CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
##  GradedStructureFunctors.gi                         Graded Modules package
##
##  Copyright 2007-2010, Mohamed Barakat, University of Kaiserslautern
##                       Markus Lange-Hegermann, RWTH Aachen
##
##  Implementation stuff for some other graded functors.
##
#############################################################################

##  <#GAPDoc Label="GeneratorsOfHomogeneousPart">
##  <ManSection>
##    <Oper Arg="d, M" Name="GeneratorsOfHomogeneousPart"/>
##    <Returns>a &homalg; matrix</Returns>
##    <Description>
##      The resulting &homalg; matrix consists of a generating set (over <M>R</M>) of the <A>d</A>-th homogeneous part
##      of the finitely generated &homalg; <M>S</M>-module <A>M</A>, where <M>R</M> is the coefficients ring
##      of the graded ring <M>S</M> with <M>S_0=R</M>.
##      <#Include Label="GeneratorsOfHomogeneousPart:example">
##  Compare with <Ref Oper="MonomialMap"/>.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( GeneratorsOfHomogeneousPart,
        "for homalg modules",
        [ IsInt, IsHomalgModule ],
        
  function( d, M )
    local homogeneous_parts, p, bases, p_old, T, M_d, diff, bas, source, S, weights, set_weights, n, deg, set_deg;
    
    if IsBound( M!.HomogeneousParts ) then
      homogeneous_parts := M!.HomogeneousParts;
    else
      homogeneous_parts := rec( );
      M!.HomogeneousParts := homogeneous_parts;
    fi;
    
    p := PositionOfTheDefaultPresentation( M );
    
    if IsBound( homogeneous_parts!.(d) ) then
    
        bases := homogeneous_parts!.(d);
        
        if IsBound( bases.(String( p )) ) then
            return bases.(String( p ));
        fi;
        
        p_old := Int( RecNames( bases )[1] );
        
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
            T := TransitionMatrix( M, p_old, p );
            bas := bases.(String( p_old )) * T;
        else
            T := TransitionMatrix( M, p, p_old );
            bas := T * bases.(String( p_old ));
        fi;
        
    else
    
        bases := rec( );
        homogeneous_parts!.(d) := bases;
        
        # try out some heuristics
        
        S := HomalgRing( M );
        weights := List( WeightsOfIndeterminates( S ), HomalgElementToInteger );
        set_weights := Set( weights );
        n := Length( weights );
        deg := List( DegreesOfGenerators( M ), HomalgElementToInteger );
        set_deg := Set( deg );
        
        # socle over exterior algebra
        if HasIsExteriorRing( S ) and IsExteriorRing( S ) and
           set_weights = [ -1 ] and Length( Set( deg ) ) = 1 and deg[1] - n = d and
           HasIsFree( UnderlyingModule( M ) ) and IsFree( UnderlyingModule( M ) ) then
            
            bas := HomalgIdentityMatrix( Length( deg ), S );
            bas := ProductOfIndeterminates( S ) * bas;
            
            # only generators of module are needed
        elif not ( 0 in set_weights ) and
          ( ( ForAll( set_weights, a -> a > 0 ) and ForAll( set_deg, a -> a >= d ) ) or
            ( ForAll( set_weights, a -> a < 0 ) and ForAll( set_deg, a -> a <= d ) ) ) and
          #this last condition states that there are no relations between generators of degree d
          not ( d in DegreesOfGenerators( Source( PresentationMorphism( M ) ) ) ) then
            
            bas := HomalgIdentityMatrix( Length( deg ), S );
            
            if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
                bas := CertainRows( bas, Filtered( [ 1 .. Length( deg ) ], a -> deg[a] = d ) );
            else
                bas := CertainColumns( bas, Filtered( [ 1 .. Length( deg ) ], a -> deg[a] = d ) );
            fi;
            
        # fallback
        else
            
            ## the map of generating monomials of degree d
            M_d := MonomialMap( d, M );
            
            ## the matrix of generating monomials of degree d
            M_d := MatrixOfMap( M_d );
            
            # M_d is already a generating set.
            # In the case of fields as coefficients, the following trick is used to find a minimal set of generators.
            # In the case of general rings of coefficients, this is only a heuristical approach that removed superfluous generators.
            # The trick is the following:
            # If a generator can be reduced, than it is superfluous.

