CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
����;� TeX output 2017.12.04:1021����������p���
۞�����N�e9V$
phvb7t�NFPLSA��ޟ���|��!���Y��A�
�GAP4�P���ac��G�ka���g�\%e������#:�O�e9V
phvb7t�OFor��OFinitel��@y�Presented�Lie�Super�Alg�31ebras���ō�ǽ,�P�e9V

phvb7t�PV��Y�er��sion��&1.1��a.����fb��uy��b�$�����V��p�.��&Ger��udt�and�V�.�K���orn��uy��.ak��b9��O`December��&2017�����*�����p���Լ\����8P�NContents����N�������H�ߌ�

ptmb7t�H1���$The��FPLSA�P��gackage���R5�3��������������;3{�

ptmr7t�1.1���$Main��Functions��Ӎ��.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.����3�������������1.2���$Auxiliary��V����ariables�of�FPLSA�
����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.����4�������������1.3���$Installing��the�FPLSA�P�٠ackage�R=���.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.�����.����5����������$�HIndex������6���������������p���Լ\�������M�e9V`
phvb7t�M1����x�NThe�
��FPLSA�
��P���ac��G�ka���g�\%e����<|���This�,echapter�,fdescribes�the��Q�l�

phvr7t�QGAP�,9�package��QFPLSA��,�an�,finterf��gace�to�the����<x

cmtt10�fplsa��program�by�V����.�Gerdt�and�V����.�K��gorn�٠yak���(v�٠ersion��4)�for�the�computation�with�nitely�presented�Lie�superalgebras.��N8�At���present����QGAP����uses�only�the�f��gacility�to�compute�a�structure�constants�table�of�a�nite�dimensional�Lie�algebra�o�٠v�er���the��rationals�that�is�gi��v�٠en�by�a�nite�presentation.���The��package�uses�an�e�٠xternal�binary��Y�,�probably�it�will�only�w��gork�on�UNIX�platforms.��N8��P1.1��Main��&Functions��N8��A��nitely��presented��Lie�algebra�is�a�quotient�of�a�free�Lie�algebra�by�an�ideal�generated�by�a�nite�number�of�elements.���In�B��QGAP�B��a�free�Lie�B�algebra�can�be�created�by�the�command��FreeLieAlgebra�;�we�refer�to�the��QGAP�B��Reference�Manual���for�jmore�jdetails.�A�j	nitely�presented�Lie�algebra��LKj�

