Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346LoadPackage( "GradedRingForHomalg" ); S := GradedRing( HomalgFieldOfRationalsInDefaultCAS( ) * "x,y" ); LoadPackage( "GradedModules" ); s := VariableForHilbertPoincareSeries( ); t := VariableForHilbertPolynomial( ); D := LeftPresentationWithDegrees( HomalgZeroMatrix( 0, 0, S ) ); T := LeftPresentationWithDegrees( HomalgMatrix( "[ 1, 0, 0, 1, 0, 0 ]", 3, 2, S ), [ -2, -2 ] ); F := FreeLeftModuleWithDegrees( [ -2, -2 ], S ); k := LeftPresentationWithDegrees( HomalgMatrix( "[ x, y ]", 2, 1, S ), [ -2 ] ); M := LeftPresentationWithDegrees( HomalgMatrix( "[ x^2 - y^2 ]", 1, 1, S ), [ -2 ] ); N := LeftPresentationWithDegrees( HomalgMatrix( "[ x, 0, 0, y, 0, 0 ]", 2, 3, S ), [ -2, -2, -2 ] ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( D ) = [ [ ], [ ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( D ) = [ [ ], [ ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( D ) = 0 * s ); Assert( 0, NumeratorOfHilbertPoincareSeries( D ) = 0 * s ); Assert( 0, HilbertPoincareSeries( D ) = 0 * s ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( D ) = 0 * s ); Assert( 0, HilbertPolynomial( D ) = 0 * t ); Assert( 0, AffineDimension( D ) = -1 ); Assert( 0, AffineDegree( D ) = 0 ); Assert( 0, ProjectiveDegree( D ) = 0 ); Assert( 0, ConstantTermOfHilbertPolynomial( D ) = 0 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( T ) = [ [ ], [ ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( T ) = [ [ ], [ ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( T ) = 0 * s ); Assert( 0, NumeratorOfHilbertPoincareSeries( T ) = 0 * s ); Assert( 0, HilbertPoincareSeries( T ) = 0 * s ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( T ) = 0 * s ); Assert( 0, HilbertPolynomial( T ) = 0 * t ); Assert( 0, AffineDimension( T ) = -1 ); Assert( 0, AffineDegree( T ) = 0 ); Assert( 0, ProjectiveDegree( T ) = 0 ); Assert( 0, ConstantTermOfHilbertPolynomial( T ) = 0 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( F ) = [ [ 2 ], [ -2 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( F ) = [ [ 2 ], [ -2 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( F ) = 2*s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( F ) = 2*s^(-2) ); Assert( 0, HilbertPoincareSeries( F ) = (2)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( F ) = (2)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPolynomial( F ) = 2*t+6 ); Assert( 0, AffineDimension( F ) = 2 ); Assert( 0, AffineDegree( F ) = 2 ); Assert( 0, ProjectiveDegree( F ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( F ) = 6 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( k ) = [ [ 1, -2, 1 ], [ -2 .. 0 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( k ) = [ [ 1 ], [ -2 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( k ) = 1-2*s^(-1)+s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( k ) = s^(-2) ); Assert( 0, HilbertPoincareSeries( k ) = s^(-2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( k ) = s^(-2) ); Assert( 0, HilbertPolynomial( k ) = 0 * t ); Assert( 0, AffineDimension( k ) = 0 ); Assert( 0, AffineDegree( k ) = 1 ); Assert( 0, ProjectiveDegree( k ) = 0 ); Assert( 0, ConstantTermOfHilbertPolynomial( k ) = 0 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( M ) = [ [ 1, 0, -1 ], [ -2 .. 0 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( M ) = [ [ 1, 1 ], [ -2, -1 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( M ) = -1+s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( M ) = s^(-1)+s^(-2) ); Assert( 0, HilbertPoincareSeries( M ) = (-s-1)/(s^3-s^2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( M ) = (-s-1)/(s^3-s^2) ); Assert( 0, HilbertPolynomial( M ) = 2 * t^0 ); Assert( 0, AffineDimension( M ) = 1 ); Assert( 0, AffineDegree( M ) = 2 ); Assert( 0, ProjectiveDegree( M ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( M ) = 2 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( N ) = [ [ 3, -2, 1 ], [ -2 .. 0 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( N ) = [ [ 3, -2, 1 ], [ -2 .. 