            ## the generating monomials are not altered by reduction
            diff := M_d - DecideZero( M_d, M );
            
            if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
                bas := ZeroRows( diff );
                bas := CertainRows( M_d, bas );
            else
                bas := ZeroColumns( diff );
                bas := CertainColumns( M_d, bas );
            fi;
            
        fi;
    
    fi;
    
    bases.(String( p )) := bas;
    
    return bas;
    
end );

InstallMethod( GeneratorsOfHomogeneousPart,
        "for homalg modules",
        [ IsHomalgElement, IsHomalgModule ],
        
  function( d, M )
    
    return GeneratorsOfHomogeneousPart( HomalgElementToInteger( d ), M );
    
end );

##
## RepresentationMapOfRingElement
##

##  <#GAPDoc Label="RepresentationMapOfRingElement">
##  <ManSection>
##    <Oper Arg="r, M, d" Name="RepresentationMapOfRingElement"/>
##    <Returns>a &homalg; matrix</Returns>
##    <Description>
##      The graded map induced by the homogeneous degree <E><M>1</M></E> ring element <A>r</A>
##      (of the underlying &homalg; graded ring <M>S</M>) regarded as a <M>R</M>-linear map
##      between the <A>d</A>-th and the <M>(</M><A>d</A><M>+1)</M>-st homogeneous part of the graded finitely generated
##      &homalg; <M>S</M>-module <M>M</M>, where <M>R</M> is the coefficients ring of the graded ring <M>S</M>
##      with <M>S_0=R</M>. The generating set of both modules is given by <Ref Oper="GeneratorsOfHomogeneousPart"/>. The
##      entries of the matrix presenting the map lie in the coefficients ring <M>R</M>.
##      <#Include Label="RepresentationMapOfRingElement:example">
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallGlobalFunction( _Functor_RepresentationMapOfRingElement_OnGradedModules, ### defines: RepresentationMapOfRingElement (object part)
        [ IsList, IsHomalgModule ],
        
  function( l, M )
    local S, R, r, d, bd, bdp1, r_mult;
    
    S := HomalgRing( M );
    
    if HasBaseRing( S ) then
        R := BaseRing( S );
    else
        R := CoefficientsRing( S );
    fi;
    
    if Length( l ) <> 2 then
        Error( "expected a ring element and an integer as zeroth parameter" );
    fi;
    
    r := l[1];
    d := l[2];
    
    d := HomalgElementToInteger( d );
    
    if not IsRingElement( r ) or not IsInt( d ) then
        Error( "expected a ring element and an integer as zeroth parameter" );
    fi;
    
    bd := SubmoduleGeneratedByHomogeneousPartEmbed( d, M );
    
    bdp1 := SubmoduleGeneratedByHomogeneousPartEmbed( d + HomalgElementToInteger( DegreeOfRingElement( r ) ), M );
    
    r_mult := UnderlyingNonGradedRingElement( r ) * UnderlyingMorphism( bd ) / UnderlyingMorphism( bdp1 );
    
    r_mult := GradedMap(
        R * MatrixOfMap( r_mult ),
        HomogeneousPartOverCoefficientsRing( d, M ),
        HomogeneousPartOverCoefficientsRing( d + HomalgElementToInteger( DegreeOfRingElement( r ) ), M ) );
    
    SetDegreeOfMorphism( r_mult, DegreeOfRingElement( r ) );
    
    return r_mult;
    
end );

InstallMethod( RepresentationMapOfRingElement,
        "for homalg ring elements",
        [ IsRingElement, IsHomalgModule, IsInt ],
        
  function( r, M, d )
    
    return RepresentationMapOfRingElement( [ r, d ], M );
    
end );

InstallMethod( RepresentationMapOfRingElement,
        "for homalg ring elements",
        [ IsRingElement, IsHomalgModule, IsHomalgElement ],
        
  function( r, M, d )
    
    return RepresentationMapOfRingElement( [ r, HomalgElementToInteger( d ) ], M );
    
end );

InstallValue( Functor_RepresentationMapOfRingElement_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "RepresentationMapOfRingElement" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "RepresentationMapOfRingElement" ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsList ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_RepresentationMapOfRingElement_OnGradedModules ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_RepresentationMapOfRingElement_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_RepresentationMapOfRingElement_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_RepresentationMapOfRingElement_ForGradedModules );

