Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
Project: cocalc-sagemath-dev-slelievre
Views: 418346gap> START_TEST("HAPcryst test"); gap> G:=SpaceGroup(3,165); SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) gap> SetInfoLevel(InfoHAPcryst,1); gap> PointGroupRepresentatives(G); [ [ [ -1, -1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 5/3, 1 ] ], [ [ -1, 0, 0, 0 ], [ 0, -1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/2, 1 ] ], [ [ 0, -1, 0, 0 ], [ 1, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 5/6, 1 ] ], [ [ 0, 1, 0, 0 ], [ -1, -1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 4/3, 1 ] ], [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], [ [ 1, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 13/6, 1 ] ] ] gap> res:=ResolutionBieberbachGroup(G); Resolution of length 4 in characteristic 0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) . No contracting homotopy available. gap> List([0..3],Dimension(res)); [ 2, 5, 4, 1 ] gap> BoundaryOfGenerator_LargeGroupRep(res,2,1); [ (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], (-1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], (-1)*[ [ 1, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/6, 1 ] ], <zero> of ..., (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ] ] gap> res:=ResolutionBieberbachGroup(G,[1/2,1/3,1/5]); Resolution of length 4 in characteristic 0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) . No contracting homotopy available. gap> List([0..3],Dimension(res)); [ 9, 18, 10, 1 ] gap> BoundaryOfGenerator_LargeGroupRep(res,2,1); [ (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], (-1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ]+( -1)*[ [ 1, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/6, 1 ] ], (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], (-1)*[ [ -1, 0, 0, 0 ], [ 0, -1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/2, 1 ] ], <zero> of ..., (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], (-1)*[ [ -1, -1, 0, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 2/3, 1 ] ], <zero> of ..., (-1)*[ [ 1, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/6, 1 ] ], <zero> of ..., <zero> of ..., (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], <zero> of ..., (-1)*[ [ 1, 1, 0, 0 ], [ -1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 1/6, 1 ] ], <zero> of ..., <zero> of ..., (1)*[ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ], <zero> of ... ] gap> res:=ResolutionBieberbachGroup(SpaceGroup(4,4)); Resolution of length 5 in characteristic 0 for SpaceGroupOnRightBBNWZ( 4, 2, 1, 1, 2 ) . No contracting homotopy available. gap> List([0..4],i->Homology(TensorWithIntegers(res),i)); [ [ 0 ], [ 2, 0, 0, 0 ], [ 2, 2, 0, 0, 0 ], [ 2, 0 ], [ ] ] gap> List([0..4],i->Cohomology(HomToIntegers(res),i)); [ [ 0 ], [ 0, 0, 0 ], [ 2, 0, 0, 0 ], [ 2, 2, 0 ], [ 2 ] ] gap> STOP_TEST("tst.g", 10000);