0 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( N ) = 1-2*s^(-1)+3*s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( N ) = 1-2*s^(-1)+3*s^(-2) ); Assert( 0, HilbertPoincareSeries( N ) = (s^2-2*s+3)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( N ) = (s^2-2*s+3)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPolynomial( N ) = 2*t+6 ); Assert( 0, AffineDimension( N ) = 2 ); Assert( 0, AffineDegree( N ) = 2 ); Assert( 0, ProjectiveDegree( N ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( N ) = 6 ); T2 := LeftPresentationWithDegrees( HomalgMatrix( "[ 1, 0, 0, 1, 0, 0 ]", 3, 2, S ), [ -2, 3 ] ); F2 := FreeLeftModuleWithDegrees( [ -2, 3 ], S ); M2 := LeftPresentationWithDegrees( HomalgMatrix( "[ x, 0, 0, y, 0, 0 ]", 2, 3, S ), [ 2, 3, 2 ] ); N2 := LeftPresentationWithDegrees( HomalgMatrix( "[ x, 0, 0, y, 0, 0 ]", 2, 3, S ), [ -2, 3, -2 ] ); L2 := LeftPresentationWithDegrees( HomalgMatrix( "[ x, 0, 0, 0, y, 0 ]", 2, 3, S ), [ -2, 3, -4 ] ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( T2 ) = [ [ ], [ ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( T2 ) = [ [ ], [ ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( T2 ) = 0 * s ); Assert( 0, NumeratorOfHilbertPoincareSeries( T2 ) = 0 * s ); Assert( 0, HilbertPoincareSeries( T2 ) = 0 * s ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( T2 ) = 0 * s ); Assert( 0, HilbertPolynomial( T2 ) = 0 * t ); Assert( 0, AffineDimension( T2 ) = -1 ); Assert( 0, AffineDegree( T2 ) = 0 ); Assert( 0, ProjectiveDegree( T2 ) = 0 ); Assert( 0, ConstantTermOfHilbertPolynomial( T2 ) = 0 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( F2 ) = [ [ 1, 0, 0, 0, 0, 1 ], [ -2 .. 3 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( F2 ) = [ [ 1, 0, 0, 0, 0, 1 ], [ -2 .. 3 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( F2 ) = s^3+s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( F2 ) = s^3+s^(-2) ); Assert( 0, HilbertPoincareSeries( F2 ) = (s^5+1)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( F2 ) = (s^5+1)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPolynomial( F2 ) = 2*t+1 ); Assert( 0, AffineDimension( F2 ) = 2 ); Assert( 0, AffineDegree( F2 ) = 2 ); Assert( 0, ProjectiveDegree( F2 ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( F2 ) = 1 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( M2 ) = [ [ 2, -1, 1 ], [ 2 .. 4 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( M2 ) = [ [ 2, -1, 1 ], [ 2 .. 4 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( M2 ) = s^4-s^3+2*s^2 ); Assert( 0, NumeratorOfHilbertPoincareSeries( M2 ) = s^4-s^3+2*s^2 ); Assert( 0, HilbertPoincareSeries( M2 ) = (s^4-s^3+2*s^2)/(s^2-2*s+1) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( M2 ) = (s^4-s^3+2*s^2)/(s^2-2*s+1) ); Assert( 0, HilbertPolynomial( M2 ) = 2*t-3 ); Assert( 0, AffineDimension( M2 ) = 2 ); Assert( 0, AffineDegree( M2 ) = 2 ); Assert( 0, ProjectiveDegree( M2 ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( M2 ) = -3 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( N2 ) = [ [ 2, -2, 1, 0, 0, 1 ], [ -2 .. 3 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( N2 ) = [ [ 2, -2, 1, 0, 0, 1 ], [ -2 .. 3 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( N2 ) = s^3+1-2*s^(-1)+2*s^(-2) ); Assert( 0, NumeratorOfHilbertPoincareSeries( N2 ) = s^3+1-2*s^(-1)+2*s^(-2) ); Assert( 0, HilbertPoincareSeries( N2 ) = (s^5+s^2-2*s+2)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( N2 ) = (s^5+s^2-2*s+2)/(s^4-2*s^3+s^2) ); Assert( 0, HilbertPolynomial( N2 ) = 2*t+1 ); Assert( 0, AffineDimension( N2 ) = 2 ); Assert( 0, AffineDegree( N2 ) = 2 ); Assert( 0, ProjectiveDegree( N2 ) = 2 ); Assert( 0, ConstantTermOfHilbertPolynomial( N2 ) = 1 ); Assert( 0, CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries( L2 ) = [ [ 1, 0, 1, -1, 0, 0, 0, 1, -1 ], [ -4 .. 4 ] ] ); Assert( 0, CoefficientsOfNumeratorOfHilbertPoincareSeries( L2 ) = [ [ 1, 0, 1, -1, 0, 0, 0, 1, -1 ], [ -4 .. 4 ] ] ); Assert( 0, UnreducedNumeratorOfHilbertPoincareSeries( L2 ) = -s^4+s^3-s^(-1)+s^(-2)+s^(-4) ); Assert( 0, NumeratorOfHilbertPoincareSeries( L2 ) = -s^4+s^3-s^(-1)+s^(-2)+s^(-4) ); Assert( 0, HilbertPoincareSeries( L2 ) = (-s^8+s^7-s^3+s^2+1)/(s^6-2*s^5+s^4) ); Assert( 0, HilbertPoincareSeries_ViaBettiTableOfMinimalFreeResolution( L2 ) = (-s^8+s^7-s^3+s^2+1)/(s^6-2*s^5+s^4) ); Assert( 0, HilbertPolynomial( L2 ) = t+7 ); Assert( 0, AffineDimension( L2 ) = 2 ); Assert( 0, AffineDegree( L2 ) = 1 ); Assert( 0, ProjectiveDegree( L2 ) = 1 ); Assert( 0, ConstantTermOfHilbertPolynomial( L2 ) = 7 );