Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418384## <#GAPDoc Label="MonomialMap:example"> ## <Example><![CDATA[ ## gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";; ## gap> S := GradedRing( R );; ## gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );; ## gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] ); ## <A graded non-torsion left module presented by 2 relations for 3 generators> ## gap> m := MonomialMap( 1, M ); ## <A homomorphism of graded left modules> ## gap> Display( m ); ## x^2,0,0, ## x*y,0,0, ## x*z,0,0, ## y^2,0,0, ## y*z,0,0, ## z^2,0,0, ## 0, x,0, ## 0, y,0, ## 0, z,0, ## 0, 0,1 ## ## the graded map is currently represented by the above 10 x 3 matrix ## ## (degrees of generators of target: [ -1, 0, 1 ]) ## ]]></Example> ## <#/GAPDoc> LoadPackage( "GradedModules" ); R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z"; S := GradedRing( R ); M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S ); M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] ); m := MonomialMap( 1, M ); Display( m );