CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

Views: 418346
#############################################################################
##
##  MatrixOverGradedRing.gi                      GradedRingForHomalg package
##
##  Copyright 2009-2010, Mohamed Barakat, University of Kaiserslautern
##                       Markus Lange-Hegermann, RWTH-Aachen University
##
##  Implementations for matrices over graded rings.
##
#############################################################################

####################################
#
# global variables:
#
####################################

if IsBound( HOMALG_MATRICES ) and IsBound( HOMALG_MATRICES.colored_info ) then
HOMALG_MATRICES.colored_info.LinearSyzygiesGeneratorsOfRows := [ 2, HOMALG_MATRICES.colors.BOH ];
HOMALG_MATRICES.colored_info.LinearSyzygiesGeneratorsOfColumns := [ 2, HOMALG_MATRICES.colors.BOH ];
fi;

####################################
#
# representations:
#
####################################

##  <#GAPDoc Label="IsHomalgMatrixOverGradedRingRep">
##  <ManSection>
##    <Filt Type="Representation" Arg="A" Name="IsHomalgMatrixOverGradedRingRep"/>
##    <Returns>true or false</Returns>
##    <Description>
##      The representation of &homalg; matrices with entries in a &homalg; graded ring. <P/>
##      (It is a representation of the &GAP; category <C>IsMatrixOverGradedRing</C>.)
##    <Listing Type="Code"><![CDATA[
DeclareRepresentation( "IsHomalgMatrixOverGradedRingRep",
        IsMatrixOverGradedRing,
        [ ] );
##  ]]></Listing>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>

####################################
#
# families and types:
#
####################################

BindGlobal( "TheTypeHomalgMatrixOverGradedRing",
        NewType( TheFamilyOfHomalgMatrices,
                IsHomalgMatrixOverGradedRingRep ) );

####################################
#
# methods for operations:
#
####################################

##
InstallMethod( UnderlyingMatrixOverNonGradedRing,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep and IsEmptyMatrix ],
        
  function( A )
    local B;
    
    if not HasEval( A ) then
      
      B := HomalgZeroMatrix( NrRows( A ), NrColumns( A ), UnderlyingNonGradedRing( HomalgRing( A ) ) );
      
      SetEval( A, B );
    
    fi;
    
    return Eval( A );
  
end );

##
InstallMethod( UnderlyingMatrixOverNonGradedRing,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep ],
        
  Eval );

##  <#GAPDoc Label="UnderlyingNonGradedRing:matrix">
##  <ManSection>
##    <Oper Arg="mat" Name="UnderlyingNonGradedRing" Label="for matrices over graded rings"/>
##    <Returns>a &homalg; ring</Returns>
##    <Description>
##      The nongraded ring underlying <C>HomalgRing</C>(<A>mat</A>).
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( UnderlyingNonGradedRing,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep ],
        
  function( A )
    
    return UnderlyingNonGradedRing( HomalgRing(A) );
    
end );

##
InstallMethod( BlindlyCopyMatrixPropertiesToMatrixOverGradedRing,	## under construction
        "for matrices over graded rings",
        [ IsHomalgMatrix, IsHomalgMatrixOverGradedRingRep ],
        
  function( S, T )
    local c;
    
    for c in [ NrRows, NrColumns ] do
        if Tester( c )( S ) then
            Setter( c )( T, c( S ) );
        fi;
    od;
    
    for c in [ IsZero, IsOne, IsDiagonalMatrix ] do
        if Tester( c )( S ) and c( S ) then
            Setter( c )( T, c( S ) );
        fi;
    od;
    
end );

##  <#GAPDoc Label="SetMatElm">
##  <ManSection>
##    <Oper Arg="mat, i, j, r, R" Name="SetMatElm" Label="for matrices over graded rings"/>
##    <Description>
##      Changes the entry (<A>i,j</A>) of the matrix <A>mat</A> to the value <A>r</A>. Here <A>R</A> is the graded &homalg; ring involved in these computations.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( SetMatElm,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep and IsMutable, IsPosInt, IsPosInt, IsHomalgGradedRingElementRep, IsHomalgGradedRingRep ],
        
  function( M, r, c, s, R )
    
    SetMatElm( UnderlyingMatrixOverNonGradedRing( M ), r, c, UnderlyingNonGradedRingElement( s ), UnderlyingNonGradedRing( R ) );
    
end );