##
## SubmoduleGeneratedByHomogeneousPart
##

##  <#GAPDoc Label="SubmoduleGeneratedByHomogeneousPart">
##  <ManSection>
##    <Oper Arg="d, M" Name="SubmoduleGeneratedByHomogeneousPart"/>
##    <Returns>a &homalg; module</Returns>
##    <Description>
##      The submodule of the &homalg; module <A>M</A> generated by the image of the <A>d</A>-th monomial map
##      (&see; <Ref Oper="MonomialMap"/>), or equivalently, by the generating set of the <A>d</A>-th homogeneous part of <A>M</A>.
##      <#Include Label="SubmoduleGeneratedByHomogeneousPart:example">
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallGlobalFunction( _Functor_SubmoduleGeneratedByHomogeneousPart_OnGradedModules, ### defines: SubmoduleGeneratedByHomogeneousPart (object part)
        [ IsInt, IsHomalgModule ],
        
  function( d, M )
    local deg, submodule;
    
    deg := DegreesOfGenerators( M );
    
    deg := List( deg, HomalgElementToInteger );
    
    submodule := ImageSubobject( EmbeddingOfSubmoduleGeneratedByHomogeneousPart( d, M ) );
    
    if Length( deg ) = 0 or ( Length( deg ) = 1 and deg[1] = d ) then
    
        SetEmbeddingInSuperObject( submodule, TheIdentityMorphism( M ) );
        
    fi;
    
    return submodule;
    
end );

##
InstallGlobalFunction( _Functor_SubmoduleGeneratedByHomogeneousPart_OnGradedMaps, ### defines: SubmoduleGeneratedByHomogeneousPart (morphism part)
  function( F_source, F_target, arg_before_pos, phi, arg_behind_pos )
    local result;
    
    result := CompleteImageSquare( F_source!.map_having_subobject_as_its_image, phi, F_target!.map_having_subobject_as_its_image );
    
    if HasIsMorphism( phi ) and IsMorphism( phi ) then
        Assert( 3, IsMorphism( result ) );
        SetIsMorphism( result, true );
    fi;
    if HasIsEpimorphism( phi ) and IsEpimorphism( phi ) then
        Assert( 3, IsEpimorphism( result ) );
        SetIsEpimorphism( result, true );
    fi;
    if HasIsIsomorphism( phi ) and IsIsomorphism( phi ) then
        Assert( 3, IsIsomorphism( result ) );
        SetIsIsomorphism( result, true );
        UpdateObjectsByMorphism( result );
    fi;
    if HasIsAutomorphism( phi ) and IsAutomorphism( phi ) then
        Assert( 3, IsAutomorphism( result ) );
        SetIsAutomorphism( result, true );
    fi;
    if HasIsZero( phi ) and IsZero( phi ) then
        Assert( 3, IsZero( result ) );
        SetIsZero( result, true );
    fi;

    return result;
    
end );

##
InstallMethod( SubmoduleGeneratedByHomogeneousPart,
        "for homalg submodules",
        [ IsInt, IsStaticFinitelyPresentedSubobjectRep and IsHomalgModule ],
        
  function( d, N )
    
    return SubmoduleGeneratedByHomogeneousPart( d, UnderlyingObject( N ) );
    
end );

##
InstallMethod( SubmoduleGeneratedByHomogeneousPartEmbed,
        "for homalg submodules",
        [ IsInt, IsGradedModuleRep ],
        
  function( d, N )
    
    return SubmoduleGeneratedByHomogeneousPart( d, N )!.map_having_subobject_as_its_image;
    
end );

##
InstallMethod( SubmoduleGeneratedByHomogeneousPartEmbed,
        "for homalg submodules",
        [ IsHomalgElement, IsGradedModuleRep ],
        
  function( d, N )
    
    return SubmoduleGeneratedByHomogeneousPart( d, N )!.map_having_subobject_as_its_image;
    
end );

InstallValue( Functor_SubmoduleGeneratedByHomogeneousPart_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "SubmoduleGeneratedByHomogeneousPart" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "SubmoduleGeneratedByHomogeneousPart" ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsInt ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_SubmoduleGeneratedByHomogeneousPart_OnGradedModules ],
                [ "OnMorphisms", _Functor_SubmoduleGeneratedByHomogeneousPart_OnGradedMaps ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_SubmoduleGeneratedByHomogeneousPart_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_SubmoduleGeneratedByHomogeneousPart_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_SubmoduleGeneratedByHomogeneousPart_ForGradedModules );