ptmri7t�LK����can�be�constructed�by��LK����:=�?��LL���/�Lr��Gels�,�where��LL�q��is�a�free�Lie�algebra���and�#��Lr��Gels�#��a�list�of�elements�of��LL�+I�that�constitute�the�relations�that�hold�in��LK����.�Gi��v�٠en�a�nitle�presented�Lie�algebra�we���w��gant�}to�calculate�a�basis�and�a�multiplication�table�of�it.�The�interf�ace�to�the��QFPLSA�|��package�comes�with�tw�o�related���functions��for�doing�that.�������3�S3{�
ptmr7t�S1���̟��^�3�u�7msam7�I���SCAlgebraInfoOfFpLieAlgebra(�?��LL���,��Lr��Gels�,��Llimit�.�,��Lwor�ds�,��Lr�els��)��>`�F��N8�Let��c�LL����be��ba�free�Lie�algebra�o�٠v�er��cthe�rationals,��Lr��Gels��a�list�of�elements�in��LL���,��Llimit�r�a�positi��v�٠e�inte�ger�and��Lwor��Gds��b�and��Lr�els����tw��go��booleans.���If��rthe�algebra��LL�G��/�?��Lr��Gels��s�is�nite-dimensional�and�if�a�basis�of�this�algebra�can�be�constructed�using�elements�in��LL���that���in���v���olv�٠e�>@only�>?w��gords�of�length�at�most��Llimit�lO�then��SCAlgebraInfoOfFpLieAlgebra��returns�a�record�whose�component����sc���contains�an�algebra�that�is�isomorphic�with��LL�G��/�?��Lr��Gels�.�Otherwise��fail��is�returned.���The��function�calls�the��fplsa��standalone.���If�y��Lwor��Gds��is��true��then�y�the�component��words��of�the�result�record�contains�a�list�of�elements�in��LL����that�correspond�to�the���basis��elements.���If�l��Lr��Gels�l��is��true��then�the�component��rels��of�the�result�record�contains�a�list�of�reduced�relators�in��LL�tD�that�describes�ho��w���algebra��generators�of��LL����are�e�٠xpressed�in�terms�of�the�basis�elements.����9��gap>�?�LoadPackage(�"fplsa"�);����9�true����9�gap>�?�L:=�FreeLieAlgebra(�Rationals,�"x",�"y"�);����9�<Lie�?�algebra�over�Rationals,�with�2�generators>����9�gap>�?�g:=�GeneratorsOfAlgebra(�L�);;�x:=�g[1];;�y:=�g[2];;����9�gap>�?�rels:=�[�x*(x*y)�-�x*y,�y*(y*(x*y))�];����9�[�?�(-1)*(x*y)+(1)*(x*(x*y)),�(1)*(((x*y)*y)*y)�]����9�gap>�?�SCAlgebraInfoOfFpLieAlgebra(�L,�rels,�100,�true,�true�);����9�rec(�?�sc�:=�<Lie�algebra�of�dimension�4�over�Rationals>,������words�?�:=�[�(1)*x,�(1)*y,�(1)*(y*x),�(1)*((y*x)*y)�],������rels�?�:=�[�(1)*((y*x)*x)+(1)*(y*x),�(1)*(((y*x)*y)*y),�(1)*(((y*x)*y)*(y*x))����(y�]�?�)�����������4�O���LChapter��1.�The�FPLSA�P��37ac���ka��gg�e���p���������3�S2���̟��^�I���IsomorphicSCAlgebra(�?��LK����[,�Lbound�E�]�)� 3��F��N8�computes���a���Lie�algebra�gi��v�٠en�by�a�multiplication�table�isomorphic�to�the�nitely�presented�Lie�algebra��LK����.�If�the���optional���parameter����Lbound����is�specied�the�computation�will�be�carried�out�using�monomials�of�de�٠gree�at�most��Lbound�E�.���If�U]�Lbound��u�is�U^not�specied,�then�it�will�initially�be�set�to�10000.�If�this�does�not�suce�to�calculate�a�multiplication�tabel���of��the�algebra,�then�the�bound�will�be�increased�until�a�multiplication�table�is�found.��N8�If�#ythe�#xcomputation�w��gas�successful�then�a�structure�constants�algebra�will�be�returned�isomorphic�to��LK����.�Otherwise��fail����will��be�returned.����9��gap>�?�LoadPackage(�"fplsa"�);����9�true����9�gap>�?�L:=�FreeLieAlgebra(�Rationals,�"x",�"y"�);����9�<Lie�?�algebra�over�Rationals,�with�2�generators>����9�gap>�?�g:=�GeneratorsOfAlgebra(�L�);;�x:=�g[1];;�y:=�g[2];;����9�gap>�?�rels:=�[�x*(x*y)�-�x*y,�y*(y*(x*y))�];����9�[�?�(-1)*(x*y)+(1)*(x*(x*y)),�(1)*(((x*y)*y)*y)�]����9�gap>�?�K:=�L/rels;����9�<Lie�?�algebra�over�Rationals,�with�2�generators>����9�gap>�?�IsomorphicSCAlgebra(�K�);����9�<Lie�?�algebra�of�dimension�4�over�Rationals>����P1.2��A��.uxiliar�!Fy��&V��8Sariab�޹les�of�FPLSA�������3�S1���̟��^�I���FPLSA�����V��N8�is�ϓthe�global�record�ϒused�by�the�functions�in�the�package.�Besides�components�that�describe�parameters�for�the�stan-���dalone,��the�follo��wing�components�are�used.����Relation���E�ff&f��ǫsize����$�parameter��that�controls�the�memory�usage�by�the�fplsa�program,��N8��Lie���E�ff&f��ǫmonomial���E�ff&f��table���E�ff&f��size����$�parameter��that�controls�the�memory�usage�by�the�fplsa�program,����Node���E�ff&f��ǫLie���E�ff&f��term���E�ff&f��size����$�parameter��that�controls�the�memory�usage�by�the�fplsa�program,����Node���E�ff&f��ǫscalar���E�ff&f��factor���E�ff&f��size����$�parameter��that�controls�the�memory�usage�by�the�fplsa�program,����Node���E�ff&f��ǫscalar���E�ff&f��term���E�ff&f��size����$�parameter��that�controls�the�memory�usage�by�the�fplsa�program,����progname����$�the��le�name�of�the�e�٠x�ecutable,����T����$�structure��constants�table�of�the�algebra�under�consideration,����words����$�list��of�elements�in�the�free�Lie�algebra�that�correspond�to�the�basis�elements,����rels����$�list��of�relators�in�the�free�Lie�algebra�that�are��used�to�e�٠xpress�redundant�algebra�generators�in�terms�of�the����$basis.