##  <#GAPDoc Label="AddToMatElm">
##  <ManSection>
##    <Oper Arg="mat, i, j, r, R" Name="AddToMatElm" Label="for matrices over graded rings"/>
##    <Description>
##      Changes the entry (<A>i,j</A>) of the matrix <A>mat</A> by adding the value <A>r</A> to it. Here <A>R</A> is the (graded) &homalg; ring involved in these computations.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( AddToMatElm,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep and IsMutable, IsPosInt, IsPosInt, IsHomalgGradedRingElementRep, IsHomalgGradedRingRep ],
        
  function( M, r, c, s, R )
  
    AddToMatElm( UnderlyingMatrixOverNonGradedRing( M ), r, c, UnderlyingNonGradedRingElement( s ), UnderlyingNonGradedRing( R ) );
    
end );

##  <#GAPDoc Label="MatElmAsString">
##  <ManSection>
##    <Oper Arg="mat, i, j, R" Name="MatElmAsString" Label="for matrices over graded rings"/>
##    <Returns>a string</Returns>
##    <Description>
##      Returns the entry (<A>i,j</A>) of the matrix <A>mat</A> as a string. Here <A>R</A> is the (graded) &homalg; ring involved in these computations.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( MatElmAsString,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep, IsPosInt, IsPosInt, IsHomalgGradedRingRep ],
        
  function( M, r, c, R )
    
    return MatElmAsString( UnderlyingMatrixOverNonGradedRing( M ), r, c, UnderlyingNonGradedRing( R ) );
    
end );

##  <#GAPDoc Label="MatElm">
##  <ManSection>
##    <Oper Arg="mat, i, j, R" Name="MatElm" Label="for matrices over graded rings"/>
##    <Returns>a graded ring element</Returns>
##    <Description>
##      Returns the entry (<A>i,j</A>) of the matrix <A>mat</A>. Here <A>R</A> is the (graded) &homalg; ring involved in these computations.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( MatElm,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep, IsPosInt, IsPosInt, IsHomalgGradedRingRep ],
        
  function( M, r, c, R )
    
    return GradedRingElement( MatElm( UnderlyingMatrixOverNonGradedRing( M ), r, c, UnderlyingNonGradedRing( R ) ), R );
    
end );

##
InstallMethod( SaveHomalgMatrixToFile,
        "for matrices over graded rings",
        [ IsString, IsHomalgMatrixOverGradedRingRep, IsHomalgGradedRingRep ],
        
  function( filename, M, R )
  
    return SaveHomalgMatrixToFile( filename, UnderlyingMatrixOverNonGradedRing( M ), UnderlyingNonGradedRing( R ) );
    
end );

##
InstallMethod( LoadHomalgMatrixFromFile,
        "for matrices over graded rings",
        [ IsString, IsInt, IsInt, IsHomalgGradedRingRep ],
        
  function( filename, r, c, R )
  
    return MatrixOverGradedRing( LoadHomalgMatrixFromFile( filename, r, c, UnderlyingNonGradedRing( R ) ), R );
    
end );

##
InstallMethod( MonomialMatrixWeighted,
        "for homalg rings",
        [ IsInt, IsHomalgRing and IsHomalgResidueClassRingRep, IsList ],
        
  function( d, R, weights )
    
    return R * MonomialMatrixWeighted( d, AmbientRing( R ), weights );
    
end );

##  <#GAPDoc Label="MonomialMatrix">
##  <ManSection>
##    <Oper Arg="d, R" Name="MonomialMatrix"/>
##    <Returns>a &homalg; matrix</Returns>
##    <Description>
##      The column matrix of <A>d</A>-th monomials of the &homalg; graded ring <A>R</A>.
##      <Example><![CDATA[
##  gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
##  gap> S := GradedRing( R );;
##  gap> m := MonomialMatrix( 2, S );
##  <A ? x 1 matrix over a graded ring>
##  gap> NrRows( m );
##  6
##  gap> m;
##  <A 6 x 1 matrix over a graded ring>
##  gap> Display( m );
##  x^2,
##  x*y,
##  x*z,
##  y^2,
##  y*z,
##  z^2
## (over a graded ring) 
##  ]]></Example>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( MonomialMatrix,
        "for homalg rings",
        [ IsInt, IsHomalgGradedRing ],
        
  function( d, S )
    local weights, weightlist;
    
    weights := WeightsOfIndeterminates( S );
    
    if IsHomalgElement( weights[ 1 ] ) then
        
        weightlist := List( weights, UnderlyingListOfRingElements );
        
        if Length( weightlist[ 1 ] ) = 1 then
            
            weightlist := List( weightlist, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    return MatrixOverGradedRing(
                   MonomialMatrixWeighted(
                           d, UnderlyingNonGradedRing( S ), weightlist ),
                   S );
    
end );