InstallMethod( SubmoduleGeneratedByHomogeneousPart,
               "for homalg elements",
               [ IsHomalgElement, IsHomalgModule ],
               
  function( d, M )
    
    return SubmoduleGeneratedByHomogeneousPart( HomalgElementToInteger( d ), M );
    
end );

##
## TruncatedSubmodule
##

##
InstallGlobalFunction( _Functor_TruncatedSubmodule_OnGradedModules,
        [ IsInt, IsHomalgModule ],
        
  function( d, M )
    local deg, certain_deg1, certain_part, certain_deg2, mat, phi1, phi2, phi, M2;
    
    deg := DegreesOfGenerators( M );
    
    deg := List( deg, HomalgElementToInteger );
    
    certain_deg1 := Filtered( [ 1 .. Length( deg ) ], a -> deg[a] >= d );
    if certain_deg1 = [ 1 .. Length( deg ) ] then
        
        phi := TheIdentityMorphism( M );
        
    elif Filtered( [ 1 .. Length( deg ) ], a -> deg[a] > d ) = [ ] then
        
        phi := ImageObjectEmb( SubmoduleGeneratedByHomogeneousPartEmbed( d, M ) );
        
    else
        
        certain_deg2 := Filtered( [ 1 .. Length( deg ) ], a -> deg[a] < d );
        
        phi1 := MapHavingCertainGeneratorsAsItsImage( M, certain_deg1 );
        phi2 := MapHavingCertainGeneratorsAsItsImage( M, certain_deg2 );
        
        Assert( 4, IsMorphism( phi1 ) );
        SetIsMorphism( phi1, true );
        Assert( 4, IsMorphism( phi2 ) );
        SetIsMorphism( phi2, true );
        
        M2 := SubmoduleGeneratedByHomogeneousPart( d, ImageSubobject( phi2 ) );
        phi2 := M2!.map_having_subobject_as_its_image;
        
        phi2 := PreCompose( phi2, NaturalGeneralizedEmbedding( Range( phi2 ) ) );
        
        phi := CoproductMorphism( phi1, phi2 );
        
        phi := ImageObjectEmb( phi );
    
    fi;
    
    SetNaturalTransformation( Functor_TruncatedSubmodule_ForGradedModules, [ d, M ], "TruncatedSubmoduleEmbed", phi );
    SetEmbeddingOfTruncatedModuleInSuperModule( Source( phi ), phi ); 
    
    return ImageSubobject( phi );
    
end );

##
InstallGlobalFunction( _Functor_TruncatedSubmodule_OnGradedMaps,
  function( F_source, F_target, arg_before_pos, phi, arg_behind_pos )
    local truncated_source_embedding, truncated_range_embedding;
    
    truncated_source_embedding := F_source!.map_having_subobject_as_its_image;
    
    truncated_range_embedding := F_target!.map_having_subobject_as_its_image;
    
    return CompleteImageSquare( truncated_source_embedding, phi, truncated_range_embedding );

end );

InstallValue( Functor_TruncatedSubmodule_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "TruncatedSubmodule" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "TruncatedSubmodule" ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsInt ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "natural_transformations", [ [ "TruncatedSubmoduleEmbed", 2 ] ] ],
                [ "OnObjects", _Functor_TruncatedSubmodule_OnGradedModules ],
                [ "OnMorphisms", _Functor_TruncatedSubmodule_OnGradedMaps ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_TruncatedSubmodule_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_TruncatedSubmodule_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_TruncatedSubmodule_ForGradedModules );

InstallMethod( TruncatedSubmodule,
               "for homalg element",
               [ IsHomalgElement, IsHomalgModule ],
               
  function( d, M )
    
    return TruncatedSubmodule( HomalgElementToInteger( d ), M );
    
end );

InstallMethod( TruncatedSubmoduleEmbed,
               "for homalg element",
               [ IsHomalgElement, IsHomalgModule ],
               
  function( d, M )
    
    return TruncatedSubmoduleEmbed( HomalgElementToInteger( d ), M );
    
end );

