Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384## <#GAPDoc Label="KoszulRightAdjoint:example"> ## <Example><![CDATA[ ## gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";; ## gap> S := GradedRing( R );; ## gap> A := KoszulDualRing( S, "a,b,c" );; ## gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );; ## gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ], S ); ## <A graded non-torsion left module presented by 2 relations for 3 generators> ## gap> CastelnuovoMumfordRegularity( M ); ## 1 ## gap> R := KoszulRightAdjoint( M, -5, 5 ); ## <A cocomplex containing 10 morphisms of graded left modules at degrees ## [ -5 .. 5 ]> ## gap> R := KoszulRightAdjoint( M, 1, 5 ); ## <An acyclic cocomplex containing ## 4 morphisms of graded left modules at degrees [ 1 .. 5 ]> ## gap> R := KoszulRightAdjoint( M, 0, 5 ); ## <A cocomplex containing 5 morphisms of graded left modules at degrees ## [ 0 .. 5 ]> ## gap> R := KoszulRightAdjoint( M, -5, 5 ); ## <A cocomplex containing 10 morphisms of graded left modules at degrees ## [ -5 .. 5 ]> ## gap> H := Cohomology( R ); ## <A graded cohomology object consisting of 11 graded left modules at degrees ## [ -5 .. 5 ]> ## gap> ByASmallerPresentation( H ); ## <A non-zero graded cohomology object consisting of ## 11 graded left modules at degrees [ -5 .. 5 ]> ## gap> Cohomology( R, -2 ); ## <A graded zero left module> ## gap> Cohomology( R, -3 ); ## <A graded zero left module> ## gap> Cohomology( R, -1 ); ## <A graded cyclic torsion-free non-free left module presented by 2 relations fo\ ## r a cyclic generator> ## gap> Cohomology( R, 0 ); ## <A graded non-zero cyclic left module presented by 3 relations for a cyclic ge\ ## nerator> ## gap> Cohomology( R, 1 ); ## <A graded non-zero cyclic left module presented by 2 relations for a cyclic ge\ ## nerator> ## gap> Cohomology( R, 2 ); ## <A graded zero left module> ## gap> Cohomology( R, 3 ); ## <A graded zero left module> ## gap> Cohomology( R, 4 ); ## <A graded zero left module> ## gap> Display( Cohomology( R, -1 ) ); ## Q{a,b,c}/< b, a > ## ## (graded, degree of generator: 0) ## gap> Display( Cohomology( R, 0 ) ); ## Q{a,b,c}/< c, b, a > ## ## (graded, degree of generator: 0) ## gap> Display( Cohomology( R, 1 ) ); ## Q{a,b,c}/< b, a > ## ## (graded, degree of generator: 2) ## ]]></Example> ## <#/GAPDoc> LoadPackage( "GradedModules" ); R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";; S := GradedRing( R );; A := KoszulDualRing( S, "a,b,c" );; M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );; M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ], S ); CastelnuovoMumfordRegularity( M ); R := KoszulRightAdjoint( M, -5, 5 ); R := KoszulRightAdjoint( M, 1, 5 ); R := KoszulRightAdjoint( M, 0, 5 ); R := KoszulRightAdjoint( M, -5, 5 ); H := Cohomology( R ); ByASmallerPresentation( H ); Cohomology( R, -2 ); Cohomology( R, -3 ); Cohomology( R, -1 ); Cohomology( R, 0 ); Cohomology( R, 1 ); Cohomology( R, 2 ); Cohomology( R, 3 ); Cohomology( R, 4 ); Display( Cohomology( R, -1 ) ); Display( Cohomology( R, 0 ) ); Display( Cohomology( R, 1 ) );