##
InstallMethod( MonomialMatrix,
        "for homalg rings",
        [ IsList, IsHomalgGradedRing ],
        
  function( d, S )
    local weights, weightlist;
    
    weights := WeightsOfIndeterminates( S );
    
    if IsHomalgElement( weights[ 1 ] ) then
        
        weightlist := List( weights, UnderlyingListOfRingElements );
        
        if Length( weightlist[ 1 ] ) = 1 then
            
            weightlist := List( weightlist, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    return MatrixOverGradedRing(
                   MonomialMatrixWeighted(
                           d, UnderlyingNonGradedRing( S ), weightlist ),
                   S );
    
end );

##  <#GAPDoc Label="RandomMatrixBetweenGradedFreeLeftModules">
##  <ManSection>
##    <Oper Arg="degreesS,degreesT,R" Name="RandomMatrixBetweenGradedFreeLeftModules"/>
##    <Returns>a &homalg; matrix</Returns>
##    <Description>
##      A random <M>r \times c </M>-matrix between the graded free <E>left</E> modules
##      <M><A>R</A>^{(-<A>degreesS</A>)} \to <A>R</A>^{(-<A>degreesT</A>)}</M>,
##      where <M>r = </M><C>Length</C><M>(</M><A>degreesS</A><M>)</M> and
##      <M>c = </M><C>Length</C><M>(</M><A>degreesT</A><M>)</M>.
##      <Example><![CDATA[
##  gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "a,b,c";;
##  gap> S := GradedRing( R );;
##  gap> rand := RandomMatrixBetweenGradedFreeLeftModules( [ 2, 3, 4 ], [ 1, 2 ], S );
##  <A 3 x 2 matrix over a graded ring>
##  gap> #Display( rand );
##  gap> #a-2*b+2*c,                                                2,                 
##  gap> #a^2-a*b+b^2-2*b*c+5*c^2,                                  3*c,               
##  gap> #2*a^3-3*a^2*b+2*a*b^2+3*a^2*c+a*b*c-2*b^2*c-3*b*c^2-2*c^3,a^2-4*a*b-3*a*c-c^2
##  ]]></Example>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( RandomMatrixBetweenGradedFreeLeftModules,
        "for homalg graded rings",
        [ IsList, IsList, IsHomalgGradedRingRep ],
        
  function( degreesS, degreesT, S )
    local weights, weightlist;
    
    weights := WeightsOfIndeterminates( S );
    
    if IsHomalgElement( weights[ 1 ] ) then
        
        weightlist := List( weights, UnderlyingListOfRingElements );
        
        if Length( weightlist[ 1 ] ) = 1 then
            
            weightlist := List( weightlist, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    if ForAny( degreesS, IsHomalgElement ) then
        
        degreesS := List( degreesS, function( i ) 
                                         if IsHomalgElement( i ) then
                                             return UnderlyingListOfRingElements( i );
                                         else
                                             return i;
                                         fi;
                                         end );
        
        if ForAny( degreesS, IsList ) then
            
            degreesS := List( degreesS, function( i )
                                                 if IsList( i ) and Length( i ) = 1 then
                                                     return i[ 1 ];
                                                 else
                                                     return i;
                                                 fi;
                                             end );
            
        fi;
        
    fi;
    
    if IsHomalgElement( degreesT[ 1 ] ) then
        
        degreesT := List( degreesT, function( i ) 
                                         if IsHomalgElement( i ) then
                                             return UnderlyingListOfRingElements( i );
                                         else
                                             return i;
                                         fi;
                                         end );
        
        if ForAny( degreesT, IsList ) then
            
            degreesT := List( degreesT, function( i )
                                                 if IsList( i ) and Length( i ) = 1 then
                                                     return i[ 1 ];
                                                 else
                                                     return i;
                                                 fi;
                                             end );
            
        fi;
        
    fi;
    
    return MatrixOverGradedRing(
                   RandomMatrixBetweenGradedFreeLeftModulesWeighted(
                           degreesS, degreesT,
                           UnderlyingNonGradedRing( S ), weightlist ),
                   S );
    
end );