##
## TruncatedModule
##

##
InstallGlobalFunction( _Functor_TruncatedModule_OnGradedModules,
        [ IsInt, IsHomalgModule ],
        
  function( d, M )
  
    return Source( TruncatedSubmoduleEmbed( d, M ) );
    
end );

InstallValue( Functor_TruncatedModule_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "TruncatedModule" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "TruncatedModule" ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsInt ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_TruncatedModule_OnGradedModules ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_TruncatedModule_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_TruncatedModule_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_TruncatedModule_ForGradedModules );

InstallMethod( TruncatedModule,
               "for homalg element",
               [ IsHomalgElement, IsHomalgModule ],
               
  function( d, M )
    
    return TruncatedModule( HomalgElementToInteger( d ), M );
    
end );

##
## TruncatedSubmoduleRecursiveEmbed
##

##
InstallGlobalFunction( _Functor_TruncatedSubmoduleRecursiveEmbed_OnGradedModules, ### defines: TruncatedSubmoduleRecursiveEmbed (object part)
        [ IsInt, IsHomalgModule ],
        
  function( d, M )
    
    return TruncatedSubmoduleEmbed( d + 1, M ) / TruncatedSubmoduleEmbed( d, M );
    
end );

InstallValue( Functor_TruncatedSubmoduleRecursiveEmbed_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "TruncatedSubmoduleRecursiveEmbed" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "TruncatedSubmoduleRecursiveEmbed" ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsInt ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_TruncatedSubmoduleRecursiveEmbed_OnGradedModules ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_TruncatedSubmoduleRecursiveEmbed_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_TruncatedSubmoduleRecursiveEmbed_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_TruncatedSubmoduleRecursiveEmbed_ForGradedModules );

InstallMethod( TruncatedSubmoduleRecursiveEmbed,
               "for homalg element",
               [ IsHomalgElement, IsHomalgModule ],
               
  function( d, M )
    
    return TruncatedSubmoduleRecursiveEmbed( HomalgElementToInteger( d ), M );
    
end );

##
## HomogeneousPartOverCoefficientsRing
##

##  <#GAPDoc Label="HomogeneousPartOverCoefficientsRing">
##  <ManSection>
##    <Oper Arg="d, M" Name="HomogeneousPartOverCoefficientsRing"/>
##    <Returns>a &homalg; module</Returns>
##    <Description>
##      The degree <M>d</M> homogeneous part of the graded <M>R</M>-module <A>M</A>
##      as a module over the coefficient ring or field of <M>R</M>.
##      <#Include Label="HomogeneousPartOverCoefficientsRing:example">
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( RepresentationOfMorphismOnHomogeneousParts,
        "for homalg ring elements",
        [ IsMapOfGradedModulesRep, IsInt, IsInt ],
        
  function( phi, m, n )
    local S, M, N, M_le_m, M_le_m_epi, N_le_n, N_le_n_epi, phi_le_m;
    
    if m > n then
        Error( "The first given degree needs to be larger then the second one" );
    fi;
    
    S := HomalgRing( phi );
    
    M := Source( phi );
    
    N := Range( phi );
    
    M_le_m := SubmoduleGeneratedByHomogeneousPart( m, M );
    
    M_le_m_epi := M_le_m!.map_having_subobject_as_its_image;
    
    N_le_n := SubmoduleGeneratedByHomogeneousPart( n, N );
    
    N_le_n_epi := N_le_n!.map_having_subobject_as_its_image;
    
    return CompleteImageSquare( M_le_m_epi, phi, N_le_n_epi );
    
end );

InstallMethod( RepresentationOfMorphismOnHomogeneousParts,
        "for homalg ring elements",
        [ IsMapOfGradedModulesRep, IsObject, IsObject ],
        
  function( phi, m, n )
    
    return RepresentationOfMorphismOnHomogeneousParts( phi, HomalgElementToInteger( m ), HomalgElementToInteger( n ) );
    
end );

InstallGlobalFunction( _Functor_HomogeneousPartOverCoefficientsRing_OnGradedModules, ### defines: HomogeneousPartOverCoefficientsRing (object part)
        [ IsInt, IsGradedModuleOrGradedSubmoduleRep ],
        
  function( d, M )
    local S, k_graded, k, deg, emb, mat, map_having_submodule_as_its_image,
          N, gen, l, rel, pos, V, map, submodule, V_weights, degree_group;
    
