank 2 left module presented by 3 relations for 4 gener\ ## ators>> ## gap> filtW := PurityFiltration( W ); ## <The ascending purity filtration with degrees [ -2 .. 0 ] and graded parts: ## ## 0: <A codegree-[ 1, 1 ]-pure rank 2 left module presented by 3 relations for 4\ ## generators> ## -1: <A zero left module> ## -2: <A zero left module> ## of ## <A codegree-[ 1, 1 ]-pure rank 2 left module presented by 3 relations for 4 ge\ ## nerators>> ## gap> II_EV := SpectralSequence( filtV ); ## <A stable homological spectral sequence with sheets at levels ## [ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x ## [ 0 .. 2 ]> ## gap> Display( II_EV ); ## The associated transposed spectral sequence: ## ## a homological spectral sequence at bidegrees ## [ [ 0 .. 2 ], [ -3 .. 0 ] ] ## --------- ## Level 0: ## ## * * * ## * * * ## * * * ## . * * ## --------- ## Level 1: ## ## * * * ## . . . ## . . . ## . . . ## --------- ## Level 2: ## ## s . . ## . . . ## . . . ## . . . ## ## Now the spectral sequence of the bicomplex: ## ## a homological spectral sequence at bidegrees ## [ [ -3 .. 0 ], [ 0 .. 2 ] ] ## --------- ## Level 0: ## ## * * * * ## * * * * ## . * * * ## --------- ## Level 1: ## ## * * * * ## * * * * ## . . * * ## --------- ## Level 2: ## ## * . . . ## * . . . ## . . * * ## --------- ## Level 3: ## ## * . . . ## . . . . ## . . . * ## --------- ## Level 4: ## ## . . . . ## . . . . ## . . . s ## gap> II_EW := SpectralSequence( filtW ); ## <A stable homological spectral sequence with sheets at levels ## [ 0 .. 4 ] each consisting of left modules at bidegrees [ -3 .. 0 ]x ## [ 0 .. 2 ]> ## gap> Display( II_EW ); ## The associated transposed spectral sequence: ## ## a homological spectral sequence at bidegrees ## [ [ 0 .. 2 ], [ -3 .. 0 ] ] ## --------- ## Level 0: ## ## * * * ## * * * ## . * * ## . . * ## --------- ## Level 1: ## ## * * * ## . . . ## . . . ## . . . ## --------- ## Level 2: ## ## s . . ## . . . ## . . . ## . . . ## ## Now the spectral sequence of the bicomplex: ## ## a homological spectral sequence at bidegrees ## [ [ -3 .. 0 ], [ 0 .. 2 ] ] ## --------- ## Level 0: ## ## * * * * ## . * * * ## . . * * ## --------- ## Level 1: ## ## * * * * ## . * * * ## . . . * ## --------- ## Level 2: ## ## * . . . ## . * . . ## . . . * ## --------- ## Level 3: ## ## * . . . ## . . . . ## . . . * ## --------- ## Level 4: ## ## . . . . ## . . . . ## . . . s ## ]]></Example> ## </Subsection> ## <#/GAPDoc> LoadPackage( "RingsForHomalg" ); Qxyz := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z"; vmat := HomalgMatrix( "[ \ x,z,0,1, 0, \ 0,0,y,-z,0, \ 0,0,x,0, -z, \ 0,0,0,x, -y \ ]", 4, 5, Qxyz ); wmat := HomalgMatrix( "[ \ x,z,1,0, 0, \ 0,0,y,-z,0, \ 0,0,x,0, -z, \ 0,0,0,x, -y \ ]", 4, 5, Qxyz ); LoadPackage( "Modules" ); V := LeftPresentation( vmat ); W := LeftPresentation( wmat );