##  <#GAPDoc Label="RandomMatrixBetweenGradedFreeRightModules">
##  <ManSection>
##    <Oper Arg="degreesT,degreesS,R" Name="RandomMatrixBetweenGradedFreeRightModules"/>
##    <Returns>a &homalg; matrix</Returns>
##    <Description>
##      A random <M>r \times c </M>-matrix between the graded free <E>right</E> modules
##      <M><A>R</A>^{(-<A>degreesS</A>)} \to <A>R</A>^{(-<A>degreesT</A>)}</M>,
##      where <M>r = </M><C>Length</C><M>(</M><A>degreesT</A><M>)</M> and
##      <M>c = </M><C>Length</C><M>(</M><A>degreesS</A><M>)</M>.
##      <Example><![CDATA[
##  gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "a,b,c";;
##  gap> S := GradedRing( R );;
##  gap> rand := RandomMatrixBetweenGradedFreeRightModules( [ 1, 2 ], [ 2, 3, 4 ], S );
##  <A 2 x 3 matrix over a graded ring>
##  gap> #Display( rand );
##  gap> #a-2*b-c,a*b+b^2-b*c,2*a^3-a*b^2-4*b^3+4*a^2*c-3*a*b*c-b^2*c+a*c^2+5*b*c^2-2*c^3,
##  gap> #-5,     -2*a+c,     -2*a^2-a*b-2*b^2-3*a*c                                      
##  ]]></Example>
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( RandomMatrixBetweenGradedFreeRightModules,
        "for homalg graded rings",
        [ IsList, IsList, IsHomalgGradedRingRep ],
        
  function( degreesS, degreesT, S )
    local weights, weightlist;
    
    weights := WeightsOfIndeterminates( S );
    
    if IsHomalgElement( weights[ 1 ] ) then
        
        weightlist := List( weights, UnderlyingListOfRingElements );
        
        if Length( weightlist[ 1 ] ) = 1 then
            
            weightlist := List( weightlist, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    if IsHomalgElement( degreesS[ 1 ] ) then
        
        degreesS := List( degreesS, UnderlyingListOfRingElements );
        
        if Length( degreesS[ 1 ] ) = 1 then
            
            degreesS := List( degreesS, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    if IsHomalgElement( degreesT[ 1 ] ) then
        
        degreesT := List( degreesT, UnderlyingListOfRingElements );
        
        if Length( degreesT[ 1 ] ) = 1 then
            
            degreesT := List( degreesT, i -> i[ 1 ] );
            
        fi;
        
    fi;
    
    return MatrixOverGradedRing(
                   RandomMatrixBetweenGradedFreeRightModulesWeighted(
                           degreesS, degreesT,
                           UnderlyingNonGradedRing( S ), weightlist ),
                   S );
    
end );

##
InstallMethod( DegreesOfEntries,
        "for homalg matrices",
        [ IsHomalgMatrix, IsHomalgGradedRing ],
        
  function( C, S )
    
    if IsZero( C ) then
        
        return ListWithIdenticalEntries( NrRows( C ),
                       ListWithIdenticalEntries( NrColumns( C ),
                               DegreeOfRingElement( Zero( S ) ) ) );
    fi;
    
    return DegreesOfEntriesFunction( S )( C );
    
end );

##
InstallMethod( NonTrivialDegreePerRow,
        "for a homalg matrix and a graded ring",
        [ IsHomalgMatrix, IsHomalgGradedRing ],
        
  function( C, S )
    local degrees;
    
    if IsOne( C ) then
        return ListWithIdenticalEntries( NrRows( C ), DegreeOfRingElement( One( S ) ) );
    elif IsZero( C ) then
        return ListWithIdenticalEntries( NrRows( C ), DegreeOfRingElement( One( S ) ) );	## One( S ) is not a mistake
    fi;
    