���p�In�\�order�\�to�be�able�to�run�the��fplsa��program�successfully��Y�,�it�might�be�necessary�to�customize�the�parameters�that���control�/�the�memory�/�the�the�program�uses,�to�suit�the�computer�the�user�is�w��gorking�on.�In�particular�if�the�program�����ݍ����LSection��3.�Installing�the�FPLSA�P��37ac���ka��gg�e�,��5���p�����e�٠xits�}�with�an�}�error�message�of�the�form:��Error,�?�the�process�did�not�succeed�,�}�then�it�may�be�necessary�to���change��these�parameters.����9��gap>�?�LoadPackage(�"fplsa"�);����9�true����9�gap>�?�L:=�FreeLieAlgebra(�Rationals,�"x",�"y"�);;����9�gap>�?�g:=�GeneratorsOfAlgebra(�L�);;�x:=�g[1];;�y:=�g[2];;����9�gap>�?�rels:=�[�x*(x*y)�-�x*y,�y*(y*(x*y))�];;����9�gap>�?�SCAlgebraInfoOfFpLieAlgebra(�L,�rels,�100,�true,�true�);;����9�gap>�?�FPLSA;����9�rec(�?�Relation_size�:=�2500000,�Lie_monomial_table_size�:=�1000000,������Node_Lie_term_size�?�:=�2000000,�Node_scalar_factor_size�:=�2000,������Node_scalar_term_size�?�:=�20000,�progname�:=�"fplsa4",������T�?�:=�[�[�[�[�
�],�[�]�],�[�[�3�],�[�-1�]�],�[�[�3�],�[�1�]�],����B��[�?�[�4�],�[�1�]�]�],����-��[�?�[�[�3�],�[�1�]�],�[�[�
�],�[�]�],�[�[�4�],�[�-1�]�],�[�[�],�[�]�]�],����-��[�?�[�[�3�],�[�-1�]�],�[�[�4�],�[�1�]�],�[�[�
�],�[�]�],�[�[�],�[�]�]�],����-��[�?�[�[�4�],�[�-1�]�],�[�[�
�],�[�]�],�[�[�],�[�]�],�[�[�],�[�]�]�],����-��-1,�?�0�],�words�:=�[�1,�2,�[�2,�1�],�[�[�2,�1�],�2�]�],������rels�?�:=�[�[�[�[�2,�1�],�1�],�1,�[�2,�1�],�1�],����-��[�?�[�[�[�2,�1�],�2�],�2�],�1�],�[�[�[�[�2,�1�],�2�],�[�2,�1�]�],�1�]�]�)����P1.3��Installing��&the�FPLSA�P��.ac��uka�޹g�!Fe��N8��T��37o��'install��&unpack�the�archi��v�٠e�le�in�a�directory�in�the��pkg��hierarch��7y�of�your�v�٠ersion�of��QGAP�.�(This�might�be�the��pkg����directory��,of��-the��QGAP���home�directory;�it�is�ho��we�v�٠er��,also�possible�to�k��geep�an�additional��pkg��directory�in�your�pri��v�ate���directories,�see�Section�76.1�of�the��QGAP���Reference�Manual�for�details�on�ho��w�to�do�this.)�Go�to�the�ne��wly�created����fplsa���directory�and��call��./configure�?��Lpath��where��Lpath��is�the�path�to�the��QGAP�|�home�directory��Y�.�So�for�e�٠xample�if���you��install�the�package�in�the�main��pkg��directory�call����9��./configure�?�../..����This��will�fetch�the�architecture�type�for�which��QGAP��has�been�compiled�last�and�create�a��Makefile�.�No��w�simply�call����9��make����to��compile�the�binary�and�to�install�it�in�the�appropriate�place.��N8�If��you�use�this�installation��of��QGAP����on�dierent�hardw��gare�platforms�you�will�ha���v�٠e�to�compile�the�binary�for�each���platform��separately��Y�.�This��is�done�by�calling��configure��and��make��for�the�package�ane��w�immediately�after�compiling����QGAP�^��itself�^�for�^�the�respecti��v�٠e�architecture.�If�your�v�٠ersion�of��QGAP�^��is�already�compiled�(and�has�last�been�compiled�on���the�PHsame�architecture)�you�do�PInot�need�to�compile��QGAP�P<�ag��7ain,�it�is�sucient�to�call�the��configure��script�in�the��QGAP����home��directory��Y�.�����������p����Ƣ����v�/�NInde��u�x����8N8��This��8inde�٠x��7co�v�ers�only��7this�manual.�A���page�number�in��Litalics��refers�to�a�whole�section�which�is�de��v���oted�to�the���inde�٠x�ed���subject.���K��e�yw��gords�are���sorted�with�case�and�spaces�ignored,�e.g.,�\�PermutationCharacter�"�comes�before���\permutation��group".��bTp������ȍ����PA����Auxiliary��V����ariables�of�FPLSA,��L4����PF����FPLSA�,��4����PI����Installing��the�FPLSA�P�٠ackage,��L5���������ȍ������IsomorphicSCAlgebra�,��4������PM������Main��Functions,��L3������PS������SCAlgebraInfoOfFpLieAlgebra�,��3���������)����;����S3{�
ptmr7t�Q�l�

phvr7t�P�e9V

phvb7t�O�e9V
phvb7t�N�e9V$
phvb7t�M�e9V`
phvb7t�LKj�

ptmri7t�H�ߌ�

ptmb7t�;3{�

ptmr7t�3�u�7msam7���<x

cmtt10�,������