    S := HomalgRing( M );
    
    if HasBaseRing( S ) then
        k_graded := BaseRing( S );
    else
        k_graded := CoefficientsRing( S );
    fi;
    
    k := UnderlyingNonGradedRing( k_graded );
    
    deg := DegreesOfGenerators( M );
    
    deg := List( deg, HomalgElementToInteger );
    
    if HasEmbeddingOfTruncatedModuleInSuperModule( M ) and deg <> [] and Minimum( deg ) <= d and
       not ( HasIsAutomorphism( EmbeddingOfTruncatedModuleInSuperModule( M ) ) and IsAutomorphism( EmbeddingOfTruncatedModuleInSuperModule( M ) ) ) then
        
        # make sure that a truncated module and its super moduleS
        # have the same homogeneous parts
        emb := EmbeddingOfTruncatedModuleInSuperModule( M );
        map_having_submodule_as_its_image := EmbeddingOfSubmoduleGeneratedByHomogeneousPart( d, Range( emb ) );
        map_having_submodule_as_its_image := map_having_submodule_as_its_image / emb;
        
        V := HomogeneousPartOverCoefficientsRing( d, Range( emb ) );
        
    else
        
        # the generic case
        mat := GeneratorsOfHomogeneousPart( d, M );
        map_having_submodule_as_its_image := GradedMap( mat, "free", M );
        Assert( 4, IsMorphism( map_having_submodule_as_its_image ) );
        SetIsMorphism( map_having_submodule_as_its_image, true );
        
        if deg = [] or ( Length( Set( deg ) ) = 1 and deg[1] = d ) then
            Assert( 3, IsEpimorphism( map_having_submodule_as_its_image ) );
            SetIsEpimorphism( map_having_submodule_as_its_image, true );
        fi;
        
        N := ImageSubobject( map_having_submodule_as_its_image );
        
        gen := GeneratorsOfModule( N );
        
        gen := NewHomalgGenerators( MatrixOfGenerators( gen ), gen );
        
        gen!.ring := k;
        
        l := NrGenerators( gen );
        
        if IsFieldForHomalg( k_graded ) then
        
            if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
                rel := HomalgZeroMatrix( 0, l, k );
                rel := HomalgRelationsForLeftModule( rel );
            else
                rel := HomalgZeroMatrix( l, 0, k );
                rel := HomalgRelationsForRightModule( rel );
            fi;
        
        else
            
            ## Corresponds to Algorithm 3.1 in arXiv:1409.6100
            rel := MatrixOfRelations( UnderlyingObject( N ) );
            
            if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
                deg := NonTrivialDegreePerRow( rel, DegreesOfGenerators( N ) );
            else
                deg := NonTrivialDegreePerColumn( rel, DegreesOfGenerators( N ) );
            fi;
            
            deg := List( deg, HomalgElementToInteger );
            
            pos := Filtered( [ 1 .. Length( deg ) ], p -> deg[p] = d );
            
            if IsHomalgLeftObjectOrMorphismOfLeftObjects( M ) then
                rel := k * CertainRows( rel, pos );
                rel := HomalgRelationsForLeftModule( rel );
            else
                rel := k * CertainColumns( rel, pos );
                rel := HomalgRelationsForRightModule( rel );
            fi;
        
        fi;
        
        degree_group := DegreeGroup( S );
        
        V_weights := List( [ 1 .. NrGenerators( gen ) ], i -> HomalgModuleElement( [ d ], degree_group ) );
        
        V := GradedModule( Presentation( gen, rel ), V_weights, k_graded );
        
        map := GradedMap( HomalgIdentityMatrix( l, S ),
                       S * V, Source( map_having_submodule_as_its_image ) );
        
        Assert( 4, IsMorphism( map ) );
        SetIsMorphism( map, true );
        
        Assert( 4, IsIsomorphism( map ) );
        SetIsIsomorphism( map, true );
        UpdateObjectsByMorphism( map );
        
        map_having_submodule_as_its_image := PreCompose( map, map_having_submodule_as_its_image );
        
    fi;
    
    SetNaturalTransformation( 
        Functor_HomogeneousPartOverCoefficientsRing_ForGradedModules,
        [ d, M ],
        "EmbeddingOfSubmoduleGeneratedByHomogeneousPart",
        map_having_submodule_as_its_image
    );
    
    return V;
    
end );