    ## CASHING ## 
    if IsBound( C!.NonTrivialDegreePerRow ) then
        degrees := _ElmPObj_ForHomalg( C!.NonTrivialDegreePerRow, S, fail );
        if degrees <> fail then
            return degrees;
        fi;
    else
        C!.NonTrivialDegreePerRow :=
          ContainerForPointers(
                  TheTypeContainerForPointersOnComputedValues,
                  [ "operation", "NonTrivialDegreePerRow" ] );
    fi;
    ## ENDCASHING ##
    
    degrees := NonTrivialDegreePerRowWithColPositionFunction( S )( C );
    
    ## CASHING ##
    if not IsMutable( C ) then
        _AddTwoElmPObj_ForHomalg( C!.NonTrivialDegreePerRow, S, degrees );
    fi;
    ## ENDCASHING ##
    
    return degrees;
    
end );

##
InstallMethod( NonTrivialDegreePerRow,
        "for a homalg matrix and a graded ring",
        [ IsHomalgMatrix, IsHomalgGradedRing, IsList ],
        
  function( C, S, col_degrees )
    local degs, col_pos, f;
    
    if Length( col_degrees ) <> NrColumns( C ) then
        Error( "the number of entries in the list of column degrees does not match the number of columns of the matrix\n" );
    fi;
    
    if IsOne( C ) then
        return col_degrees;
    elif IsEmptyMatrix( C ) then
        return ListWithIdenticalEntries( NrRows( C ), DegreeOfRingElement( One( S ) ) );	## One( S ) is not a mistake
    elif IsZero( C ) then
        return ListWithIdenticalEntries( NrRows( C ), col_degrees[1] );	## this is not a mistake
    fi;
    
    degs := NonTrivialDegreePerRow( C, S );
    
    col_pos := PositionOfFirstNonZeroEntryPerRow( C );
    
    f := function( i )
           local c;
           
           c := col_pos[i];
           if c = 0 then
               return col_degrees[1];
           else
               return degs[i] + col_degrees[c];
           fi;
       end;
    
    return List( [ 1 .. NrRows( C ) ], f );
    
end );

##
InstallMethod( NonTrivialDegreePerColumn,
        "for a homalg matrix and a graded ring",
        [ IsHomalgMatrix, IsHomalgGradedRing ],
        
  function( C, S )
    local degrees;
    
    if IsOne( C ) then
        return ListWithIdenticalEntries( NrColumns( C ), DegreeOfRingElement( One( S ) ) );
    elif IsZero( C ) then
        return ListWithIdenticalEntries( NrColumns( C ), DegreeOfRingElement( One( S ) ) );	## One( S ) is not a mistake
    fi;
    
    if IsBound( C!.NonTrivialDegreePerColumn ) then
        degrees := _ElmPObj_ForHomalg( C!.NonTrivialDegreePerColumn, S, fail );
        if degrees <> fail then
            return degrees;
        fi;
        
    else
        C!.NonTrivialDegreePerColumn :=
          ContainerForPointers(
                  TheTypeContainerForPointersOnComputedValues,
                  [ "operation", "NonTrivialDegreePerColumn" ] );
    fi;
    
    degrees := NonTrivialDegreePerColumnWithRowPositionFunction( S )( C );
    
    if not IsMutable( C ) then
        _AddTwoElmPObj_ForHomalg( C!.NonTrivialDegreePerColumn, S, degrees );
    fi;
    
    
    
    return degrees;
    
end );

##
InstallMethod( NonTrivialDegreePerColumn,
        "for a homalg matrix and a graded ring",
        [ IsHomalgMatrix, IsHomalgGradedRing, IsList ],
        
  function( C, S, row_degrees )
    local degs, row_pos, f;
    
    if Length( row_degrees ) <> NrRows( C ) then
        Error( "the number of entries in the list of row degrees does not match the number of rows of the matrix\n" );
    fi;
    
    if IsOne( C ) then
        return row_degrees;
    elif IsEmptyMatrix( C ) then
        return ListWithIdenticalEntries( NrColumns( C ), DegreeOfRingElement( One( S ) ) );	## One( S ) is not a mistake
    elif IsZero( C ) then
        return ListWithIdenticalEntries( NrColumns( C ), row_degrees[1] );	## this is not a mistake
    fi;
    
    degs := NonTrivialDegreePerColumn( C, S );
    
    row_pos := PositionOfFirstNonZeroEntryPerColumn( C );
    
    f := function( j )
           local r;
           
           r := row_pos[j];
           if r = 0 then
               return row_degrees[1];
           else
               return degs[j] + row_degrees[r];
           fi;
       end;
       
    return List( [ 1 .. NrColumns( C ) ], f );
    
end );