##
InstallGlobalFunction( _Functor_HomogeneousPartOverCoefficientsRing_OnGradedMaps, ### defines: HomogeneousPartOverCoefficientsRing (morphism part)
  function( F_source, F_target, arg_before_pos, phi, arg_behind_pos )
    local S, k, d, mat, result;
    
    S := HomalgRing( phi );
    
    if not HasCoefficientsRing( S ) then
        TryNextMethod( );
    fi;
    
    if HasBaseRing( S ) then
        k := BaseRing( S );
    else
        k := CoefficientsRing( S );
    fi;
    
    d := arg_before_pos[1];
    
    mat := k * MatrixOfMap( RepresentationOfMorphismOnHomogeneousParts( phi, d, d ) );
    
    result := GradedMap( mat, F_source, F_target );
    
    if HasIsMorphism( phi ) and IsMorphism( phi ) then
        Assert( 4, IsMorphism( result ) );
        SetIsMorphism( result, true );
    fi;
    
    return result;
    
end );

InstallValue( Functor_HomogeneousPartOverCoefficientsRing_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "HomogeneousPartOverCoefficientsRing" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "HomogeneousPartOverCoefficientsRing" ],
                [ "natural_transformations", [ [ "EmbeddingOfSubmoduleGeneratedByHomogeneousPart", 2 ] ] ],
                [ "number_of_arguments", 1 ],
                [ "0", [ IsInt ] ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_HomogeneousPartOverCoefficientsRing_OnGradedModules ],
                [ "OnMorphisms", _Functor_HomogeneousPartOverCoefficientsRing_OnGradedMaps ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_HomogeneousPartOverCoefficientsRing_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_HomogeneousPartOverCoefficientsRing_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_HomogeneousPartOverCoefficientsRing_ForGradedModules );

InstallMethod( HomogeneousPartOverCoefficientsRing,
               "for homalg element",
               [ IsHomalgElement, IsHomalgGradedModule ],
               
  function( d, M )
    
    return HomogeneousPartOverCoefficientsRing( HomalgElementToInteger( d ), M );
    
end );

InstallMethod( HomogeneousPartOverCoefficientsRing,
               "for homalg element",
               [ IsHomalgElement, IsHomalgGradedMap ],
               
  function( d, phi )
    
    return HomogeneousPartOverCoefficientsRing( HomalgElementToInteger( d ), phi );
    
end );

##
## HomogeneousPartOfDegreeZeroOverCoefficientsRing
##

InstallGlobalFunction( _Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_OnGradedModules, ### defines: HomogeneousPartOfDegreeZeroOverCoefficientsRing (object part)
        [ IsGradedModuleOrGradedSubmoduleRep ],
        
  function( M )
    
    return HomogeneousPartOverCoefficientsRing( 0, M );
    
end );


##
InstallGlobalFunction( _Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_OnGradedMaps, ### defines: HomogeneousPartOfDegreeZeroOverCoefficientsRing (morphism part)
  function( F_source, F_target, arg_before_pos, phi, arg_behind_pos )
    
    return HomogeneousPartOverCoefficientsRing( 0, phi );
    
end );

InstallValue( Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_ForGradedModules,
        CreateHomalgFunctor(
                [ "name", "HomogeneousPartOfDegreeZeroOverCoefficientsRing" ],
                [ "category", HOMALG_GRADED_MODULES.category ],
                [ "operation", "HomogeneousPartOfDegreeZeroOverCoefficientsRing" ],
                [ "number_of_arguments", 1 ],
                [ "1", [ [ "covariant", "left adjoint", "distinguished" ], HOMALG_GRADED_MODULES.FunctorOn ] ],
                [ "OnObjects", _Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_OnGradedModules ],
                [ "OnMorphisms", _Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_OnGradedMaps ],
                [ "MorphismConstructor", HOMALG_MODULES.category.MorphismConstructor ]
                )
        );

Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_ForGradedModules!.ContainerForWeakPointersOnComputedBasicObjects := true;

Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_ForGradedModules!.ContainerForWeakPointersOnComputedBasicMorphisms := true;

InstallFunctor( Functor_HomogeneousPartOfDegreeZeroOverCoefficientsRing_ForGradedModules );