####################################
#
# constructor functions and methods:
#
####################################

##  <#GAPDoc Label="MatrixOverGradedRing">
##  <ManSection>
##    <Func Arg="mat, S" Name="MatrixOverGradedRing" Label="constructor for matrices over graded rings"/>
##    <Returns>a matrix over a graded ring</Returns>
##    <Description>
##      Creates a matrix for the graded ring <A>S</A>, where <A>mat</A> is a matrix over <C>UnderlyingNonGradedRing</C>(<A>S</A>).
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( MatrixOverGradedRing,
        "constructor for matrices over graded rings",
        [ IsHomalgMatrix, IsHomalgGradedRingRep ],
        
  function( A, R )
    local G, type, matrix, ComputationRing, rr, AA;
    
    if IsHomalgMatrixOverGradedRingRep( A ) then
        return A;
    fi;
    
    G := HomalgRing( A );
    
    ComputationRing := UnderlyingNonGradedRing( R );
    
    if not IsIdenticalObj( ComputationRing , G ) then
        Error( "underlying rings do not match" );
    fi;
    
    matrix := rec(
                  ring := R,
                  );
    
    ObjectifyWithAttributes(
            matrix, TheTypeHomalgMatrixOverGradedRing,
            Eval, A
            );
    
    BlindlyCopyMatrixPropertiesToMatrixOverGradedRing( A, matrix );
    
    return matrix;
    
end );

InstallMethod( MatrixOverGradedRing,
        "constructor for matrices over graded rings",
        [ IsList, IsInt, IsInt, IsHomalgGradedRingRep ],
  function( A, r, c, R )
    
    return MatrixOverGradedRing( HomalgMatrix( A, r, c, UnderlyingNonGradedRing( R ) ), R );
    
end );

##
InstallMethod( \*,
        "for homalg matrices",
        [ IsHomalgGradedRingRep, IsHomalgMatrix ],
        
  function( R, m )
    
    return MatrixOverGradedRing( UnderlyingNonGradedRing( R ) * m, R );
    
end );

##
InstallMethod( \*,
        "for matrices over graded rings",
        [ IsHomalgRing, IsHomalgMatrixOverGradedRingRep ],
        
  function( R, m )
    
    return R * UnderlyingMatrixOverNonGradedRing( m );
    
end );

##
InstallMethod( PostMakeImmutable,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep and HasEval ],
        
  function( A )
    
    MakeImmutable( UnderlyingMatrixOverNonGradedRing( A ) );
    
end );

##
InstallMethod( SetIsMutableMatrix,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep, IsBool ],
        
  function( A, b )
    
    if b = true then
      SetFilterObj( A, IsMutable );
    else
      ResetFilterObj( A, IsMutable );
    fi;
    
    SetIsMutableMatrix( UnderlyingMatrixOverNonGradedRing( A ), b );
    
end );

##
InstallMethod( SaveHomalgMatrixToFile,
        "for matrices over graded rings",
        [ IsString, IsHomalgMatrixOverGradedRingRep ],
  function( filename, M )
    
    return SaveHomalgMatrixToFile( filename, UnderlyingMatrixOverNonGradedRing( M ) );
    
end );

##
InstallMethod( LoadHomalgMatrixFromFile,
        "for a string and a graded ring",
        [ IsString, IsHomalgGradedRingRep ],
        
  function( filename, S )
    
    return LoadHomalgMatrixFromFile( filename, UnderlyingNonGradedRing( S ) );
    
end );

##
InstallMethod( LoadHomalgMatrixFromFile,
        "for a string, two integers, and a graded ring",
        [ IsString, IsInt, IsInt, IsHomalgGradedRingRep ],
        
  function( filename, r, c, S )
    
    return LoadHomalgMatrixFromFile( filename, r, c, UnderlyingNonGradedRing( S ) );
    
end );

####################################
#
# View, Print, and Display methods:
#
####################################

##
InstallMethod( Display,
        "for matrices over graded rings",
        [ IsHomalgMatrixOverGradedRingRep ],
        
  function( A )
    
    Display( UnderlyingMatrixOverNonGradedRing( A ) );
    Print( "(over a graded ring)\n" );
    
end );